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Abstract. This paper is devoted to studying the existence, uniqueness and asymp-
totic stability of a multi-state device’s time-dependent solution. C0 semigroup theory is
used to prove the existence of a unique non-negative solution of the device. Moveover,
by analyzing the spectrum of the system operator generated by the device, this paper
proves that 0 is the unique spectral point on the imaginary axis and the other spectra
lie in the left half plane. As a result, the asymptotic behavior of a multi-state device is
obtained.

1. Introduction. The system of a multi-state device study began as early as the
1950’s [1] and still attracts the interest of researchers [2]-[9]. Early works (see [1]-[6])
all assumed that the repair rate of a failed multi-state device is constant. But in many
practical cases, the repair time of a failed device is arbitrarily distributed. Chung [7]
extended the work of Elsayed and Zebib [6] and developed a mathematical model of
the device with arbitrarily distributed repair time. Further, Chung [7] derived steady
availability of the device by the method of inversion of the Laplace transform.

These works consider only reliability and availability of the multi-state device in the
applied field. Since they are lacking a strictly theoretic basis, they do their researches
with two hypotheses:

Hypothesis 1. The multi-state device has a unique non-negative time-dependent solu-
tion;

Hypothesis 2. The solution of a multi-state device is asymptotic stability.
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Both hypotheses obviously hold if the repair time follows exponential distribution.
However, whether they hold or not when the repair rate follows arbitrary distribution is
still an open question, and this should be justified.

This paper is devoted to providing a strictly mathematical proof for the above two
hypotheses. The paper is organized as following:

Subsection 1.1 describes the assumptions associated with the device; subsection 1.2
introduces some notations which will be used in the paper; device formulation is given
in subsection 1.3; unique existence of the solution of the device is proved in section
2; asymptotic behavior of the device is presented in section 3; section 4 concludes the
paper.

1.1. Assumptions with the multi-state device. This paper presents a multi-state device
with M failure rates and arbitrarily distributed repair time.

The following assumptions are associated with the device:
(1) The failure rates are constant.
(2) All failures are statistically independent.
(3) All repair time of failed devices are arbitrarily distributed.
(4) There are M modes of failure, the state of the device is given by its failure mode

number, 0 implies the good state.
(5) The repair process begins soon after the device is in failure state.
(6) The repaired device is as good as new.
(7) No further failure can occur when the device has been down.

1.2. Notations. The following symbols are associated with the device:
• i ith state of the device (see the device transition diagram of Figure 1); i = 0,

the device is in good state; i = j, (j = 1, · · · , M), the device is in the jth failure
mode;

• λj Constant failure rate of the device for failure mode j, j = 1, · · · , M ;
• µj(x) Time-dependent repair rate when the device is in state j and has an

elapsed repair time of x;
• p0(t) The probability that the device is in state 0 at time t;
• pj(x, t) The probability that the failed device is in state j at time t and has an

elapsed repair time of x;
• Xj Random variables representing repair time when the device is in state j;
• Gj(·) Distributed function of Xj ;
• gj(·) Probability density function of Xj , j = 1, · · · , M ;
• Ej(x) The mean time to repair the device, which is in state j and has an

elapsed repair time x, j = 1, · · · , M .

It is easy to deduce that µj(x)∆t = dGj(x)/dx
(1−Gj(x))∆t. So, µj(x) is also called hazard rate

of device in state j, j = 1, 2, · · · , M . Further, we assume that:
(1) There exist W ∈ R, such that 0 < sup

x∈[0,∞)

µj(x) ≤ W < ∞;

(2)
∫ x

0
µj(ρ)dρ < ∞, x < ∞,

∫ ∞
0

µj(ρ)dρ = ∞.

Obviously, these conditions conform to the physical background of the multi-state
device.
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Fig. 1. The state transition diagram of the multi-state device.

1.3. Device formulation. By the method of probability analysis, the mathematical
model associated with Figure 1 can be expressed as (see [7])

dp0(t)
dt

= −
M∑

j=1

λjp0(t) +
M∑

j=1

∫ ∞

0

pj(x, t)µj(x)dx, (1.1)

∂pj(x, t)
∂t

+
∂pj(x, t)

∂x
= −µj(x)pj(x, t), j = 1, · · · , M. (1.2)

Boundary conditions:

pj(0, t) = λjp0(t), j = 1, · · · , M. (1.3)

Initial value:

p0(0) = 1, pj(x, 0) = 0, j = 1, · · · , M. (1.4)

We will describe equations (1.1)–(1.4) by an abstract Cauchy problem in the Banach
space. For simplicity, we first introduce notations as

A = diag(−
M∑

j=1

λj ,−
d

dx
− µ1(x), · · · ,− d

dx
− µj(x), · · · ,− d

dx
− µM (x)),

E =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0
∫ ∞
0

·µ1(x)dx · · ·
∫ ∞
0

·µj(x)dx · · ·
∫ ∞
0

·µM (x)dx

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

We take state space X as

X = {�y ∈ C × L1[0,∞) × · · · × L1[0,∞) | ‖ �y ‖= |y0| +
M∑

j=1

‖ yj(x) ‖L1[0,∞)}.

It is obvious that (X, ‖ · ‖) is a Banach space. The domain of operator A is D(A) =
{�p ∈ X | dpj(x)

dx + µj(x)pj(x) ∈ L1[0,∞), pj(x) are absolutely continuous functions,
pj(0) = λjp0}.
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Then the above equations (1.1)–(1.4) can be written as an abstract Cauchy problem
in the Banach space X⎧⎪⎨

⎪⎩
d�p(t)

dt = (A + E)�p(t), t ≥ 0,

�p(0) = (1, 0, · · · , 0),
�p(t) = (p0(t), p1(x, t), · · · , pj(x, t), · · · , pM (x, t)).

(1.5)

2. Unique existence solution of the device. In this section, we shall prove the
existence of the non-negative solution of the multi-state device by C0 semigroup theory.
We begin by proving the following propositions.

Theorem 2.1. Let operator A and E be defined as before. Then we have:
(1) γ ∈ ρ(A) and ‖ (γI − A)−1 ‖< 1

γ when γ > 0.
(2) D(A) is dense in X.
(3) Semigroup T (t) generated by operate (A + E) is a positive C0 semigroup.
(4) T (t) is a positive C0 semigroup of contraction.

Proof. (1) γ ∈ ρ(A) and ‖ (γI − A)−1 ‖< 1
γ when γ > 0.

For any �y = (y0, y1(x), · · · , yM (x)) ∈ X, consider the equation (γI − A)�p = �y:

(γ +
M∑

j=1

λj)p0 = y0, (2.1)

dpj(x)
dx

= −(γ + µj(x))pj(x) + yj(x), j = 1, · · · , M, (2.2)

pj(0) = λjp0. (2.3)

Solving (2.1)–(2.2) with help (2.3), we can obtain that

p0 =
y0

γ +
∑M

j=1 λj

,

pj(x) = λjp0e
−

∫ x
0 (γ+µj(ξ))dξ +

∫ x

0

e−
∫ x
τ

(γ+µj(ξ))dξyj(τ )dτ, j = 1, · · · , M.

Combining the above two equations with the Fubini theorem, we can deduce that

‖ �p ‖= |p0| +
M∑

j=1

‖ pj ‖L1[0,∞)

<
1

γ +
∑M

j=1 λj

|y0| +
M∑

j=1

(
λj

γ +
∑M

j=1 λj

|y0|
∫ ∞

0

e−γxdx

+
∫ ∞

0

|yj(τ )|dτ

∫ ∞

τ

e−γ(x−τ)dx)

=
1

γ +
∑M

j=1 λj

|y0| +
M∑

j=1

(
λj

γ(γ +
∑M

j=1 λj)
|y0| +

1
γ
‖ yj(x) ‖)

≤ 1
γ

(|y0| +
M∑

j=1

‖ yj(x) ‖L1[0,∞)) =
1
γ
‖ �y ‖ .

(2.4)
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Equation (2.4) shows that (γI−A)−1 : X → X exists and ‖ (γI−A)−1 ‖< 1
γ when γ > 0.

(2) D(A) is dense in X.
If we set L = {(p0, p1(x), · · · , pj(x), · · · , pM (x)) | pj(x) ∈ C∞

0 [0,∞), and there exist
numbers cj such that pj(x) = 0, x ∈ [0, cj ], j = 1, · · · , M}, it is obvious that L is dense
in X. So it suffices to prove that D(A) is dense in L.

Take p ∈ L; then there are cj > 0, such that pj(x) = 0, x ∈ [0.cj ], j = 1, · · · , M . It
deduces that pj(x) = 0, x ∈ [0, 2s], where 0 < 2s < min{cj , j = 1, · · · , M}.
Set

fs(0) = (p0, f
s
1 (0), · · · , fs

j (0), · · · , fs
M (0))

= (p0, λ1p0, · · · , λjp0, · · · , λMp0);

fs(x) = (p0, f
s
1 (x), · · · , fs

j (x), · · · , fs
M (x));

fs
j (x) =

⎧⎨
⎩

fs
j (0)(1 − x

s )2, x ∈ [0, s),
−µj(x − s)2(x − 2s)2, x ∈ [s, 2s), j = 1, · · · , M,

pj(x), x ∈ [2s,∞),

where, µj = fs
j (0)

∫
s
0 µj(x)(1− x

s )2dx∫ 2s
s

µj(x)(x−s)2(x−2s)2dx
.

Then it is easy to verify that fs(x) ∈ D(A), moreover

‖ �p − fs(x) ‖ =
M∑

j=1

∫ ∞

0

|pj(x) − fs
j (x)|dx =

M∑
j=1

∫ 2s

0

|pj(x) − fs
j (x)|dx

=
M∑

j=1

(
∫ s

0

|fs
j (0)|(1 − x

s
)2dx +

∫ 2s

s

|µj |(x − s)2(x − 2s)2dx)

=
M∑

j=1

(|fs
j (0)|s

3
+ |µj |

s5

30
) → 0, when s → 0.

This shows that D(A) is dense in L. In other words, D(A) is dense in X. From (1),
(2) and the Hille Yosida theory (see [10]), we know that operator A generates a C0

semigroup. Further, it is easy to check that

E : X → X, ‖ E ‖≤ W, (2.5)

is a bounded linear operator (the meaning of W has been mentioned in subsection 1.2).
Thus by the perturbation theory of the C0 semigroup (see [11]), we know that operator
(A + E) generates a C0 semigroup T (t).

(3) T (t) generated by operator (A + E) is a positive C0 semigroup.
By the solution of equations (2.1)–(2.3), we know that �p is a non-negative vector if �y is

a nonnegative vector (y0 ≥ 0, and yj(x) ≥ 0, j = 1, · · · , M). In other words, (γI−A)−1 is
a positive operator. It is easy to see by the expression of E that E is a positive operator.
Note that

(γI − A − E)−1 = [I − (γI − A)−1E]−1(γI − A)−1. (2.6)
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By Equation (2.4), it can be proved that ‖ (γI − A)−1E ‖< 1 when γ > W . That is to
say, [I − (γI − A)−1E]−1 exists and is bounded and

[I − (γI − A)−1E]−1 =
∞∑

k=0

[(γI − A)−1E]k. (2.7)

Therefore [I − (γI − A)−1E]−1 is a positive operator. By eq. (2.6) and eq. (2.7) we
obtain that (γI − A − E)−1 is a positive operator when γ > W . By [10], we know that
T (t) generated by operator (A + E) is a positive C0 semigroup.

(4) T (t) is a positive C0-semigroup of contraction.
For any �p ∈ D(A), we take Qp = ( [p0]

+

p0
, [p1(x)]+

p1(x) , · · · , [pM (x)]+

pM (x) ), here:

[p0]+ =
{

p0, p0 > 0,

0, p0 ≤ 0,

[pj(x)]+ =
{

pj(x), pj(x) > 0,

0, pj(x) ≤ 0, j = 1, · · · , M.

For any �p ∈ D(A) and Qp, we have

〈(A + E)�p, Qp〉 = {−
M∑

j=1

λjp0 +
M∑

j=1

∫ ∞

0

pj(x)µj(x)dx} [p0]+

p0

−
M∑

j=1

∫ ∞

0

{dpj(x)
dx

+ µj(x)pj(x)} [pj(x)]+

pj(x)
dx

= −
M∑

j=1

λj [p0]+ +
M∑

j=1

∫ ∞

0

pj(x)µj(x)dx
[p0]+

p0

−
M∑

j=1

∫ ∞

0

dpj(x)
dx

[pj(x)]+

pj(x)
dx −

M∑
j=1

∫ ∞

0

µj(x)[pj(x)]+dx

≤ −
M∑

j=1

λj [p0]+ +
M∑

j=1

∫ ∞

0

µj(x)[pj(x)]+dx

+
M∑

j=1

λj [p0]+ −
M∑

j=1

∫ ∞

0

µj(x)[pj(x)]+dx = 0. (2.8)

From the definition of a dispersive operator and eq. (2.8), we know that (A + E) is
a dispersive operator. Combining (1), (2), and (3) with the Philips theory (see [10]), we
derive that operator (A + E) generates a positive C0 semigroup contraction. Because
of the uniqueness of a C0 semigroup generated by the same operator (see [11]), we
can conclude that this positive contraction C0-semigroup is just T (t). Thus (4) holds.
Theorem 2.1 is completed. �

Theorem 2.2. The device (1.5) has a unique non-negative solution �p(x, t), which satisfies
‖ �p(·, t) ‖= 1, t ∈ [0,∞).
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Proof. From Theorem 2.1 and [11], we know that the device (1.5) has a unique non-
negative solution �p(x, t) and it can be expressed as

�p(x, t) = T (t)(1, 0, · · · , 0). (2.9)

By Theorem 2.1 and (2.9) we obtain that

‖ �p(·, t) ‖=‖ T (t)(1, 0, · · · , 0) ‖≤‖ (1, 0, · · · , 0) ‖= 1, t ∈ [0,∞).

On the other hand, since (1, 0, · · · , 0) ∈ D(A + E), then �p(x, t) ∈ D(A + E) and
pj(x, t), j = 1, · · · , M satisfy equations (1.1)–(1.4). Then we have

d

dt
‖ �p(·, t) ‖= dp0(t)

dt
+

M∑
j=1

d

dt

∫ ∞

0

pj(x, t)dx = 0.

Hence, ‖ �p(·, t) ‖=‖ �p(0) ‖= 1. This just reflects the physical meaning of �p(x, t). �

3. Asymptotic property of the device. In this section, we shall study the as-
ymptotic property of the multi-state device. The eigenvector of operator (A + E) corre-
sponding eigenvalue 0 is proved to be the steady solution of the device. Moreover, the
time-dependent solution of the device converges to this steady solution when time t tends
to infinity. Therefore the asymptotic behavior of the multi-state device is obtained in
this section. We begin this section with proving 2 lemmas.

Lemma 3.1. There exist N ∈ R such that
∫ ∞

t
e−

∫ x
t

µj(ξ)dξdx ≤ N for any t ≥ 0.

Proof. Let Gt
j(x) = p{Xj − t ≤ x|Xj > t} = Gj(x+t)−Gj(t)

1−Gj(t)
, x ≥ 0. Then

Ej(t) = E{Xj − t|Xj > t} =
∫ ∞

0

xdGt
j(x) =

∫ ∞

0

[1 − Gt
j(x)]dx

=
∫ ∞

0

1 − Gj(x + t)
1 − Gj(t)

dx =
∫ ∞

t

1 − Gj(x)
1 − Gj(t)

dx

=
∫ ∞

t

e−
∫ x
0 µj(ξ)dξ · e

∫ t
0 µj(ξ)dξdx

=
∫ ∞

t

e−
∫ x
t

µj(ξ)dξdx.

Because the device is reparable, there must exist Nj ∈ R, s.t. Ej(t) ≤ Nj . Let N =
max{Nj , j = 1, · · · , M}. Then for any t, Ej(t) ≤ N , that is,

∫ ∞
t

e−
∫ x
t

µj(ξ)dξdx ≤ N . �

Lemma 3.2. Let gj =
∫ ∞
0

µj(x)e−
∫ x
0 (r+µj(ξ))dξdx, j = 1, · · · , M . Then Re gj < 1 when

{r ∈ C|Re r > 0, or r = ia, a ∈ R, a 	= 0}.

Proof. As we all know, |e−rx| < 1 when Re r > 0, x ∈ (0,∞). So,

Re gj ≤ |gj | ≤
∫ ∞

0

|e−rx||µj(x)e−
∫ x
0 µj(ξ)dξdx| <

∫ ∞

0

|µj(x)e−
∫ x
0 µj(ξ)dξdx| = 1.

If r = ia, a ∈ R, a 	= 0, it is obvious that

Re gj =
∫ ∞

0

cos rxµj(x)e−
∫

x
0 µj(ξ)dξdx ≤ 1.
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If Re gj = 1, then

Regj =
∫ ∞

0

cos rxµj(x)e−
∫ x
0 µj(ξ)dξdx

=
∫ ∞

0

µj(x)e−
∫ x
0 µj(ξ)dξdx = 1.

That is, ∫ ∞

0

(1 − cos rx)µj(x)e−
∫ x
0 µj(ξ)dξdx = 0.

The above equation holds if and only if a = 0; this contradicts the assumption that
a 	= 0. Thus Re gj = Re

∫ ∞
0

µj(x)e−
∫

x
0 (r+µj(ξ))dξdx < 1, j = 1, · · · , M . �

Theorem 3.3. 0 is the simple eigenvalue of the operator (A + E).

Proof. Consider following equations for (A + E)�p = 0:

−
M∑

j=1

λjp0 +
M∑

j=1

∫ ∞

0

µj(x)pj(x)dx = 0, (3.1)

dpj(x)
dx

+ µj(x)pj(x) = 0, (3.2)

pj(0) = λjp0, j = 1, · · · , M. (3.3)

Solving equations (3.1)–(3.2) with the help of eq. (3.3), we obtain that

pj(x) = λjp0e
−

∫ x
0 µj(ξ)dξ. (3.4)

Substitution of eq. (3.4) by eq. (3.1) with the help of eq. (3.3) yields that

−
M∑

j=1

λjp0 +
M∑

j=1

λjp0

∫ ∞

0

µj(x)e−
∫ x
0 µj(ξ)dξdx = 0, (3.5)

that is,

(−
M∑

j=1

λj +
M∑

j=1

λj)p0 = 0.

Taking p0 > 0, we obtain that

pj(x) = λjp0e
−

∫ x
0 µj(ξ)dξ.

Using Lemma 3.1, (let t=0), we can deduce that pj(x) ∈ L1[0, +∞), j = 1, · · · , M. So
the vector

�p = (p0, p1(x), · · · , pM (x)) (3.6)

is the corresponding eigenvector 0 of operator (A+E). Taking Q = (1, 1, · · · , 1), we have

〈�p, Q〉 = p0 +
M∑

j=1

∫ ∞

0

pj(x)dx > 0.

And for any �p ∈ D(A + E),

〈(A + E)�p, Q〉 = 0.

So 0 is the simple eigenvalue of (A + E). �
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Theorem 3.4. {r ∈ C|Re r > 0, or r = ia, a ∈ R, a 	= 0} belong to the resolvent set of
the operator (A + E).

Proof. For any r ∈ C, Re r > 0, or r = ia, a ∈ R, a 	= 0. Solve the following equations
for [rI − (A + E)]�p = �y:

(r +
M∑

j=1

λj)p0 −
M∑

j=1

∫ ∞

0

µj(x)pj(x)dx = y0, (3.7)

dpj(x)
dx

+ (r + µj(x))pj(x) = yj(x), (3.8)

pj(0) = λjp0, j = 1, · · · , M. (3.9)

Solving equations (3.7)–(3.8), with the help of eq. (3.9), we can obtain that

pj(x) = λjp0e
−

∫ x
0 (r+µj(ξ))dξ +

∫ x

0

e−
∫ x
τ

(r+µj(ξ))dξyj(τ )dτ.

Noting that yj(x) ∈ L1[0,∞), j = 1, · · · , M , and combining Lemma 3.1, we have∫ ∞

0

|
∫ x

0

e−
∫ x
τ

(r+µj(ξ))dξyj(τ )dτ |dx ≤
∫ ∞

0

dx

∫ x

0

e−
∫ x
τ

µj(ξ)dξ|yj(τ )|dτ

=
∫ ∞

0

|yj(τ )|d(τ )
∫ ∞

τ

e−
∫ x
τ

µj(ξ)dξdx

≤‖ yj ‖L1[0,∞) ·N.

Therefore, pj(x) ∈ L1[0,∞), j = 1, · · · , M . Substituting them into eq. (3.7) yields

(r +
M∑

j=1

λj)p0 −
M∑

j=1

λjp0gj = y0 +
M∑

j=1

Gj . (3.10)

That is,

rp0 +
M∑

j=1

(1 − gj)λjp0 = y0 +
M∑

j=1

Gj ,

where

gj =
∫ ∞

0

µj(x)e−
∫ x
0 (r+µj(ξ))dξdx,

Gj =
∫ ∞

0

µj(x)dx

∫ x

0

e−
∫ x
τ

(r+µj(ξ))dξyj(τ )dτ, j = 1, · · · , M.

From Lemma 3.2, it is easy to check that �p = (p0, p1(x), · · · , pM (x)) 	= 0 if �y =
(y0, y1(x), · · · , yM (x)) 	= 0, when Re r > 0, or r = ia, a ∈ R, a 	= 0. So eq. (3.10)
has a unique solution. Assuming that p̂0 is the solution of the equation, then p̂0 together
with

p̂j(x) = λj p̂0e
−

∫ x
0 (r+µj(ξ))dξ +

∫ x

0

e−
∫ x
τ

(r+µj(ξ))dξyj(τ )dτ, j = 1. · · · , M (3.11)

is the unique solution of equations (3.7)–(3.8). So R(rI − A − E) = X. Also, because
(rI − A − E) is a closed operator, we can deduce that (rI − A − E)−1 exists and is
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bounded. In other words, {r ∈ C|Re r > 0, or r = ia, a ∈ R, a 	= 0} belongs to the
resolvent set of the operator (A + E). This completes the proof of Theorem 3.4. �

Theorem 3.5. The device has a non-negative steady solution.

Proof. In Theorem 3.4, we proved that all spectrum of operator (A + E) lie in the
left half plane and there is no spectrum on the imaginary axis except 0. Note that �p

in (3.6) is the corresponding eigenvector 0 of operator (A + E). It is obvious that �p is
non-negative. Hence, �p is the non-negative steady solution of the system. �

Theorem 3.6. Let p̂ be the non-negative corresponding eigenvector 0 satisfying
‖ p̂ ‖= 1, and let Q = (1, 1, · · · , 1). Then the time-dependent solution p̂(·, t) of the
device tends to the steady solution p̂:

lim
t→∞

p̂(·, t) = 〈�p0, Q〉p̂ = p̂.

Here, �p0 is the initial value of the system.

Proof. From Theorem 14 in [9], we know that Theorem 3.6 is the direct result of
the stability of a semigroup. Thus we proved that p̂, the correspnding eigenvector 0 of
operator (A + E), is the unique non-negative stability solution of this reparable multi-
state device, and lim

t→∞
p̂(·, t) = p̂. �

4. Concluding remarks. In this paper, we studied the unique existence and asymp-
totic property of the solution of the multi-state device. Two hypotheses associated with
the steady solution of the device are justified. So, this paper provided a strictly math-
ematical theoretic basis for researching the stability and availability of the multi-state
device.

As we all know, it is difficult or hardly possible to compute the time-dependent solution
of the multi-state device with arbitrarily distributed repair time, even using the method
of inversion of the Laplace transform. This paper provided a new thought to solve it:
since �p(x, t) = T (t)(1, 0, · · · , 0) (see eq. (2.9)), can we discretize the equations associated
with the device? Also, can we compute the time-dependent solution of the device this
way? This has became our future research work.
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