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Abstract. The Vlasov-Maxwell system models collisionless plasma. Solutions are
considered that depend on one spatial variable, x, and two velocity variables, v1 and
v2. As x → −∞ it is required that the phase space densities of particles approach a
prescribed function, F (v1, v2), and all field components approach zero. It is assumed
that F (v1, v2) = 0 if v1 ≤ W1, where W1 is a positive constant. An external magnetic
field is prescribed and taken small enough so that no particle is reflected (v1 remains
positive).

The main issue is to identify the large-time behavior; is a steady state approached and,
if so, can it be identified from the time independent Vlasov-Maxwell system? The time-
dependent problem is solved numerically using a particle method, and it is observed
that a steady state is approached (on a bounded x interval) for large time. For this
steady state, one component of the electric field is zero at all points, the other oscillates
without decay for x large; in contrast the magnetic field tends to zero for large x. Then
it is proven analytically that if the external magnetic field is sufficiently small, then (a
reformulation of) the steady problem has a unique solution with B → 0 as x → +∞.
Thus the “downstream” condition, B → 0 as x → +∞, is used to identify the large time
limit of the system.

1. Introduction. A collisionless plasma is commonly modeled with the Vlasov-Max-
well system:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tf + v · ∇xf + e
mf

(
E + c−1v × B

)
· ∇vf = 0,

∂tg + v · ∇xg − e
mg

(
E + c−1v × B

)
· ∇vg = 0,

∂tE = c∇× B − 4πj ∇ · E = 4πρ,

∂tB = −c∇× E ∇ · B = 0,

ρ = e

∫
(f − g)dv j = e

∫
(f − g)v dv.

(1)
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Here x ∈ R
3 is position, v ∈ R

3 is velocity (not momentum), and t is time. The
function f(t, x, v) gives the distribution of positive ions (with mass mf and charge e)
in phase space; similarly g(t, x, v) gives the distribution of negative ions. The speed
of light is c. Consider the so-called “one and one-half dimensional” case in which
f = f (t, x1, v1, v2) , g = g (t, x1, v1, v2) , E = (E1 (t, x1) , E2 (t, x1) , 0), and B =
(0, 0, B3 (t, x1)). We will also impose a given external magnetic field, BA =

(
0, 0, BA

3 (x1)
)
,

so that the total magnetic field is B = BP + BA. Then the problem becomes

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tf + v1∂x1f + e
mf

[(
E1 + c−1v2B3

)
∂v1f

+
(
E2 − c−1v1B3

)
∂v2f
]

= 0,

∂tg + v1∂x1g − e
mg

[(
E1 + c−1v2B3

)
∂v1g

+
(
E2 − c−1v1B3

)
∂v2g
]

= 0,

∂tE1 = −4πj1 ∂x1E1 = 4πρ,

∂tE2 = −c∂x1B
P
3 − 4πj2,

∂tB
P
3 = −c∂x1E2,

ρ = e

∫∫
(f − g)dv2dv1,

ji = e

∫∫
(f − g)vi dv2 dv1 for i = 1, 2,

B3(t, x1) = BP
3 (t, x1) + BA

3 (x1) .

(2)

Unnecessary subscripts will be dropped, so x = x1 and B(t, x) = B3 (t, x1) from now on.
Similarly, let v = (v1, v2) and dv = dv2dv1.

This work is guided by the desire to model the flow of the solar wind past the magnetic
field of the earth

(
BA(x)

)
. Thus an “upstream” condition is imposed:

lim
x→−∞

f(t, x, v) = lim
x→−∞

g(t, x, v) = F (v). (3)

Here F is a given nonnegative continuous function with F (v) = 0 if v1 ≤ W1 where
W1 > 0. Similarly, it is assumed that BA is compactly supported and that the conditions

lim
x→−∞

E1(t, x) = lim
x→−∞

E2(t, x) = lim
x→−∞

B(t, x) = 0 (4)

are imposed. Note that if BA = 0, then f = g = F and E1 = E2 = B = 0 is a steady
solution of (2), (3), (4).
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The large-time behavior of solutions is of interest. Is a steady state approached as t →
+∞? In Section 2 numerical evidence will be presented that steady state is approached
as t → +∞ (on bounded intervals), when BA is small enough and f(0, x, v) = g(0, x, v) =
F (v). It is desirable to be able to identify this limit as a time-independent solution of (2),
but what behavior to require as x → ±∞ is not clear. It is observed from the numerical
computation that

lim
x→+∞

lim
t→+∞

BP (t, x) = 0

and that

lim
x→+∞

lim
t→+∞

E1(t, x)

does not exist. In Section 3, the steady problem is reformulated in terms of potentials,
and it is shown analytically that there is a unique solution of this problem (for BA small)
with

lim
x→−∞

E1(x) = lim
x→−∞

BP (x) = 0

and

lim
x→+∞

BP (x) = 0. (5)

Thus the downstream condition (5) is used to get a well-posed steady problem.
The global existence of weak solutions of (1) is established in [4]. Many papers on the

Vlasov-Maxwell system consider the natural relativistic version of the system. Lower-
dimensional versions of the relativistic version of (1) are shown to have smooth global
solutions in [7]–[10]; these works rely on the fundamental work [13]. Global existence of
smooth solutions in three dimensions is also known for small data and nearly symmetric
data, [6], [12], [25], [29].

The Vlasov-Poisson system results from (1) by formally setting B = 0 (or letting
c → +∞; see [28]). For this system the global existence of smooth solutions in three
dimensions was established in [22] and independently in [20] (see also extensions of [22] in
[19] and [26]). For a more complete discussion of the Vlasov-Maxwell and Vlasov-Poisson
systems, see [5].

The plasma physics literature on collisionless shocks is extensive; for example, see [2],
[21], [30]. Many mathematical works consider the existence of steady states ([1, 15, 24])
and the stability of steady states ([14, 16, 17, 18, 23]) in collisionless plasma. This work
differs from those mentioned above in that the applied field, BA, is included and F (v) is
taken to model the flow past the obstacle, BA. A similar treatment for the Vlasov-Poisson
system was presented in [27].

It is interesting to compare this paper with [15]. Both consider steady solutions of (2)
and use the same potential formulation of the problem. It is shown in [15] that there are
steady solutions with very different behavior for x → −∞ and x → +∞. This is evident
in the solutions considered in this work, although the context is different due to BA and
the assumptions made on F (v) here.
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2. The dynamic problem. In this section the system (2), (3), (4) is solved numer-
ically with a particle method. The goal is to observe the large-time behavior. The initial
condition is taken to be

f(0, x, v) = g(0, x, v) = F (v),

E2(0, x) = BP (0, x) = 0.

The spatial domain must be truncated, so the computation will be performed on an
interval −L ≤ x ≤ L, and (3) and (4) are replaced with

f(t,−L, v) = g(t,−L, v) = F (v)

and
E1(t,−L) = 0.

The particle method used here is described for a periodic problem in Chapter 6 of
[3] (see also [11] for convergence analysis). In the present context particles continually
move into the computational domain, [−L, L], from the left and out through the right.
A convenient way to describe the method is to refer to particles which lie outside of
[−L, L], even though they cannot influence the implementation until they enter [−L, L].
Let dy, dv1, dv2 be positive, and for any (i, j, k) ∈ Z

3 define

Xfijk(0) = Xgijk(0) =
(
i − 1

2

)
dy,

V 1fijk(0) = V 1gijk(0) =
(
j − 1

2

)
dv1,

V 2fijk(0) = V 2gijk(0) =
(
k − 1

2

)
dv2,

qijk = F
(
V 1fijk(0), V 2fijk(0)

)
dy dv1 dv2.

Xfijk(t), Xgijk(t), V 1fijk(t), V 1gijk(t), V 2fijk(t), V 2gijk(t) for t > 0 will be defined
later. The basic approximations are

f(t, x, v) =
∑
i,j,k

qijk δ̃ (x − Xfijk(t)) δ
(
v1 − V 1fijk(t)

)
δ
(
v2 − V 2fijk(t)

)
, (6)

g(t, x, v) =
∑
i,j,k

qijkδ̃ (x − Xgijk(t)) δ
(
v1 − V 1gijk(t)

)
δ
(
v2 − V 2gijk(t)

)
, (7)

where

δ̃(x) =

⎧⎪⎨
⎪⎩

(dx)−1
(
1 − |x|

dx

)
if |x| < dx,

0 otherwise,
and dx is a positive integer times dy (dx will be the spacing of the mesh used to compute
E2 and BP ). Note that (6) and (7) are written for all x, not only x ∈ [−L, L]. The
approximations of ρ and j are obtained by integrating (6) and (7) in v.

Let dt > 0 and define dx = cdt. It is assumed that dx
dy and L

dx are integers. Let
tn = n dt and x� = � dx for n ∈

{
0, 1

2 , 1, 3
2 , . . .

}
and � ∈

{
0, ±1

2 ,±1, ±3
2 , . . .

}
, and (for

example)
(E1)

n
� ≈ E1 (tn, x�) .
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Assume that for some integer n ≥ 1

Xfijk (tn) , Xgijk (tn) , V 1fijk

(
tn−

1
2

)
, V 1gijk

(
tn−

1
2

)
,

V 2fijk

(
tn−

1
2

)
, V 2gijk

(
tn−

1
2

)
are known for all (i, j, k) ∈ Z

3 and that

(E1)
n
� , (E2)

n
� ,
(
BP
)n
�

are known for all integers � with |�| ≤ L
dx . For |�| > L

dx it is convenient to take

(E1)
n
� = (E2)

n
� =
(
BP
)n
�

= 0.

Define (E1)
n (x), (E2)

n (x),
(
BP
)n (x) by linear interpolation and V 1fijk

(
tn+ 1

2

)
and

V 2fijk

(
tn+ 1

2

)
by

V 1fijk

(
tn+ 1

2
)
−V 1fijk

(
tn− 1

2
)

dt

= e
mf

[
(E1)

n +
V 2fijk

(
tn+ 1

2
)
+V 2fijk

(
tn− 1

2
)

2c

((
BP
)n + BA

)]∣∣∣∣∣
Xfijk(tn)

and

V 2fijk

(
tn+ 1

2
)
−V 2fijk

(
tn− 1

2
)

dt

= e
mf

[
(E2)

n −
V 1fijk

(
tn+ 1

2
)
+V 1fijk

(
tn− 1

2
)

2c

((
BP
)n + BA

)]∣∣∣∣∣
Xfijk(tn)

.

V 1gijk

(
tn+ 1

2

)
and V 2gijk

(
tn+ 1

2

)
are defined similarly. Next define

Xfijk

(
tn+1
)

= Xfijk (tn) + dtV 1fijk

(
tn+ 1

2

)
,

Xfijk

(
tn+ 1

2

)
= Xfijk (tn) + 1

2dtV 1fijk

(
tn+ 1

2

)
,

and similarly for Xgijk.
Next the fields must be advanced. Define

ρn+1
� = e

∫ (
f
(
tn+1, x�, v

)
− g
(
tn+1, x�, v

))
dv

for integers � and ρn+1(x) by linear interpolation. Then define

(E1)
n+1
� =

∫ x�

−L

ρn+1(y)dy

for integers � with |�| ≤ L
dx . Note from (2) that

∂t

(
E2 + BP

)
+ c∂x

(
E2 + BP

)
= −4πj2
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and
∂t

(
E2 − BP

)
− c∂x

(
E2 − BP

)
= −4πj2

follow. Define, via (6) and (7),

(j2)
n+ 1

2
�− 1

2
= e

∫
v2

(
f
(
tn+ 1

2 , x�− 1
2
, v
)
− g
(
tn+ 1

2 , x�− 1
2
, v
))

dv

for integers �. Then define (E2)
n+1
� and

(
BP
)n+1

�
as follows:(

E2 + BP
)n+1

�
=
(
E2 + BP

)n
�−1

− 4π (j2)
n+ 1

2
�− 1

2
dt

for � = 1 − L
dx , 2 − L

dx , . . . , L
dx and(

E2 − BP
)n+1

�
=
(
E2 − BP

)n
�+1

− 4π (j2)
n+ 1

2
�+ 1

2
dt

for � = − L
dx , 1 − L

dx , . . . , L
dx − 1. For � = − L

dx take(
E2 + BP

)n+1

�
= 0,

and for � = L
dx take (

E2 − BP
)n+1

�
= 0.

Consider the following choice for F : Let

s+ =
{

s if s ≥ 0,

0 if s < 0,

dε(s) = ε−2
(
1 −
(

s
ε

)2)4

+

for s ∈ R, ε > 0, and

F (v) = coeffdε

(√(
(v1 − W )2 + v2

2

)
+

)
.

The above method was implemented for several choices of BA(x) and the parameters
coeff, ε, W, e, mf , mg, and c. The results of one choice will be presented: the results of the
others were similar. Take ε = 10−3, coeff = 10−1, W = 10−1, e = 1, mf = 103, mg = 1,
and c = 1. So the wind speed is roughly 1

10 the speed of light in this choice. Take

BA(x) = −(amp)x
(
1 − 4x2

)3
+

with amp = 1.6. Note that BA(x) = 0 if |x| ≥ 1
2 . The coefficient, amp, was taken

small enough that V 1fijk and V 1gijk remain positive (for ijk such that qijk �= 0). The
computational (spatial) domain was [−L, L] where L = 5. Figures 1 through 7 show
E1, E2, and BP at times t = 1, 2, 3, 20, 40, 80, and 160, respectively. Times t = 1, 2, 3
show a transient wave in E2 and BP spreading out from

(
−1

2 , 1
2

)
. In Figures 4, 5, 6, 7

a steady pattern emerges on the interval −5 ≤ x ≤ 5. Note that Figures 6 (t = 80) and
7 (t = 160) are identical; taking t larger produces no further change. The particles that
are first disturbed by BA are between −1

2 and 1
2 at time zero. Their speed is roughly

1
10 , so the time for them to leave the interval [−5, 5] is roughly 5

.1 = 50. Thus steady
conditions cannot be expected before t = 50. If L is taken larger, then more time elapses
before steady state is reached on the whole interval [−L, L], but the same steady state
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emerges. Figure 8 shows BA and BP (with t = 160). Note that BP (the steady magnetic
field produced by the plasma in response to BA) is smaller than BA but tends to cancel
BA.

In all runs (with BA sufficiently small to avoid reflecting particles) steady state
emerged by roughly t = 2L

W . For the steady state E2 = 0, BP → 0 as x → −∞
and as x → +∞, and E1 exhibits roughly periodic oscilations for x large.

In the next section the existence of a steady solution of (2), (3), (4) with

lim
x→+∞

B(x) = 0

is established using a fixed point iteration. Figure 9 shows E1 and BP that result from
this iteration (E2 is not graphed since for the iteration it is identically zero). Figure 9
is identical to Figures 6 and 7. Hence the solution constructed with the iteration agrees
with the steady state observed with the particle simulation.

3. The steady problem. The following are assumed throughout: BA(x) is con-
tinuously differentiable and compactly supported. F (v) is nonnegative, continuously
differentiable, and compactly supported. Moreover, there exist W1 > 0 and W2 > 0 such
that F (v1, v2) = 0 if v1 ≤ W1 or if |v2| ≥ W2. Let x+ = x if x ≥ 0 and 0 if x < 0. Also,
let Iv1 > 0 = 1 if v1 > 0 and 0 if v1 ≤ 0. The letter C denotes a generic constant which
changes from line to line. When the value of a constant needs to be fixed, a subscript is
added, so, for example, C1 denotes a fixed positive constant.

Define R : R
2 → R and J : R

2 → R by

R(u, b) = e

∫ [
F

(√(
v2
1 − 2ebv2

cmf
− 2eu

mf
−
(

eb
cmf

)2
)

+

, v2 + eb
cmf

)

−F

(√(
v2
1 + 2ebv2

cmg
+ 2eu

mg
−
(

eb
cmg

)2
)

+

, v2 − eb
cmg

)]
Iv1>0dv

(8)

and

J (u, b) = e

∫
v2

[
F

(√(
v2
1 − 2ebu2

cmf
− 2eu

mf
−
(

eb
cmf

)2
)

+

, v2 + eb
cm+

)

−F

(√(
v2
1 + 2ebv2

cmg
+ 2eu

mg
−
(

eb
cmg

)2
)

+

, v2 − eb
cmg

)]
Iv1>0dv.

(9)

Then we have the following:

Theorem 1. Assume that U : R → R and B : R → R are twice continuously differentiable
and satisfy

lim
x→−∞

U(x) = lim
x→−∞

U ′(x) = lim
x→−∞

B(x) = lim
x→−∞

B′(x) = 0, (10)
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and for all x

|B(x)| ≤ c min(mf , mg)
8e

min
(

W2,
W 2

1

W2

)
, (11)

|U(x)| ≤ min(mf , mg)
4e

W 2
1 , (12)

U ′′(x) = 4πR (U(x),B(x)) , (13)

B′′(x) = −4πc−1J (U(x),B(x)) +
dBA

dx
. (14)

Define

f(x, v) = F

(√(
v2
1 − 2eB(x)v2

cmf
− 2eU(x)

mf
−
(

eB(x)
cmf

)2
)

+

, v2 + eB(x)
cmf

)
Iv1>0,

g(x, v) = F

(√(
v2
1 + 2eB(x)v2

cmg
+ 2eU(x)

mg
−
(

eB(x)
cmg

)2
)

+

, v2 − eB(x)
cmg

)
Iv1>0,

E1 = U ′, E2 = 0, B = B′.

Then f, g, E1, E2, B is a time-independent, continuously differentiable solution of (2),
(3), (4).

Proof. Note first that since F (v1, v2) = 0 if v1 ≤ W1 (in particular for v1 near 0), the
function

(x, v) 	−→ F

⎛
⎝
√√√√(v2

1 − 2eB(x)v2

cmf
− 2eU(x)

cmf
−
(

eB(x)
cmf

)2
)

+

, v2 +
eB(x)
cmf

⎞
⎠

is continuously differentiable at all points. Also

v2
1 − 2eBv2

cmf
− 2eU

mf
−
(

eB
cmf

)2

= 2
(

1
2
|v|2 − eU

mf

)
−
(

v2 +
eB

cmf

)2

,

so on the set v1 > 0, f is a C1 function of 1
2 |v|2 − eU

mf
and v2 + eB

cmf
. It follows (by

explicit computation) that on v1 > 0, f satisfies the Vlasov equation (the equation for f

in (2)). Claim that f(x, v) = 0 if v1 ≤
√

7
32W1. Suppose f(x, v) �= 0; then by (11)

|v2| ≤ W2 +
e |B(x)|

cmf
≤ 9

8
W2

and by (11) and (12)

v2
1 − 2eBv2

cmf
− 2eU

mf
−
(

eB
cmf

)2

≤ v2
1 + 9

4W2
e|B|
cmf

+ 2e
mf

|U|

≤ v2
1 + 9

4W2

(
1
8

W 2
1

W2

)
+ 2
(

1
4W 2

1

)
= v2

1 + 25
32W 2

1 .
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But for f(x, v) �= 0, v1 > 0 and√
v2
1 − 2eBv2

cmf
− 2eU

mf
−
(

eB
cmf

)2

> W1

must hold, and hence
v2
1 + 25

32W 2
1 > W 2

1 ,

v1 >
√

7
32W1.

The claim now follows and hence the fact that f is C1 and satisfies the equation for f

in (2). Similar reasoning shows that g is C1 and satisfies the equation for g in (2).
By (8) and (9) it follows that

∂xE1 = U ′′ = 4πR (U , B)

= 4πe

∫
(f − g)dv = 4πρ.

Similarly, by (8) and (9) it follows that

∂xBP = ∂x

(
B − BA

)
= B′′ − dBA

dx = −4πc−1J (U , B)

= −4πc−1e

∫
(f − g)v2dv = −4πc−1j2.

Noting that j1 = 0 follows from the Vlasov equations for f and g, (2) is established.
Since U ′ → 0 and B′ → 0 as x → −∞ and E2 = 0, (4) follows immediately. Also

lim
x→−∞

f(x, v) = F

(√
v2
1 , v2

)
Iv1>0 = F (v),

since F (v) = 0 if v1 ≤ 0. A similar conclusion holds for g and the proof is complete.
The next goal is to find solutions of (10), (13), (14). The behavior of R and J near

(0, 0) will be crucial, so we consider this first.

Lemma 1. Let ci ∈ R for i = 1, 2, 3, 4, and let h ∈ C∞(R). Define

ϕ(u, b) =
∫

F
(√

(v2
1 + c1bv2 + c2u + c3b2)+ , v2 + c4b

)
h (v2) dv;

then ϕ is C∞ on some neighborhood of (0, 0).

Comment: It follows that R and J are C∞ on some neighborhood of (0, 0).

Proof of Lemma 1. Let ε =
√

(v2
1 + c1bv2 + c2u + c3b2)+ and � = v2 + c4b. Consider

v1 > 0, ε > W1, and |�| < W2. Then for |u| + |b| sufficiently small,

|v2| ≤ |�| + |c4b| ≤ 2W2

and
v1 =

√
ε2 − c1bv2 − c2u − c3b2

≥
√

W 2
1 − |c1b| 2W2 − |c2u| − |c3b2| ≥ 1

2W1.
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Hence

ϕ(u, b) =
∫

v1>0,ε>W1,|�|<W2

F (ε, �)h(v2)dv

=
∫ W2

−W2

∫ ∞

W1

F (ε,�)h(�−c4b)ε√
ε2−c1b(�−c4b)−c2u−c3b2

dε d�.

(15)

The lemma now follows since
(
ε2 − c1b(� − c4b) − c2u − c3b

2
)− 1

2 is C∞ for ε ≥ W1,
|�| ≤ W2, and |u| + |b| small.

Lemma 2. Assume that
F (v1,−v2) = F (v1, v2) (16)

for all v. Then
∂uR(0, 0) < 0,

∂bJ (0, 0) < 0,

and
∂bR(0, 0) = ∂uJ (0, 0) = 0.

Moreover, for u near zero
J (u, 0) = ∂uJ (u, 0) = 0.

Proof. By (15) it follows that

R(u, b) = e

∫ W2

−W2

∫ ∞

W1

F (ε, �)ε

⎡
⎣(ε2 +

2eb
(
�− eb

cmf

)
cmf

+ 2eu
mf

+
(

eb
cmf

)2
)− 1

2

−
(

ε2 −
2eb
(
�+ eb

cmg

)
cmg

− 2eu
mg

+
(

eb
cmg

)2
)− 1

2
]

dε d�

and

J (u, b) = e

∫ W2

−W2

∫ ∞

W1

F (ε, �)ε

⎡
⎢⎣

(
�− eb

cmf

)
√

ε2+
2eb

(
�− eb

cmf

)
cmf

+ 2eu
mf

+
(

eb
cmf

)2

−
(
�+ eb

cmg

)
√

ε2−
2eb

(
�+ eb

cmg

)
cmg

− 2eu
mg

+
(

eb
cmg

)2

⎤
⎥⎦ dε d�.

By direct computation (without using (16))

∂uR(0, 0) = −e2
(
m−1

f + m−1
g

)∫ W2

−W2

∫ ∞

W1

F (ε, �)
ε2

dε d� < 0

and

∂bJ (0, 0) = −e2c−1
(
m−1

f + m−1
g

)∫ W2

−W2

∫ ∞

W1

F (ε, �)
(

1 +
�2

ε2

)
dε d� < 0.
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Similarly,

∂bR(0, 0) = −e2c−1
(
m−1

f + m−1
g

)∫ W2

−W2

∫ ∞

W1

F (ε, �)ε−2�d ε d�,

which is zero by (16). Finally for u near 0

J (u, 0) = e

∫ W2

−W2

∫ ∞

W1

F (ε, �)ε

⎡
⎣ �√

ε2 + 2eu
mf

− �√
ε2 − 2eu

mg

⎤
⎦ dε d�,

which is also zero by (16). The lemma now follows.
Define

ω =
√
−4π∂uR(0, 0),

λ =
√
−4πc−1∂bJ (0, 0)

G(u, b) = 4πR(u, b) + ω2u,

H(u, b) = −4πc−1J (u, b) − λ2b,

and note that by Lemma 2

G(0, 0) = ∂uG(0, 0) = ∂bG(0, 0) = 0

and

H(0, 0) = ∂uH(0, 0) = ∂bH(0, 0) = 0.

Equations (13) and (14) may be written as

U ′′(x) + ω2U(x) = G (U(x),B(x)) ,

B′′(x) − λ2B(x) = H (U(x),B(x)) + dBA

dx .

The linearization about U = B = 0 is

U ′′ + ω2U = 0,

B′′ − λ2B = dBA

dx ,

so oscillatory behavior may be expected of U and exponential behavior of B (as was
observed in Section 2).
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A solution will be constructed with the contraction mapping principle. To set this up,
define

σ(x) = min(ω, λ)(−x)+,

β(x) = 1
3λ(−x)+ − 1

6 min(ω, λ)(x)+,

‖U‖E = sup
(
e

2
3σ(x) |U(x)|

)
,

‖|U|‖E = sup
(
eβ(x) |U(x)|

)
,

‖B‖B = sup
(
e

2
3λ|x| |B(x)|

)
,

‖|B|‖B = sup
(
e

1
3λ|x| |B(x)|

)
,

and for δ > 0

Sδ =
{
(U ,B) ∈ C2(R) × C2(R) : ‖U‖E ≤ δ, ‖U ′‖E ≤ δ,

‖B‖B ≤ δ, and ‖B′‖B ≤ δ} .

Then for (U , B) ∈ Sδ define F (U , B) =
(
U ,B
)

by⎧⎪⎨
⎪⎩

U ′′
+ ω2U = G

(
U ,B
)
,

lim
x→−∞

U(x) = lim
x→−∞

U
′
(x) = 0,

(17)

and

B(x) =
−1
2λ

∫
e−λ|x−y|

(
H (U(y),B(y)) +

dBA

dy
(y)
)

dy. (18)

A few comments are in order. Note that the definition of Sδ involves ‖ · ‖E and ‖ · ‖B,
not ‖|·|‖E or ‖|·|‖B. Also for ‖U‖E and ‖B‖B finite

lim
x→−∞

U(x) = lim
x→−∞

B(x) = lim
x→+∞

B(x) = 0,

but U(x) need not tend to zero as x → +∞; moreover, for all x

|U(x)| + |B(x)| ≤ ‖U‖E + ‖B‖B ,

so restricting ‖U‖E + ‖B‖B ensures that R (U(x),B(x)) (for example) is defined and C2.
It will be shown that for δ sufficiently small F : Sδ → Sδ is a contraction in the norm
‖|U|‖E +‖|B|‖B +‖|U ′|‖E +‖|B′|‖B . Note that G in equation (17) is evaluated at

(
U ,B
)
,

not (U , B). Also, it may be shown that for (U , B) ∈ Sδ (δ small)⎧⎪⎨
⎪⎩

B′′ − λ2B = H (U , B) + dBA

dx ,

lim
x→−∞

B(x) = lim
x→−∞

B′
(x) = lim

x→+∞
B′

(x) = 0.

Therefore the iteration consists of solving a boundary value problem for B and an evo-
lution problem for U . �
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Theorem 2. Assume that (16) holds. Then there exists C > 0 and δ0 > 0 such that for
0 < δ ≤ δ0 and

‖dBA

dx
‖B ≤ Cδ

there is a unique (U , B) ∈ Sδ which satisfies (10), (13), (14), and

lim
x→+∞

B′(x) = 0.

Proof. By Lemma 2, J (u, 0) = 0 for u small, so H(u, 0) = 0 and ∂uH(u, 0) = 0 for u

small. Using the mean value theorem (twice) there exists ξ1 and ξ2 between 0 and b (for
|u| + |b| small) such that

H(u, b) = H(u, b) − H(u, 0) = ∂bH (u, ξ1) b

and

∂uH(u, b) = ∂uH(u, b) − ∂uH(u, 0) = ∂b∂uH (u, ξ2) b.

Since G and H are C∞ in a neighborhood of (0, 0) and recalling Lemma 2, it now follows
that there exist δ1 > 0 and C > 0 such that for

√
u2 + b2 < δ1

|G(u, b)| ≤ C
(
u2 + b2

)
, (19)

|H(u, b)| ≤ C
√

u2 + b2|b|, (20)

|∂uG(u, b)| + |∂bG(u, b)| + |∂bH(u, b)| ≤ C
√

u2 + b2, (21)

|∂uH(u, b)| ≤ C|b|. (22)

Consider (U , B) ∈ Sδ with 0 < δ ≤ δ1. Note that

|H (U(x),B(x))| ≤ C
√
U2(x) + B2(x) |B(x)|

≤ Cδ‖B‖Be−
2
3λ|x|

(23)

decays as x → +∞, even though U(x) may not. This would not follow from

|H(u, b)| ≤ C
(
u2 + b2

)
.

From (18) note that

B′
(x) =

1
2

∫
e−λ|x−y|sgn(x − y)

(
H(U(y),B(y)) +

dBA

dy
(y)
)

dy

(where sgn(x) = 1 if x > 0, 0 if x = 0,−1 if x < 0), so using (23) yields

∣∣B(x)
∣∣+ ∣∣∣B′

(x)
∣∣∣ ≤ C

∫
e−λ|x−y|

(
|H (U , B)| +

∣∣∣dBA

dy

∣∣∣) dy

≤ C

∫
e−λ|x−y|

(
Cδ‖B‖B + ‖dBA

dy ‖B

)
e−

2
3λ|y|dy.

(24)
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The following will be used:

Lemma 3. For any x ∈ R and θ ∈ [0, 1)∫
e−λ|x−y|e−θλ|y|dy ≤ 3

(1 − θ)λ
e−θλ|x|.

The proof is deferred to the Appendix. Now (24) yields

∣∣B(x)
∣∣+ ∣∣∣B′

(x)
∣∣∣ = Ce−

2
3 λ|x|

(
δ‖B‖B + ‖dBA

dx
‖
)

and hence

‖B‖B + ‖B′‖B ≤ C1

(
δ‖B‖B + ‖dBA

dx
‖B

)
. (25)

Similarly for (U1,B1) ∈ Sδ and
(
U1,B1

)
= F (U1,B1), (21) and (22) may be used to

obtain∣∣B − B1

∣∣ = ∣∣∣∣−1
2λ

∫
e−λ|x−y| (H (U , B) − H (U1,B1)) dy

∣∣∣∣

≤ C

∫
e−λ|x−y| (|H (U ,B) − H (U ,B1)| + |H (U ,B1) − H (U1,B1)|) dy

≤ C

∫
e−λ|x−y| (δ |B − B1| + |B1| |U − U1|) dy

≤ C

∫
e−λ|x−y|

(
δ‖|B − B|‖Be−

1
3λ|y| + ‖B1‖Be−

2
3 λ|y|‖|U − U1|‖Ee−β(y)

)
dy

≤ Cδ

∫
e−λ|x−y| (‖|B − B1|‖B + ‖|U − U1|‖E) e−

1
3λ|y|dy.

(26)

Using Lemma 3 yields∣∣B − B1

∣∣ ≤ Cδ (‖|B − B1|‖B + ‖|U − U1|‖E) e−
1
3 λ|x|

and hence
‖|B − B|‖B ≤ C2δ (‖|B − B1|‖B + ‖|U − U1|‖E) . (27)

Since
B′ − B′

1 =
1
2

∫
e−λ|x−y|sgn(x − y) (H (U ,B) − H (U1,B1)) dy,

the estimate
‖|B′ − B′

1|‖B ≤ C2δ (‖|B − B1|‖B + ‖|U − U1|‖E) (28)

follows, just as (27) did.
To estimate ‖U‖E an energy method will be used. Define

G(u, b) =
∫ u

0

G(u, b)du
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and note that by (17)

1
2

(
U ′

(x)
)2

+ 1
2ω2U2

(x) − G
(
U(x),B(x)

)

= −
∫ x

−∞
B′(y)

∫ U(y)

0

∂bG (u,B(y)) du dy.

(29)

Also define

X = sup
{
x :
∣∣U ∣∣ ≤ δ on (−∞, x]

}
and for R > 0

σR(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

min(ω, λ)R if x ≤ −R,

min(ω, λ)|x| if −R ≤ x ≤ 0,

0 if 0 ≤ x

and ‖ · ‖ER(x) by

‖φ‖ER(x) = sup
{

e
2
3σR(y) |φ(y)| : y ≤ x

}
.

Note that for x < X using (20) yields

∣∣G (U(x),B(x)
)∣∣ ≤

∫ |U(x)|
C
(
u2 + B2(x)

)
du

≤ C
∣∣U(x)

∣∣ (U2
(x) + B2(x)

)

≤ Cδ
(
‖U‖2

ER(x)e−
4
3 σR(x) + ‖B‖2

Be−
4
3 λ|x|
)

≤ Cδe−
4
3 σR(x)

(
‖U‖2

ER(x) + ‖B‖2
B

)
.

(30)

Similarly for x < X using (21) yields∣∣∣∣∣B′(y)
∫ U(y)

0

∂bG (u,B(y)) du

∣∣∣∣∣
≤ C |B′(y)|

∫ |U(y)|

0

√
u2 + B2(y)du

≤ C‖B′‖Be−
2
3λ|y|‖U‖ER(y)e−

2
3σR(y)

√
δ2 + δ2

≤ Cδ2‖U‖ER(y)e−
2
3 (λ|y|+σR(y)).

(31)

The following will be used:

Lemma 4. For x ∈ R ∫ x

−∞
e−

2
3 (λ|y|+σR(y))dy ≤ 5λ−1e−

4
3σR(x).
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The proof is deferred to the Appendix. Now using (30) and (31) in (29) yields

1
2

(
U ′

(x)
)2

+ 1
2ω2U2

(x) ≤
∣∣G (U(x),B(x)

)∣∣

+
∫ x

−∞

∣∣∣∣∣B′(y)
∫ U(y)

0

∂bG(u,B(y))du

∣∣∣∣∣ dy

≤ Cδe−
4
3 σR(x)

(
‖U‖2

ER(x) + ‖B‖2
B

)

+Cδ2

∫ x

−∞
‖U‖ER(y)e−

2
3 (λ|y|+σR(y))dy

≤ Cδe−
4
3 σR(x)

(
‖U‖2

ER(x) + ‖B‖2
B + δ‖U‖ER(x)

)
and hence [(

U ′
(x)
)2

+ U2
(x)
]

e
4
3σR(x)

≤ C3δ
(
‖U‖2

ER(x) + ‖B‖2
B + δ‖U‖ER(x)

)
.

It follows that (for x < X still)

‖U ′‖2
ER(x) + ‖U‖2

ER(x)

≤ C3δ
(
‖U‖2

ER(x) + δ‖U‖ER(x) + ‖B‖2
B

)
≤ C3δ

(
‖U‖ER(x) + δ

)2
.

(32)

Requiring δ ≤ (16C3)
−1 yields

‖U‖ER(x) ≤ 1
4
(
‖U‖ER(x) + δ

)
,

so

‖U‖ER(x) ≤ 1
3
δ.

It now follows that X = +∞ and by (32) that

‖U ′‖2
ER(x) + ‖U‖2

ER(x) ≤ 1
9
δ2.

Since the upper bound does not depend on R or x,

‖U ′‖2
E + ‖U‖2

E ≤ 1
9
δ2

follows, and hence

‖U ′‖E ≤ 1
3
δ (33)

and

‖U‖E ≤ 1
3
δ. (34)
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It remains to estimate ‖|U − U1|‖E . Define

E =
1
2

(
U ′ − U ′

1

)2

+
1
2
ω2
(
U − U1

)2
and note that using (21) yields

|E ′| =
∣∣∣U ′ − U ′

1

∣∣∣ ∣∣G (U ,B
)
− G
(
U1,B1

)∣∣
≤
∣∣∣U ′ − U ′

1

∣∣∣Cδ
(∣∣U − U1

∣∣+ |B − B1|
)

≤ Cδ
(
E +
∣∣∣U ′ − U ′

1

∣∣∣ ‖|B − B1|‖Be−
1
3λ|x|
)

≤ C4δ
(
E + ‖|B − B1|‖2

Be−
2
3 λ|x|
)

.

(35)

The following version of Gronwall’s inequality will be used:

Lemma 5. Assume E ∈ C1(R) is nonnegative and that C > 0, D > 0, A2 > A1 > 0,

A3 > A1 with
E(x) ≤ CeA3x

and
|E ′(x)| ≤ A1E(x) + De−A2|x|

for all x ∈ R. Then
E(x) ≤ 2D

A2 − A1
eA1x−(A2−A1)(−x)+ .

The proof is deferred to the Appendix. Note that from (33) and (34)

0 ≤ E ≤ C
(
δe−

2
3σ(x)

)2

= Cδ2e−
4
3σ(x)

follows. Take A3 = 4
3 min(ω, λ), A2 = 2

3λ, and A1 = C4δ and require

δ ≤ 1
4C4

min (A2, A3) .

Now (35) yields
|E ′| ≤ A1E + C4δ‖|B − B1|‖2

Be−A2|x|,

so by Lemma 5
|E| ≤ 2C4δ‖|B−B1|‖2

B

A2−A1
eA1x−(A2−A1)(−x)+

≤ Cδ‖|B − B1|‖2
Be−2β(x)

and hence ∣∣U − U1

∣∣+ ∣∣∣U ′ − U ′
1

∣∣∣ ≤ Cδ
1
2 ‖|B − B1|‖Be−β(x)

and
‖|U − U1|‖E + ‖|U ′ − U ′

1|‖E ≤ C5δ
1
2 ‖|B − B1|‖B . (36)

Taking δ ≤ 1
2C1

and ‖dBA

dx ‖B ≤ 1
2C1

, (25) yields

‖B‖B + ‖B′‖B ≤ δ. (37)

Combining (33), (34), and (37) yields
(
U ,B
)
∈ Sδ.



636 JACK SCHAEFFER

Taking δ ≤ min
(

1
8C2

,
(

1
4C5

)2
)

, (27), (28), and (36) imply that

‖|U − U1|‖E + ‖|U ′ − U ′
1|‖E + ‖|B − B1|‖B + ‖|B′ − B′

1|‖B

≤ 1
2 (‖|U − U1|‖E + ‖|B − B1|‖B) .

It now follows that there is a unique fixed point of F in Sδ, call it (U ,B). It further
follows that (U ,B) satisfies (10), (13), (14) and

lim
x→+∞

B′(x) = 0.

4. Appendix: proofs of technical lemmas.
Proof of Lemma 3. For x ≤ 0∫

e−λ|x−y|e−θλ|y|dy

= e−λx e(1+θ)λx

(1+θ)λ + eλx 1−e−(1−θ)λx

(θ−1)λ + eλx

(1+θ)λ

≤ eθλx

(1+θ)λ + eθλx

(1−θ)λ + eλx

(1+θ)λ ≤ 3
(1−θ)λe−θλ|x|.

Since the mapping

x 	−→
∫

e−λ|x−y|e−θλ|y|dy

is even, the lemma follows.
Proof of Lemma 4. For x ≤ −R

∫ x

−∞
e−

2
3 (λ|y|+σR(y))dy = 3

2λ−1e
2
3λx− 2

3 σR(x)

≤ 3
2λ−1e−

4
3σR(x).

For −R ≤ x ≤ 0∫ x

−∞
e−

2
3 (λ|y|+σR(y))dy ≤ 3

2λ−1e−
4
3σR(−R) +

∫ x

−R

e
2
3λy+ 2

3 min(ω,λ)ydy

≤ 3
2λ−1e−

4
3σR(x) +

(
2
3λ + 2

3 min(ω, λ)
)−1

e
2
3 (λ+min(ω,λ))x

≤ 3
2λ−1e−

4
3σR(x) +

(
2
3λ
)−1

e
4
3 min(ω,λ)x

= 3λ−1e−
4
3σR(x).
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For 0 ≤ x ∫ x

−∞
e−

2
3 (λ|y|+σR(y))dy ≤ 3λ−1e−

4
3σR(0) +

∫ x

0

e−
2
3λydy

= 3λ−1 + 3
2λ−1

(
1 − e−

2
3λx
)
≤ 5λ−1

= 5λ−1e−
4
3σR(x),

completing the proof.
Proof of Lemma 5. Define

R(x) =
∫ x

−∞

(
A1E(y) + De−A2|y|

)
dy

and note that

0 ≤ E =
∫ x

−∞
E ′(y)dy ≤ R

and that

e−A1xR(x) ≤ e−A1x

∫ x

−∞

(
A1CeA3y + De−A2|y|

)
dy,

which tends to zero as x → −∞. Hence

e−A1xR(x) =
∫ x

−∞

d
dy

(
e−A1yR(y)

)
dy

=
∫ x

−∞
e−A1y

(
−A1R(y) + A1E(y) + De−A2|y|

)
dy

≤ D

∫ x

−∞
e−A1y−A2|y|dy.

For x ≤ 0 ∫ x

−∞
e−A1y−A2|y|dy = e(A2−A1)x

A2−A1

= (A2 − A1)
−1

e−(A2−A1)(−x)+ .

For x > 0 ∫ x

−∞
e−A1y−A2|y|dy = (A2 − A1)

−1 +
∫ x

0

e−(A1+A2)ydy

≤ (A2 − A1)
−1 + (A1 + A2)

−1

≤ 2 (A2 − A1)
−1 e−(A2−A1)(−x)+ .

The lemma now follows.
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