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Abstract. A closed expression is given for the minimum free energy of a linear
thermoelectromagnetic conductor, whose constitutive equations relative to the electric
current density and to the heat flux have memory effects. This expression, derived in the
frequency domain, is related to the maximum recoverable work, which can be obtained
from a given state of the material. Another equivalent expression of the minimum free
energy is deduced; it allows us to give explicit formulae for the case of a discrete spectrum
model.

1. Introduction. The investigation of the problem of finding explicit forms of the
minimum free energy of a viscoelastic solid has been considered by many authors because
of the importance of the maximum recoverable work, to which the minimum free energy
is related (see, for example, [1, 2, 3, 5, 8, 9, 12, 16]). Two of these works [3, 5] are
particularly interesting for the method used in studying such a problem; therefore, we
shall refer to these papers, since we shall use their procedure for finding the expression
of the minimum free energy of a thermoelectromagnetic conductor.

Also in electromagnetism this problem has been studied in recent articles; in particular,
in [6] the minimum free energy has been evaluated for a rigid dielectric material with
linear memory under isothermal conditions, the material being characterized by memory
effects for the electric displacement and the magnetic induction. In [14] the same problem
has been considered for an electromagnetic conductor whose behaviour is similar to that
of the ionosphere, for which the hereditary theory provides a local functional relation
between the electric current density and the electric field [4, 13].
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In this paper we are concerned with the presence of thermal effects in electromag-
netism. They have been considered by Coleman and Dill in [19, 20], where the ther-
modynamic restrictions on the constitutive equations have been derived, too (see also
[7]). In particular, these effects have also been studied in [15], where the linear theory
of the thermodynamics of a homogeneous conductor is considered, by assuming that the
material is characterized by two linearized constitutive equations, which exhibit long-
term memory, for the electric current density and the heat flux. Both of these equations
have the linearized form introduced in [17] for the heat flux to remove the paradox of
the classic theory about the instantaneous propagation of heat [18]. The linearized the-
ory developed in [15] yields the introduction of a maximal free energy, which allows us
to obtain a domain of dependence; moreover, a theorem of uniqueness, existence and
asymptotic stability is proved. In this work we address ourselves to the problem of find-
ing the expression of the minimum free energy of the thermoelectromagnetic conductor,
already examined in [15]. An explicit formula is derived by starting from the formula-
tion of the maximum recoverable work and using the notion of minimal state, that is,
the state which considers equivalent the histories which yield the same response of the
material [16, 22]. The technique used to obtain such a formula starts from the study
of two Wiener-Hopf integral equations of the first kind, whose solutions are derived by
considering the thermodynamic properties of the integral kernels and some theorems on
the factorization of the same kernels.

In Sec. 2 the constitutive equations are introduced and the thermodynamic restrictions
on them are also recalled [15]. Then, in Sec. 3, some useful properties of the two integral
kernels of the functionals, which characterize the electric current density and the heat
flux, are derived; moreover, we introduce the notions of state and process, which describe
the behaviour of the material [21, 22]. The position of the problem and the definition
of the continuation of histories with a given process are considered in Sec. 4, where
the definition of equivalent histories is also given. Then, in Sec. 5, we introduce the
thermoelectromagnetic work done on a process starting from a given state, and we derive
some expressions of this work by distinguishing different initial states. In Sec. 6 we give
a new definition of equivalent histories by means of the work based on the boundedness
of the same work; we show that the two definitions of equivalence are equivalent. Then,
in Sec. 7, we consider the maximum recoverable work, which is related to the minimum
free energy, of which an explicit form is obtained. After deriving, in Sec. 8, a different
but equivalent formulation for the minimum free energy, in the last section we consider
the particular case of a discrete spectrum model material response, for which explicit
formulae are derived.

2. Preliminaries. Let B be an electromagnetic solid, which occupies a region Ω of
the three-dimensional Euclidean space R3. We suppose that Ω is a bounded and regular
domain with a smooth boundary.

Within the linear theory of thermoelectromagnetism, B is considered as a homoge-
neous and isotropic conductor, characterized, in particular, by the presence of memory
effects for the electric current density J and the heat flux q. Denoting by D the electric
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displacement, B the magnetic induction, ϑ the temperature relative to the absolute ref-
erence temperature Θ0, uniform in Ω, E and H the electric and magnetic fields and h

the rate at which heat is absorbed per unit volume, we assume the following constitutive
equations:

D(x, t) = εE(x, t) + ϑ(x, t)a, B(x, t) = µH(x, t), (2.1)

J(x, t) =
∫ +∞

0

α(s)E(x, t − s)ds, q(x, t) = −
∫ +∞

0

k(s)g(x, t − s)ds, (2.2)

h(x, t) = cϑ̇(x, t) + Θ0

[
ε−1A1 · Ḋ(x, t) + µ−1A2 · Ḃ(x, t)

]
. (2.3)

Here the time t ∈ R+, a, A1 and A2 are three constant vectors, the positive coefficients
ε, µ and c are the dielectric constant, the permeability and the specific heat. Moreover,
the local functionals, which express J and q, depend upon the histories of the electric
field, E : (−∞, t]×Ω → R3, and of the temperature gradient, g =∇ϑ : (−∞, t]×Ω → R3,
up to time t.

All these functions depend upon the position x ∈ Ω, but henceforth it will be un-
derstood since the statements are relative to any fixed x ∈ Ω. In (2.2) the two kernels
α : R+ → R and k : R+ → R are the electric and the thermal conductivities, respec-
tively; we suppose that these functions belong to H1(R+).

In [15] we have observed that the assumed constitutive equations allow us to consider
B as a simple material [20, 21] and we have derived the restrictions imposed on them by
the laws of thermodynamics, which state [10, 11] that for any cyclic process the equality∮

[h(t) + E(t) · Ḋ(t) + H(t) · Ḃ(t) + E(t) · J(t)]dt = 0 (2.4)

holds as well as the inequality∮ {
[Θ0 + ϑ(t)]−1h(t) + [Θ0 + ϑ(t)]−2q(t) · g(t)

}
dt ≤ 0, (2.5)

where the equality sign is relative only to reversible processes and h in our case is ex-
pressed by (2.3).

To deduce the required restrictions, it is necessary to use the approximate expression
of (2.5) given by [9]

Θ−2
0

∮
{h(t)[Θ0 − ϑ(t)] + q(t) · g(t)} dt ≤ 0; (2.6)

hence, using (2.4) we have

Θ−2
0

∮
{h(t)ϑ(t) + Θ0[E(t) · Ḋ(t) + H(t) · Ḃ(t)

+ E(t) · J(t)] − q(t) · g(t)} dt ≥ 0. (2.7)

Upon an integration on cycles, substituting (2.3) with (2.1), the inequality (2.7) gives a
relation from which the arbitrarinesses of ϑ, E and g and of ϑ with respect to Ė and Ḣ
yield the thermodynamic restrictions [15]

A1 = a, A2 = 0 (2.8)
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together with two inequalities, which, as we have shown in [15], reduce to
∫ +∞

0

α(s) cos(ωs)ds>0,

∫ +∞

0

k(s) cos(ωs)ds > 0 ∀ω �= 0. (2.9)

Thus, we observe that the expression (2.3), due to (2.1) and (2.8), becomes

h(x, t) =
(
c + Θ0ε

−1a2
)
ϑ̇(x, t) + Θ0a · Ė(x, t); (2.10)

moreover, substituting this relation and taking account of (2.1) allow us to write (2.7)
as follows: ∮ [

c

Θ0
ϑ̇(t)ϑ(t) +

1
ε
Ḋ(t) · D(t) +

1
µ
Ḃ(t) · B(t)

+J(t) · E(t) − 1
Θ0

q(t) · g(t)
]

dt ≥ 0, (2.11)

which must hold for any cyclic process.
We remember that the field equations in thermoelectromagnetism are Maxwell’s equa-

tions together with the energy equation, which relates h to q, i.e. h(x, t) = −∇·q(x, t)+
r(x, t), where r denotes the heat sources and h can be eliminated by using the expression
(2.10) in terms of ϑ̇ and Ė.

3. Some properties of the two kernels α and k. Some useful results can be
derived by considering the two kernels α and k which appear in (2.2).

To do this, we first note that any history can be considered as the set of the present
value and of the past history; therefore, we shall identify, in particular, the history of
the electric field E : (−∞, t] → R3 with the couple (E(t),Et), where the past history is
denoted by Et(s) = E(t − s) ∀s ∈ R++.

We observe that the present value of the electric field must be considered not only for
the history of this field but also because it appears in the constitutive equation (2.1)1 of
the electric displacement. On the contrary, the present value of the temperature gradient
hasn’t an equivalent role in the constitutive equations; therefore, only its past history
gt(s) = g(t − s) ∀s ∈ R++ assumes a particular importance, as we shall see in the
definition of the state of the material, too.

Now, let us recall the definition of the static continuation of any history; if the two
histories (E(t),Et) and (g(t),gt) are considered, their static continuations with duration
a ∈ R+ are defined by

Et(a) =
{

Et(s − a), s > a,

E(t), s ∈ [0, a],
gt(a) =

{
gt(s − a), s > a,

g(t), s ∈ [0, a].
(3.1)

Introducing the electric conductivity ν(α) and the thermal one ν(k) by means of

ν(α)(t) =
∫ t

0

α(ξ)dξ, ν(k)(t) =
∫ t

0

k(ξ)dξ, (3.2)
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the current density and the heat flux yielded with the static continuations (3.1) are given
by

J(t + a) = ν(α)(a)E(t) +
∫ +∞

0

α(a + ξ)Et(ξ)dξ, (3.3)

q(t + a) = −ν(k)(a)g(t) −
∫ +∞

0

k(a + ξ)gt(ξ)dξ, (3.4)

where we note that the presence of g(t), as well as of E(t), is due, obviously, only to the
static continuations of these values.

Thus, we introduce these spaces:

Γα =
{
Et : (0, +∞) → R3; |

∫ +∞

0

α(s + τ )Et (s) ds |< +∞ ∀τ ≥ 0
}

,

Γk =
{
gt : (0, +∞) → R3; |

∫ +∞

0

k(s + τ )gt (s) ds |< +∞ ∀τ ≥ 0
}

.

To derive other results we must introduce the Fourier transform fF of any function
f ∈ L1(R) ∩ L2(R); it is given by

fF (ω) =
∫ +∞

−∞
f(ξ)e−iωξdξ = f+(ω) + f−(ω), (3.5)

where we have put

f+(ω) =
∫ +∞

0

f(ξ)e−iωξdξ, f−(ω) =
∫ 0

−∞
f(ξ)e−iωξdξ. (3.6)

When the functions are defined on R+ we can identify them with their causal exten-
sions to (−∞, 0), where they vanish identically, and (3.5) and (3.6) give

fF (ω) = f+(ω) = fc(ω) − ifs(ω), (3.7)

where

fc(ω) =
∫ +∞

0

f(ξ) cos(ωξ)dξ, fs(ω) =
∫ +∞

0

f(ξ) sin(ωξ)dξ (3.8)

denote the Fourier cosine and sine transforms.
Finally, if the extension of any function defined on R+ is made with an even function

we have f(ξ) = f(−ξ), ξ < 0, and fF (ω) = 2fc(ω), while if it is made with an odd
function we have f(ξ) = −f(−ξ), ξ < 0, and fF (ω) = −2ifs(ω).

The thermodynamic restrictions (2.9), by virtue of (3.8)1, become

αc(ω) > 0, kc(ω) > 0 ∀ω ∈ R, (3.9)

under the hypotheses that αc(0) > 0 and kc(0) > 0.
Thus, in particular, taking into account (3.2), we suppose that the following quantities

are finite and positive, that is,

ν(α)
∞ =

∫ +∞

0

α(ξ)dξ = αc(0) > 0, ν(k)
∞ =

∫ +∞

0

k(ξ)dξ = kc(0) > 0, (3.10)
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from which it follows that constant histories Et = E†, defined as Et(s) = E ∀s ∈ R+,
and gt = g†, given by gt(s) = g ∀s ∈ R+, yield a constant current density with the same
versus of E and a constant heat flux with the opposite versus of g, expressed by

J(t) = ν(α)
∞ E, q(t) = −ν(k)

∞ g, (3.11)

due to (3.10).
Following [14], where only the kernel α has been considered, the inverse Fourier trans-

form of kc(ω) yields

k(t) =
2
π

∫ +∞

0

kc(ω) cos(ωt)dω, k(0) =
2
π

∫ +∞

0

kc(ω)dω > 0 (3.12)

by virtue of (3.9)2. Hence we get

k(0) − k(t) =
2
π

∫ +∞

0

kc(ω)[1 − cos(ωt)]dω > 0, (3.13)

from which it follows that k′(0) ≤ 0.

The hypotheses assumed for k give the relation

k′
s(ω) = −ωkc(ω); (3.14)

hence, if k′′ ∈ L2(R+) and | k′(0) |< +∞, it follows that

lim
ω→∞

ωk′
s(ω) = − lim

ω→∞
ω2kc(ω) = k′(0) ≤ 0 (3.15)

by virtue of (3.9)2; the last inequality coincides with (3.13)2.
The analogous results relative to the kernel α have been derived in [14] and coincide

with all these; therefore, all the relations from (3.12) to (3.15) can be rewritten in terms
of α, α′, α′′ by simply changing k with α.

Taking into account (3.13)2 and the analogous relation α′(0) ≤ 0, we assume

α′(0) < 0, k′(0) < 0. (3.16)

4. Position of the problem: Continuation and equivalent histories. The con-
stitutive equations (2.1)–(2.2), which we have assumed for B, characterize a simple ma-
terial [21, 22]; therefore the behaviour of our material can be described in terms of states
and processes.

Thus, as we have already observed at the beginning of the previous section, the con-
ductor B can be characterized by the state σ(t) = (E(t),H(t), ϑ(t),Et,gt) ∈ Σ, the set
of the admissible states, and by the process P (τ ) = (ĖP (τ ), ḢP (τ ), ϑ̇P (τ ),gP (τ )), which
is an integrable function defined on the time interval [0, d) and expressed by the time
derivatives of the electric and magnetic fields as well as of the temperature, together with
the temperature gradient, each of which is assigned at any point of [0, d). In particular,
for example, ĖP (τ ) denotes the time derivative of EP at τ ∈ [0, d). We have denoted by
d < +∞ the duration of the process P ∈ Π, the set of all admissible processes. We shall
consider the restriction P[t1,t2) of the process P of duration d, when we shall apply P

only in the interval [t1, t2) ⊂ [0, d). We introduce the evolution function ρ : Σ × Π → Σ
as the function which maps an initial state σi ∈ Σ and process P ∈ Π into the final
σf = ρ(σi, P ) ∈ Σ. Moreover, when the restriction P[0,t) is considered for any t ∈ [0, d],
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we have σ(t) = ρ(σ(0), P[0,t)), and, when σ(d) = ρ(σ(0), P ) = σ(0), the pair (σ, P ) is
said to be a cycle.

Since in the sequel we shall be concerned with continuations of histories with processes,
we must give the definition of such a continuation.

First, we consider the case when a process is applied at time t = 0. In this case,
denoting by d the duration of the process, the generic instant in the time interval, where
the process is defined, coincides with t and we have t ∈ [0, d). The process, expressed
by P (t) = (ĖP (t), ḢP (t), ϑ̇P (t),gP (t)) ∀ t ∈ [0, d), is applied at time t = 0, when the
initial state is σ(0) = (E∗(0),H∗(0), ϑ∗(0),E0

∗,g
0
∗). It induces the set of the following

states corresponding to every time t ∈ (0, d], denoted by σ(t) = (E(t),H(t), ϑ(t),Et,gt)
and defined by

E(t) = E∗(0) +
∫ t

0

ĖP (s)ds, H(t) = H∗(0) +
∫ t

0

ḢP (s)ds, (4.1)

ϑ(t) = ϑ∗(0) +
∫ t

0

ϑ̇P (s)ds, (4.2)

Et(τ ) =
{

E(t − τ ), 0 < τ ≤ t,

E0
∗(τ − t), τ > t,

gt(τ ) =
{

gP (t − τ ), 0 < τ ≤ t,

g0
∗(τ − t), τ > t.

(4.3)

Here we have omitted the subscript P in the functions present in σ(t) and at the left-hand
sides of (4.1)–(4.2).

Then, we consider the case when the process is applied at the generic time t. Now,
it is given the initial state σ(t) = (E(t),H(t), ϑ(t),Et,gt), that is, the instantaneous
values of the magnetic field H(t) and of the temperature ϑ(t) with the history E :
(−∞, t] → R3 and the past history gt(s) = g(t − s) ∀s ∈ R++. We relate a process
P (τ ) = (ĖP (τ ), ḢP (τ ), ϑ̇P (τ ),gP (τ )) ∀τ ∈ [0, d), d being the duration of the process
applied at time t, to

EP : (0, d] → R3, EP (τ ) = E(t) +
∫ τ

0

ĖP (ξ)dξ, (4.4)

HP : (0, d] → R3, HP (τ ) = H(t) +
∫ τ

0

ḢP (ξ)dξ, (4.5)

ϑP : (0, d] → R, ϑP (τ ) = ϑ(t) +
∫ τ

0

ϑ̇P (ξ)dξ, (4.6)

defined for any τ ∈ (0, d], where τ �= 0 to distinguish the values assumed by the fields
during the application of the process from their instantaneous values at time t. Moreover,
in particular,

gP : [0, d) → R3, gP (τ ) = g(t + τ ) (4.7)

is assigned by P .
Therefore, the final value of the electric field at each instant τ ′ ≡ t + τ ≤ t + d is

denoted by Ef (τ ′) = (EP ∗ E)(τ ′), it depends upon Et, ĖP and, moreover, it is related
to EP (d), (EP ∗ E)t+d. Its expression is the following:

Ef (t + d − s) = (EP ∗ E)(t + d − s) =
{

EP (d − s), 0 ≤ s < d,

E(t + d − s), s ≥ d,
(4.8)
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where ∗ denotes the continuation of histories with some process. Analogously, the contin-
uation of the past history of the temperature gradient is defined at each τ ′ ≡ t+τ < t+d

and denoted by gf (τ ′) = (gP ∗ g)(τ ′), which depends upon gt, gP and is given by

gf (t + d − s) = (gP ∗ g)(t + d − s) =
{

gP (d − s), 0 < s ≤ d,

g(t + d − s), s > d,
(4.9)

due to (4.7), too.
The constitutive equations (2.2) allow us to consider two linear functionals J̃ : Γα →

R3 and q̃ : Γk → R3, which give the set of the possible current densities and one of the
possible heat fluxes in correspondence to different histories of the electric field and of the
temperature gradient, respectively. They are defined by

J̃(Et) =
∫ +∞

0

α(s)Et(s)ds, q̃(gt) = −
∫ +∞

0

k(s)gt(s)ds, (4.10)

where Et ∈ Γα and gt ∈ Γk.
The introduction of these two functionals allows us to give the following definition.
Definition 4.1. Let (Ej(t),Et

j), j = 1, 2, be two couples of histories of the electric
field and gt

j , j = 1, 2, two past histories of the temperature gradient, corresponding to
the same instantaneous values H(t) of the magnetic field and ϑ(t) of the temperature.
They are called equivalent if for every τ > 0 we have

E1(t) = E2(t), J̃((EP ∗ E1)t+τ ) = J̃((EP ∗ E2)t+τ ) (4.11)

for every EP : (0, τ ] → R3 and

q̃((gP ∗ g1)t+τ ) = q̃((gP ∗ g2)t+τ ) (4.12)

for every gP : [0, τ ) → R3, whatever may be HP : (0, τ ] → R3 and ϑP : (0, τ ] → R.
We note that for any process the values HP (τ ) and ϑP (τ ) are independent both of

the two couples of histories (E1(t),Et
1) and (E2(t),Et

2) and of the two past histories
gt

1 and gt
2. Moreover, since we have the same gP defined on [0, τ ) for both the past

histories gt
1 and gt

2, in particular, we have in both of these cases the same initial value
gP (0) = g(t) due to (4.7). Finally, for the equivalence of two couples of histories both
the same electric current density and the same heat flux, i.e., the same response of the
material, are required.

In particular, if we consider the history (0,Et), that is, the history characterized by
a zero instantaneous value for the electric current density and the past history gt, they
are equivalent to the zero history (0,0†) of E and the zero past history 0† of g if∫ +∞

0

α(τ + ξ)Et(ξ)dξ =
∫ +∞

τ

α(s)Et+τ (s)ds = 0 (4.13)

and ∫ +∞

0

k(τ + ξ)gt(ξ)dξ =
∫ +∞

τ

k(s)gt+τ (s)ds = 0. (4.14)

We observe that both the conditions (4.11)–(4.12) and the relations (4.13)–(4.14) give
an equivalence relation, which allows us to state that two past histories Et

1, gt
1 and Et

2, gt
2

are equivalent in the sense of Definition 4.1 if their differences Et = Et
1−Et

2, g
t = gt

1−gt
2

satisfy (4.13)–(4.14), respectively.
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Furthermore, taking into account Noll’s definition of state [22], we can state that
two couples of histories (Ej(t),Et

j), j = 1, 2, with E1(t) = E2(t), and two past his-
tories gt

j , j = 1, 2, such that the differences Et
1 − Et

2, gt
1 − gt

2 satisfy (4.13)–(4.14),
give the same state σ(t), with the fixed values of H(t) and ϑ(t). Thus, the state σ(t)
can be seen as the “minimum” set of variables which yield a univocal relation between
(ĖP (·), ḢP (·), ϑ̇P (·),gP (·)), defined in [0, τ ), and (D(t + τ ),B(t + τ ),J(t + τ ),q(t + τ )),
where, due to (2.1), D(t + τ ) is expressed by (4.4) and (4.6), B(t + τ ) by (4.5) and
J(t + τ ) = J̃((EP ∗ E)t+τ ), q(t + τ ) = q̃((gP ∗ g)t+τ ) ∀τ > 0. Hence, it follows that the
state σ becomes an element of Σ = R3 ×R3 ×R× (Γα/Γα0)× (Γk/Γk0), where Γα/Γα0

and Γk/Γk0 are the usual quotient spaces, Γα0 ⊂ Γα and Γk0 ⊂ Γk being the subsets of
the past histories which satisfy (4.13) and (4.14), respectively.

Therefore, it follows that the boundednesses of J and q are related to this definition
of the state. We shall consider the boundedness of the work, too.

5. Thermoelectromagnetic work. As we have already stated in Sec. 2, the in-
equality (2.11) expresses the local form of the second law of thermodynamics for the
thermoelectromagnetic conductor B. It must hold for any process P , which, starting
from the initial state σ, yields the final state σf ≡ σ, i.e. for any cycle (σ, P ); moreover,
it gives the thermoelectromagnetic work done on the process P [9, 11].

Denoting by σi(t) = (Ei(t),Hi(t), ϑi(t),Et
i,g

t
i) the initial state of B, we consider the

process P (τ ) = (ĖP (τ ), ḢP (τ ), ϑ̇P (τ ),gP (τ )), ∀τ ∈ [0, d), that is, with duration d and
related to the time interval [t, t + d). The work done on P is a function of the state and
of the process and is expressed by

W (σi(t), P ) = W̃ (Ei(t),Hi(t), ϑi(t),Et
i,g

t
i ; ĖP , ḢP , ϑ̇P ,gP )

=
∫ d

0

[
c

Θ0
ϑ̇P (τ )ϑP (τ ) +

1
ε
Ḋ(EP (τ ), ϑP (τ )) · D(EP (τ ), ϑP (τ )) +

1
µ
Ḃ(HP (τ ))

·B(HP (τ )) + J̃((EP ∗ Ei)t+τ ) · EP (τ ) − 1
Θ0

q̃((gP ∗ gi)t+τ ) · gP (τ )
]

dτ, (5.1)

where the integral is expressed as a function of τ ∈ [0, d) and consequently EP (τ ), HP (τ ),
ϑP (τ ) are given by (4.4)–(4.6), gP (τ ) is assigned by P with (4.7) and the continuations
EP ∗ Ei, gP ∗ gi are defined by (4.8)–(4.9).

Another equivalent form of this work is the following:

W (σi(t), P ) =
∫ t+d

t

[
c

Θ0
ϑ̇(ξ)ϑ(ξ) +

1
ε
Ḋ(E(ξ), ϑ(ξ)) · D(E(ξ), ϑ(ξ))

+
1
µ
Ḃ(H(ξ)) · B(H(ξ)) + J̃((EP ∗ Ei)ξ) · E(ξ) − 1

Θ0
q̃((gP ∗ gi)ξ) · g(ξ)

]
dξ,

(5.2)

where the integral is written in terms of ξ ∈ [t, t + d).
This work done on the process P , of duration d, which yields the continuation from

the initial state, denoted simply by σ(t) = (E(t),H(t), ϑ(t),Et,gt), is given by (5.1) or
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(5.2). Taking into account (2.1) and (4.10), from (5.2) we obtain

W (σ(t), P ) =
1
2

[
c

Θ0
ϑ2(t + d) +

1
ε
D2(t + d) +

1
µ
B2(t + d)

]

− 1
2

[
c

Θ0
ϑ2(t) +

1
ε
D2(t) +

1
µ
B2(t)

]

+
∫ t+d

t

[∫ +∞

0

α(s)Eξ(s)ds · E(ξ) +
1

Θ0

∫ +∞

0

k(s)gξ(s)ds · g(ξ)
]

dξ,

(5.3)

where we have put Eξ = (EP ∗ E)ξ and gξ = (gP ∗ g)ξ, which are given by (4.8) and
(4.9), respectively.

It is interesting to examine the case when the initial state is characterized by null
histories for the electric field and the temperature gradient. Thus, let us consider the null
history (0,0†) of the electric field and the null past history 0† of the temperature gradient,
where 0†(s) = 0 ∀s > 0; we now take the initial instant as t = 0 for simplicity. Then,
assuming H(0) = 0 and ϑ(0) = 0, we apply a process P , which gives gP : [0, d) → R3

and is related to the functions EP : (0, d] → R3, HP : (0, d] → R3, ϑP : (0, d] → R and
the continuations of the two histories of E and g. Under these hypotheses, the ensuing
fields, denoted by (E0(t),H0(t), ϑ0(t),Et

0,g
t
0) with t ∈ (0, d], by virtue of (4.4)–(4.9),

assume the form

E0(t) =
∫ t

0

ĖP (τ )dτ, H0(t) =
∫ t

0

ḢP (τ )dτ, (5.4)

ϑ0(t) =
∫ t

0

ϑ̇P (τ )dτ, (5.5)

and

Et
0(s) =

{ ∫ t−s

0
ĖP (τ )dτ, 0 < s ≤ t,

0, s > t,
gt

0(s) =
{

gP (t − s), 0 < s ≤ t,

0, s > t.
(5.6)

Denoting by

σ0(0) = (0,0, 0,0†,0†) (5.7)

the initial state which we have introduced (that is, the one corresponding to null values
of the interested functions at t = 0 and to null past histories for E and g), work done on
a process P = (ĖP , ḢP , ϑ̇P ,gP ), applied at t = 0, is given by (5.2), which now reduces
to

W (σ0(0), P ) =
∫ d

0

[
c

Θ0
ϑ̇0(t)ϑ0(t) +

1
ε
Ḋ(E0(t), ϑ0(t)) · D(E0(t), ϑ0(t))

+
1
µ
Ḃ(H0(t)) · B(H0(t)) + J̃(Et

0) · E0(t) −
1

Θ0
q̃(gt

0) · g0(t)
]

dt, (5.8)

where, in particular, g0(t) ≡ gP (t) is the assigned temperature gradient in P .
This relation allows us to introduce the following definition.
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Definition 5.1. A process P (t) = (ĖP (t), ḢP (t), ϑ̇P (t),gP (t)), defined for any t ∈
[0, d), starting from the state σ0(0) given by (5.7), is said to be a finite work process if
the work done on P and expressed by (5.8) with (5.4)–(5.6) satisfies

W (σ0(0), P ) < +∞. (5.9)

We have the following result.

Lemma 5.1. The work done on any process, which is a finite work process in the sense
of Definition 5.1, is positive.

Proof. The work done on a process P , of duration d, starting from the state σ0(0)
defined by (5.7), is expressed by (5.8). It is finite if P is a finite work process in the
sense of Definition 5.1; therefore, (5.9) is satisfied. Let us assume that the ensuing fields,
present in (5.8) and given by (5.4)–(5.6), vanish for any t > d, the duration of P . Thus,
taking into account the constitutive equations (2.1) and (4.10) with (5.6), (5.8) assumes
the form

W (σ0(0), P ) =
1
2

[
c

Θ0
ϑ2

0(d) +
1
ε
D2

0(d) +
1
µ
B2

0(d)
]

+
∫ +∞

0

[∫ +∞

0

α(s)Et
0(s)ds · E0(t) +

1
Θ0

∫ +∞

0

k(s)gt
0(s)ds · g0(t)

]
dt,

(5.10)

which, by virtue of Plancherel’s theorem, becomes

W (σ0(0), P ) =
1
2

[
c

Θ0
ϑ2

0(d) +
1
ε
D2

0(d) +
1
µ
B2

0(d)
]

+
1
2π

∫ +∞

−∞

[
αF (ω)E0F

(ω) · E∗
0F

(ω) +
1

Θ0
kF (ω)g0F

(ω) · g∗
0F

(ω)
]

dω,

(5.11)

where ∗ denotes the complex conjugate.
To prove the positiveness of this expression, it is enough to consider the sign of the

integral present in it.
To this end, we observe that (on the ground of the properties of the Fourier transforms,

recalled in Sec. 3) in (5.11) the functions, whose Fourier transforms must be considered,
are defined on R+ and considered equal to zero on R−−. Therefore, their cosine and sine
transforms, in terms of which the Fourier transforms can be expressed on the ground of
(3.7), are even and odd functions.
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Thus, the integral at the right-hand side of (5.11) can be changed as follows:

1
2π

∫ +∞

−∞

[
αF (ω)E0F

(ω) · E∗
0F

(ω) +
1

Θ0
kF (ω)g0F

(ω) · g∗
0F

(ω)
]

dω

=
1
2π

∫ +∞

−∞

[
(αc − iαs)(E0c

− iE0s
) · (E0c

+ iE0s
)

+
1

Θ0
(kc − iks)(g0c

− ig0s
) · (g0c

+ ig0s
)
]

dω

=
1
2π

∫ +∞

−∞

{
αc(ω)[E2

0c
(ω) + E2

0s
(ω)] +

1
Θ0

kc(ω)[g2
0c

(ω) + g2
0s

(ω)]
}

dω > 0,

(5.12)

where the inequality holds due to (3.9). �
Generally, a process P has a finite duration, d < +∞. However, we can consider P

defined on R+, if we suppose that P (τ ) = (ĖP (τ ), ḢP (τ ), ϑ̇P (τ ),gP (τ )) = (0,0, 0,0)
∀τ ≥ d. If we also assume that EP (τ ) = 0, HP (τ ) = 0, ϑP (τ ) = 0 ∀τ > d, (5.8), again
using the subscript P in the integrals with the histories, becomes

W (σ0(0), P ) =
∫ d

0

[
c

Θ0
ϑ̇0(ξ)ϑ0(ξ) +

1
ε
Ḋ0(ξ) · D0(ξ) +

1
µ
Ḃ0(ξ) · B0(ξ)

]
dξ

+
∫ +∞

0

[∫ +∞

0

α(s)EP (η − s)ds · EP (η) +
1

Θ0

∫ +∞

0

k(s)gP (η − s)ds · gP (η)
]

dη

=
1
2

[
c

Θ0
ϑ2

0(d) +
1
ε
D2

0(d) +
1
µ
B2

0(d)
]

+
∫ +∞

0

[∫ η

0

α(s)EP (η − s)ds · EP (η)

+
1

Θ0

∫ η

0

k(s)gP (η − s)ds · gP (η)
]

dη (5.13)

since for any s > η we have the null histories. The last two integrals in (5.13) can be
changed as follows:

∫ +∞

0

[∫ η

0

α(s)EP (η − s)ds · EP (η) +
1

Θ0

∫ η

0

k(s)gP (η − s)ds · gP (η)
]

dη

=
∫ +∞

0

[∫ η

0

α(η − ρ)EP (ρ)dρ · EP (η) +
1

Θ0

∫ η

0

k(η − ρ)gP (ρ)dρ · gP (η)
]

dη

=
1
2

[∫ +∞

0

∫ +∞

0

α(| η − ρ |)EP (ρ) · EP (η)dρdη

+
1

Θ0

∫ +∞

0

∫ +∞

0

k(| η − ρ |)gP (ρ) · gP (η)dρdη

]
. (5.14)
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Substituting the last expression after applying Plancherel’s theorem and taking into
account that both α(| η−ρ |) and k(| η−ρ |) are even functions whose Fourier transforms
can be expressed in terms of their Fourier cosine transforms, (5.13) assumes the following
form:

W (σ0(0), P ) =
1
2

[
c

Θ0
ϑ2

0(d) +
1
ε
D2

0(d) +
1
µ
B2

0(d)
]

+
1
2π

∫ +∞

−∞

[
αc(ω)EP+(ω)

·E∗
P+(ω) +

1
Θ0

kc(ω)gP+(ω) · g∗
P+(ω)

]
dω. (5.15)

Let

H̃α(R+,R3) =
{
E : R+ → R3;

∫ +∞

−∞
αc(ω)E+(ω) · E∗

+(ω)dω < +∞
}

and

H̃k(R+,R3) =
{
g : R+ → R3;

∫ +∞

−∞
kc(ω)g+(ω) · g∗

+(ω)dω < +∞
}

denote the sets of the functions related to finite work processes. When in these spaces
the following inner products (E1,E2)α =

∫ +∞
−∞ αc(ω)E1+(ω) ·E∗

2+(ω)dω and (g1,g2)k =∫ +∞
−∞ kc(ω)g1+(ω) ·g∗

2+(ω)dω are introduced, we have in them the norms ‖E‖α = (E,E)α

and ‖g‖k = (g,g)k, respectively. The completion of these spaces with respect to these
corresponding norms allows us to obtain the spaces of the processes, which, in particular,
give gP and are related to EP , that is, the Hilbert spaces which we denote by Hα(R+,R3)
and Hk(R+,R3).

Furthermore, the set of all admissible histories can be considered as the set of all the
histories (E(t),Et) of the electric field and of the past histories gt of the temperature
gradient, such that the work done on any process, characterized by gP ∈ Hk(R+,R3)
and related to EP ∈ Hα(R+,R3), starting from the state corresponding to them, is
finite. Thus, supposing again that for any τ ≥ d (d < +∞) the process is zero and
corresponding to the values EP (τ ) = 0, HP (τ ) = 0, ϑP (τ ) = 0 ∀τ > d, the work (5.1) is
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expressed, due to (4.8) and (4.9), by

W (σ(t), P ) =
1
2

[
c

Θ0
ϑ2

P (d) +
1
ε
D2(EP (d), ϑP (d)) +

1
µ
B2(HP (d))

]

− 1
2

[
c

Θ0
ϑ2

P (0) +
1
ε
D2(EP (0), ϑP (0)) +

1
µ
B2(HP (0))

]

+
∫ +∞

0

[∫ τ

0

α(s)EP (τ − s)ds +
∫ +∞

τ

α(s)E(t + τ − s)ds

]
· EP (τ )dτ

+
1

Θ0

∫ +∞

0

[∫ τ

0

k(s)gP (τ − s)ds +
∫ +∞

τ

k(s)g(t + τ − s)ds

]
· gP (τ )dτ

=
1
2

[
c

Θ0
ϑ2

P (d) +
1
ε
D2(EP (d), ϑP (d)) +

1
µ
B2(HP (d))

]

− 1
2

[
c

Θ0
ϑ2

P (0) +
1
ε
D2(EP (0), ϑP (0)) +

1
µ
B2(HP (0))

]

+
∫ +∞

0

[∫ τ

0

α(s)EP (τ − s)ds · EP (τ )

+
1

Θ0

∫ τ

0

k(s)gP (τ − s)ds · gP (τ )
]

dτ

+
∫ +∞

0

[∫ +∞

0

α(τ + η)Et(η)dη · EP (τ )

+
1

Θ0

∫ +∞

0

k(τ + η)gt(η)dη · gP (τ )
]

dτ. (5.16)

Putting

I(α)(τ,Et) = −
∫ +∞

0

α(τ + η)Et(η)dη, I(k)(τ,gt) = −
∫ +∞

0

k(τ + η)gt(η)dη, τ ≥ 0,

(5.17)
and using (5.14) and (2.1), (5.16) assumes the form

W (σ(t), P ) =
1
2

{
c

Θ0
ϑ2(t + d) +

1
ε
[εE(t + d) + ϑ(t + d)a]2

+µH2(t + d)
}
− 1

2

{
c

Θ0
ϑ2(t) +

1
ε
[εE(t) + ϑ(t)a]2 + µH2(t)

}

+
1
2

∫ +∞

0

∫ +∞

0

[
α(| τ − ξ |)EP (ξ) · EP (τ )

+
1

Θ0
k(| τ − ξ |)gP (ξ) · gP (τ )

]
dξdτ

−
∫ +∞

0

I(α)(τ,Et) · EP (τ )dτ − 1
Θ0

∫ +∞

0

I(k)(τ,gt) · gP (τ )dτ, (5.18)
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or the equivalent one

W (σ(t), P ) =
1
2

{
c

Θ0
ϑ2(t + d) +

1
ε
[εE(t + d) + ϑ(t + d)a]2

+ µH2(t + d)
}
− 1

2

{
c

Θ0
ϑ2(t) +

1
ε
[εE(t) + ϑ(t)a]2 + µH2(t)

}

+
1
2π

∫ +∞

−∞

[
αc(ω)EP+(ω) · E∗

P+(ω)dω +
1

Θ0
kc(ω)gP+(ω) · g∗

P+(ω)
]

dω

− 1
2π

∫ +∞

−∞

[
I(α)+(ω,Et) · E∗

P+(ω) +
1

Θ0
I(k)+(ω,gt) · g∗

P+(ω)
]

dω,

(5.19)

where, on account of (3.6)1, we have put

I(α)+(ω,Et) =
∫ +∞

0

I(α)(τ,Et)e−iωτdτ, I(k)+(ω,gt) =
∫ +∞

0

I(k)(τ,gt)e−iωτdτ. (5.20)

We note that the two functions I(α)(τ,Et) and I(k)(τ,gt), defined by (5.17), are related
to the electric current density and the heat flux corresponding to the static continuations
of Et and gt, already introduced with (3.1). In fact, when these static continuations
are considered, we have the expressions (3.3) and (3.4), which, if the duration of the
continuations is equal to τ , reduce to

J(Et(τ)) − ν(α)(τ )E(t) = −I(α)(τ,Et), q(gt(τ)) − ν(k)(τ )g(t) = −I(k)(τ,gt). (5.21)

Hence, it follows that I(α)(τ,Et) and I(k)(τ,gt) have the regularities of the quantities at
the left hand-sides of (5.21).

The last expression of W (σ(t), P ), given by (5.19), allows us to state that the ad-
missible histories Et and gt are those such that I(α)(·,Et) and I(k)(·,gt), related to Et

and gt by means of (5.17), belong to H ′
α(R+,R3) and H ′

k(R+,R3), the dual spaces of
Hα(R+,R3) and Hk(R+,R3), whose functions satisfy

| 〈f ,g〉 |=|
∫ +∞

0

f(t) · g(t)dt |= 1
2π

|
∫ +∞

−∞
f+(ω) · g∗

+(ω)dω |< +∞.

6. Equivalence of histories related to the work. Two couples of histories (E1(t),
Et

1) with gt
1 and (E2(t),Et

2) with gt
2, in Sec. 4, have been called equivalent when they

yield both the same electric current density and the same heat flux if they are subjected
to the same process.

An analogous equivalence relation can be introduced by means of the thermoelectro-
magnetic work considered in the previous section. Thus, we give the following definition
in terms of work.

Definition 6.1. Let (Ej(t),Et
j), j = 1, 2, be two histories of the electric field and

let gt
j , j = 1, 2, be two corresponding past histories of the temperature gradient, related

to the instantaneous values H1(t),H∼ 2
(t) of the magnetic field and ϑ1(t), ϑ2(t) of the

temperature, respectively. They are called w-equivalent if for every ĖP : [0, τ ) → R3,
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ḢP : [0, τ ) → R3, ϑ̇P : [0, τ ) → R, gP : [0, τ ) → R3 and for every τ > 0, the equality

W̃ (E1(t),H1(t), ϑ1(t),Et
1,g

t
1; ĖP , ḢP , ϑ̇P ,gP )

= W̃ (E2(t),H2(t), ϑ2(t),Et
2,g

t
2; ĖP , ḢP , ϑ̇P ,gP ) (6.1)

is satisfied.
The equivalence expressed by Definition 4.1 coincides with the one now introduced in

the sense of the following theorem.

Theorem 6.1. For every thermoelectromagnetic material B, described by the constitu-
tive equations (2.1) and (4.10), two couples of histories of the electric field and of the
temperature gradient are w-equivalent if and only if they are equivalent in the sense of
Definition 4.1.

Proof. If two couples of histories, (Ej(t),Et
j) with gt

j , j = 1, 2, satisfy Definition 4.1,
then they are w-equivalent, too. In fact, for every EP : (0, τ ] → R3, HP : (0, τ ] → R3,
ϑP : (0, τ ] → R, gP : (0, τ ] → R3 and for every τ > 0, from (5.1) we get∫ d

0

[
c

Θ0
ϑ̇P (τ )ϑP (τ ) +

1
ε
Ḋ(EP (τ ), ϑP (τ )) · D(EP (τ ), ϑP (τ )) +

1
µ
Ḃ(HP (τ ))

·B(HP (τ )) + J̃((EP ∗ E1)t+τ ) · EP (τ ) − 1
Θ0

q̃((gP ∗ g1)t+τ ) · gP (τ )
]

dτ

=
∫ d

0

[
c

Θ0
ϑ̇P (τ )ϑP (τ ) +

1
ε
Ḋ(EP (τ ), ϑP (τ )) · D(EP (τ ), ϑP (τ )) +

1
µ
Ḃ(HP (τ ))

·B(HP (τ )) + J̃((EP ∗ E2)t+τ ) · EP (τ ) − 1
Θ0

q̃((gP ∗ g2)t+τ ) · gP (τ )
]

dτ. (6.2)

This relation expresses that the work done on the process starting from the state (E1(t),
H1(t), ϑ1(t),Et

1,g
t
1) coincides with the work done when the same process starts from

(E2(t),H2(t), ϑ2(t),Et
2,g

t
2), since, by hypothesis, the instantaneous values present in the

two states coincide as well as (4.11)2 and (4.12).
Now, if two couples of histories, (Ej(t),Et

j) with gt
j , j = 1, 2, are w-equivalent, then

for any process P = (ĖP , ḢP , ϑ̇P ,gP ) and for every d > 0, d being the duration of the
process, (6.1) must be satisfied. This equality, taking into account (5.16) or (5.18), which
is equivalent because of (5.14) and (5.17), can be put in the following form:

c

2Θ0

{
ϑ2

P1
(d) − ϑ2

P2
(d) − [ϑ2

P1
(0) − ϑ2

P2
(0)]

}
+

1
2ε

{
D2

P1
(d) − D2

P2
(d)

−[D2
P1

(0) − D2
P2

(0)]
}

+
1
2µ

{
B2

P1
(d) − B2

P2
(d) − [B2

P1
(0) − B2

P2
(0)]

}
+

1
2

∫ +∞

0

∫ +∞

0

α(| τ − ξ |)[EP1(ξ) · EP1(τ ) − EP2(ξ) · EP2(τ )]dξdτ

−
∫ +∞

0

[I(α)(τ,Et
1) · EP1(τ ) − I(α)(τ,Et

2) · EP2(τ )]dτ

− 1
Θ0

∫ +∞

0

[I(k)(τ,gt
1) − I(k)(τ,gt

2)] · gP (τ )dτ = 0. (6.3)
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Here, for example, ϑPi
(0) = ϑi(t) and ϑPi

(d) = ϑi(t) +
∫ d

0
ϑ̇P (s)ds with i = 1, 2 is

due to (4.6), while EPi
and HPi

have analogous expressions by virtue of (4.4) and (4.5).
Moreover, DPi

is expressed in terms of the corresponding EPi
and ϑPi

taking into account
(2.1), as well as BPi

in function of HPi
and, in particular, obviously EPi

(ξ) = Ei(t)+
∫ ξ

0

ĖP (s)ds. We note that in (6.3) the integral with k(| τ − ξ |) has been eliminated since
we have the presence of the same gP on both sides of (6.1).

Thus, (6.3) can be written as follows:{(
c

Θ0
+

a2

ε

)
[ϑ1(t) − ϑ2(t)] + a · [E1(t) − E2(t)]

}∫ d

0

ϑ̇P (s)ds

+ {a[ϑ1(t) − ϑ2(t)] + ε[E1(t) − E2(t)]} ·
∫ d

0

ĖP (s)ds + µ[H1(t)

− H2(t)] ·
∫ d

0

ḢP (s)ds +
1
2

{
[E2

1(t) − E2
2(t)]

∫ +∞

0

∫ +∞

0

α(| τ − ξ |)dξdτ

+[E1(t) − E2(t)] ·
∫ +∞

0

∫ +∞

0

α(| τ − ξ |)
[∫ ξ

0

ĖP (s)ds +
∫ τ

0

ĖP (s)ds

]
dξdτ

}

−
∫ +∞

0

[I(α)(τ,Et
1) · E1(t) − I(α)(τ,Et

2) · E2(t)]dτ −
∫ +∞

0

[I(α)(τ,Et
1) − I(α)(τ,Et

2)]

·
[∫ τ

0

ĖP (s)ds

]
dτ − 1

Θ0

∫ +∞

0

[I(k)(τ,gt
1) − I(k)(τ,gt

2)] · gP (τ )dτ = 0. (6.4)

This relation must be satisfied by any process P and any d > 0. Thus, we first observe
that the arbitrarinesses of ϑ̇P and ĖP imply that the first two bracketed quantities must
vanish, i.e., { (

c
Θ0

+ a2

ε

)
[ϑ1(t) − ϑ2(t)] + a · [E1(t) − E2(t)] = 0,

a[ϑ1(t) − ϑ2(t)] + ε[E1(t) − E2(t)] = 0.
(6.5)

Hence, substituting into the first equation the expression of E1(t)−E2(t) obtained from
the second one, it follows that

ϑ1(t) = ϑ2(t), E1(t) = E2(t). (6.6)

Moreover, also being ḢP arbitrary, we get

H1(t) = H2(t); (6.7)

furthermore, for the arbitrariness of gP too, we must have

I(α)(τ,Et
1) = I(α)(τ,Et

2), I(k)(τ,gt
1) = I(k)(τ,gt

2). (6.8)

The last two equalities, by virtue of (5.17), yield∫ +∞

0

α(τ + η)[Et
1(η) − Et

2(η)]dη = 0,

∫ +∞

0

k(τ + η)[gt
1(η) − gt

2(η)]dη, ∀τ > 0, (6.9)

from which, taking into account (6.6)2, it follows that the couple of histories (0,Et
1−Et

2)
and gt

1−gt
2 is equivalent to the null histories (0,0†) and 0†. Thus, the two couples of

histories (Ej(t),Et
j) and gt

j , j = 1, 2, are equivalent in the sense of Definition 4.1. �
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7. Minimum free energy. The maximum recoverable work that we can obtain
starting from a given state σ of the body indicates the maximum quantity of work we
can get from the material at the given state σ. It is related to the amount of the available
energy and is defined by [12]

WR(σ) = sup {−W (σ, P ) : P ∈ Π} , (7.1)

where Π denotes the set of finite work processes.
We observe that WR(σ) is a function of the state, which is non-negative since the null

process belongs to Π and the corresponding work is null. Moreover, on the ground of
thermodynamic considerations, it is bounded above, i.e. WR(σ) < +∞.

As many authors have already shown [3, 5, 12], denoting by ψm(σ) the minimum free
energy, we have

ψm(σ) = WR(σ). (7.2)

Let us consider a process P ∈ Π, which is related to EP , HP and ϑP , whose expressions
are given by (4.4)–(4.6) and defined on (0, d], d being the duration of P . Putting P = 0
on [d, +∞), we can extend P on R+; moreover, we suppose that EP (d) ≡ E(t + d) = 0,
HP (d) ≡ H(t + d) = 0, ϑP (d) ≡ ϑ(t + d) = 0. The work done on P , starting from the
state σ(t) = (E(t),H(t), ϑ(t),Et,gt) where t is a fixed time instant, is given by (5.18),
which reduces to

W (σ(t), P )

= −1
2

{
c

Θ0
ϑ2(t) +

1
ε
[εE(t) + ϑ(t)a]2 + µH2(t)

}

+
1
2

∫ +∞

0

∫ +∞

0

[
α(| τ − ξ |)EP (ξ) · EP (τ ) +

1
Θ0

k(| τ − ξ |)gP (ξ) · gP (τ )
]

dξdτ

−
∫ +∞

0

[
I(α)(τ,Et) · EP (τ ) +

1
Θ0

I(k)(τ,gt)·gP (τ )
]
dτ. (7.3)

We must derive the maximum recoverable work, which will correspond to an “optimal”
process P (m). Denoting by E(m) and g(m) the required solutions, related to P (m), we
must derive the maximum of −W (σ, P ), due to (7.1). To this purpose, in correspondence
of any process P , we put

EP (τ ) = E(m)(τ ) + γe(τ ), gP (τ ) = g(m)(τ ) + δv(τ ), τ ∈ R+, (7.4)

where γ and δ are two real parameters, and e and v are two arbitrary smooth functions
such that e(0) = 0 and v(0) = 0.

From (7.3), after substituting (7.4), we get the following system:⎧⎨
⎩

∂
∂γ [−W (σ, P )] |γ=0= −

∫ +∞
0

[∫ +∞
0

α(| τ − ξ |)E(m)(ξ)dξ − I(α)(τ,Et)
]
·e(τ )dτ = 0,

∂
∂δ [−W (σ, P )] |δ=0= − 1

Θ0

∫ +∞
0

[∫ +∞
0

k(| τ − ξ |)g(m)(ξ)dξ − I(k)(τ,gt)
]
·v(τ )dτ = 0,

(7.5)
from which, e and v being arbitrary, it follows that{ ∫ +∞

0
α(| τ − ξ |)E(m)(ξ)dξ = I(α)(τ,Et),∫ +∞

0
k(| τ − ξ |)g(m)(ξ)dξ = I(k)(τ,gt),

∀τ ∈ R+,

∀τ ∈ R+.
(7.6)
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These last two relations are two integral equations of the Wiener-Hopf type, of the first
kind, whose solutions E(m) and g(m) can be determined by virtue of the thermodynamic
properties of the two kernels α and k, together with some theorems on factorization.

Thus, these solutions allow us to obtain the minimum free energy (7.2), which, taking
into account (7.3) and (7.6), becomes

ψm(σ) =WR(σ) =
1
2

{
c

Θ0
ϑ2(t) +

1
ε
[εE(t) + ϑ(t)a]2 + µH2(t)

}

+
1
2

∫ +∞

0

∫ +∞

0

[
α(| τ − ξ |)E(m)(ξ) · E(m)(τ )

+
1

Θ0
k(| τ − ξ |)g(m)(ξ) · g(m)(τ )

]
dξdτ

=
1
2

{
c

Θ0
ϑ2(t) +

1
ε
[εE(t) + ϑ(t)a]2 + µH2(t)

}

+
1
2π

∫ +∞

−∞

[
αc(ω)E(m)

+ (ω) · (E(m)
+ (ω))∗ +

1
Θ0

kc(ω)g(m)
+ (ω) · (g(m)

+ (ω))∗
]

dω,

(7.7)

where we have applied Plancherel’s theorem.
To solve the Wiener-Hopf integral equations (7.6) of the first kind, we transform them

as follows: { ∫ +∞
0

α(| τ − ξ |)E(m)(ξ)dξ = I(α)(τ,Et) + r(α)(τ ),∫ +∞
0

k(| τ − ξ |)g(m)(ξ)dξ = I(k)(τ,gt) + r(k)(τ ),
∀τ ∈ R,

∀τ ∈ R,
(7.8)

where we have introduced

r(α)(τ ) =
∫ +∞

−∞
α(| τ − ξ |)E(m)(ξ)dξ, r(k)(τ ) =

∫ +∞

−∞
k(| τ − ξ |)g(m)(ξ)dξ ∀τ ∈ R−

(7.9)
with r(α)(τ ) = 0, r(k)(τ ) = 0 ∀τ ∈ R++, being supp(E(m)) ⊆ R+, supp(g(m)) ⊆ R+,
supp(I(α)(·,Et)) ⊆ R+, supp(I(k)(·,gt)) ⊆ R+, supp(r(α)) ⊆ R− and supp(r(k)) ⊆ R−.

Thus, we can apply Fourier’s transform to (7.8) and obtain

2αc(ω)E(m)
+ (ω) = It

(α)+(ω) + r(α)
− (ω), 2kc(ω)g(m)

+ (ω) = It
(k)+(ω) + r(k)

− (ω), (7.10)

where It
(α)+(ω) = I(α)+(ω,Et), It

(k)+(ω) = I(k)+(ω,gt) given by (5.20).
In the complex z-plane C, the upper half-planes including and excluding the real axis

are denoted by

C+ =
{
z ∈ C : Im z ∈ R+

}
, C(+) =

{
z ∈ C : Im z ∈ R++

}
.

Similarly, we can define the lower half-planes C− and C(−), respectively including and
excluding the real axis. We note that the two functions f±(z) defined by (3.6) are analytic
for z ∈ C(∓), respectively. By assumption, the analyticities in C(∓) are extended to C∓.
It is possible to define, for example, f+ in all or part of C(+) by analytic continuation.

Thus, in particular, we note that E(m)
+ and g(m)

+ are analytic in C−.
Let us introduce the following two functions:

K(α)(ω) = (1 + ω2)αc(ω), K(k)(ω) = (1 + ω2)kc(ω). (7.11)
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They have no zero for any real ω, also at infinity, by virtue of (3.15), (3.16) and the
analogous relations, which hold for the kernel α. Moreover, they can be factorized as
follows:

K(α)(ω) = K
(α)
(+)(ω)K(α)

(−)(ω), K(k)(ω) = K
(k)
(+)(ω)K(k)

(−)(ω), (7.12)

where henceforth the subscript (±) indicates that the function f(z) has zeros and singu-
larities only for z ∈ C±.

Also αc(ω) and kc(ω) can be factorized as follows:

αc(ω) = α(+)(ω)α(−)(ω), kc(ω) = k(+)(ω)k(−)(ω). (7.13)

Therefore, from (7.11) and (7.12) we obtain

α(±)(ω) =
1

1 ± iω
K

(α)
(±)(ω), k(±)(ω) =

1
1 ± iω

K
(k)
(±)(ω), (7.14)

which allow us to get from (7.10)

α(+)(ω)E(m)
+ (ω) =

1
2α(−)(ω)

[It
(α)+(ω) + r(α)

− (ω)], (7.15)

k(+)(ω)g(m)
+ (ω) =

1
2k(−)(ω)

[It
(k)+(ω) + r(k)

− (ω)]. (7.16)

Let pt
(α)(±)(ω) and pt

(k)(±)(ω) be two functions defined by

pt
(α)(z) =

1
4πi

∫ +∞

−∞

It
(α)+(ω)/α(−)(ω)

ω − z
dω, pt

(α)(±)(ω) = lim
β→0∓

pt
(α)(ω + iβ), (7.17)

pt
(k)(z) =

1
4πi

∫ +∞

−∞

It
(k)+(ω)/k(−)(ω)

ω − z
dω, pt

(k)(±)(ω) = lim
β→0∓

pt
(k)(ω + iβ). (7.18)

Then, using the Plemelj formulae [23] it follows that

It
(α)+(ω)

2α(−)(ω)
= pt

(α)(−)(ω)−pt
(α)(+)(ω), (7.19)

It
(k)+(ω)

2k(−)(ω)
= pt

(k)(−)(ω)−pt
(k)(+)(ω). (7.20)

We note that, since pt
(α)(±)(z) and pt

(k)(±)(z) have zeros and singularities in z ∈ C±, it
follows that pt

(α)(+)(z) and pt
(k)(+)(z) are analytic in C(−), while pt

(α)(−)(z) and pt
(k)(−)(z)

are analytic in C(+). Furthermore, for the assumption on the analyticity on the real axis
of Fourier-transformed functions [3], all these functions are analytic on R.

Thus, substituting (7.19) and (7.20) into (7.15) and (7.16), respectively, we obtain the
following two relations:

α(+)(ω)E(m)
+ (ω) + pt

(α)(+)(ω) = pt
(α)(−)(ω) +

1
2

r(α)
− (ω)

α(−)(ω)
, (7.21)

k(+)(ω)g(m)
+ (ω) + pt

(k)(+)(ω) = pt
(k)(−)(ω) +

1
2

r(k)
− (ω)

k(−)(ω)
, (7.22)
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where the first left-hand sides are analytic for z ∈ C−, while the second right-hand sides
are analytic for z ∈ C+. Hence, these relations define two functions, say

Mα(ω) = α(+)(ω)E(m)
+ (ω) + pt

(α)(+)(ω), Mk(ω) = k(+)(ω)g(m)
+ (ω) + pt

(k)(+)(ω), (7.23)

which are analytic on C− and at the same time on C+, by virtue of (7.21) and (7.22);
therefore, they have analytic extensions on C and vanish at infinity. Hence, it follows
that Mα(ω) = 0 and Mk(ω) = 0; consequently, we get

E(m)
+ (ω) = −

pt
(α)(+)(ω)

α(+)(ω)
, pt

(α)(−)(ω) = −1
2

r(α)
− (ω)

α(−)(ω)
, (7.24)

g(m)
+ (ω) = −

pt
(k)(+)(ω)

k(+)(ω)
, pt

(k)(−)(ω) = −1
2

r(k)
− (ω)

k(−)(ω)
. (7.25)

Finally, we obtain the expression of the minimum free energy from (7.7)2, due to
(7.24)1 and (7.25)1, that is,

ψm(σ(t)) =
1
2

{
c

Θ0
ϑ2(t) +

1
ε
[εE(t) + ϑ(t)a]2 + µH2(t)

}

+
1
2π

∫ +∞

−∞

[
| pt

(α)(+)(ω) |2 +
1

Θ0
| pt

(k)(+)(ω) |2
]

dω. (7.26)

8. A different expression of the minimum free energy. The relation (7.26)
derived for the minimum free energy ψm is a function of pt

(α)(+)(ω) and pt
(k)(+)(ω).

These two quantities can be expressed in terms of Et and gt, respectively.
To derive these relations, let us consider the causal extensions to R−− of Et(s) and

gt(s), which are identified with them; therefore, we have Et(s) = 0 and gt(s) = 0
for every s ∈ (−∞, 0). Moreover, the kernels α(s) and k(s) are assumed to be even
functions and, therefore, are denoted by α(e)(s) and k(e)(s), whose Fourier transforms
are α

(e)
F (ω) = 2αc(ω) and k

(e)
F (ω) = 2kc(ω).

Thus, (5.17) can be rewritten as

I(α)(τ,Et) = −
∫ +∞

−∞
α(e)(η + τ )Et(η)dη, τ ≥ 0, (8.1)

I(k)(τ,gt) = −
∫ +∞

−∞
k(e)(η + τ )gt(η)dη, τ ≥ 0. (8.2)

Then, by introducing

I(n)
(α)(τ,Et) = −

∫ +∞

−∞
α(e)(η + τ )Et(η)dη, ∀τ < 0, (8.3)

I(n)
(k)(τ,gt) = −

∫ +∞

−∞
k(e)(η + τ )gt(η)dη, ∀τ < 0, (8.4)
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we can extend (8.1) and (8.2) to R as follows:

I(R)
(α) (τ,Et) = −

∫ +∞

−∞
α(e)(η + τ )Et(η)dη =

{
I(α)(τ,Et) ∀τ ≥ 0,

I(n)
(α)(τ,Et) ∀τ < 0,

(8.5)

I(R)
(k) (τ,gt) = −

∫ +∞

−∞
k(e)(η + τ )gt(η)dη =

{
I(k)(τ,gt) ∀τ ≥ 0,

I(n)
(k)(τ,gt) ∀τ < 0.

(8.6)

Now, we can express these relations in terms of Fourier’s transforms, that is,

I(R)
(α)F

(ω,Et) =
∫ +∞

−∞
I(R)
(α) (τ,Et)e−iωτdτ = I(n)

(α)−(ω,Et) + I(α)+(ω,Et), (8.7)

I(R)
(k)F

(ω,gt) =
∫ +∞

−∞
I(R)
(k) (τ,gt)e−iωτdτ = I(n)

(k)−(ω,gt) + I(k)+(ω,gt), (8.8)

so that, by virtue of (7.19) and (7.20), we get

1
2α(−)(ω)

I(R)
(α)F

(ω,Et) =
1

2α(−)(ω)
I(n)
(α)−(ω,Et) + pt

(α)(−)(ω) − pt
(α)(+)(ω), (8.9)

1
2k(−)(ω)

I(R)
(k)F

(ω,gt) =
1

2k(−)(ω)
I(n)
(k)−(ω,gt) + pt

(k)(−)(ω) − pt
(k)(+)(ω). (8.10)

By using the Plemelj formulae, the quantities at the left-hand sides of the two last
relations may be written as follows:

1
2α(−)(ω)

I(R)
(α)F

(ω,Et) = p′t
(α)(−)(ω) − p′t

(α)(+)(ω), (8.11)

1
2k(−)(ω)

I(R)
(k)F

(ω,gt) = p′t
(k)(−)(ω) − p′t

(k)(+)(ω), (8.12)

where the functions p′t
(α)(±)(z) and p′t

(k)(±)(z), defined analogously to (7.17) and (7.18),
have zeros and singularities for z ∈ C±.

Thus, (8.9) and (8.10), by virtue of (8.11) and (8.12), give two relations, which allow
us to define the following two functions:

Nα(ω) ≡ pt
(α)(+)(ω) − p′t

(α)(+)(ω)

= pt
(α)(−)(ω) − p′t

(α)(−)(ω) +
1

2α(−)(ω)
I(n)
(α)−(ω,Et), (8.13)

Nk(ω) ≡ pt
(k)(+)(ω) − p′t

(k)(+)(ω)

= pt
(k)(−)(ω) − p′t

(k)(−)(ω) +
1

2k(−)(ω)
I(n)
(k)−(ω,gt). (8.14)

These functions, being analytic in C− for the first relations of (8.13) and (8.14) as well
as in C+ for the second relations of the same (8.13) and (8.14) and, moreover, being zero
at infinity, must be equal to zero, i.e. Nα(ω) = 0 and Nk(ω) = 0.
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Therefore, it follows that

pt
(α)(+)(ω) = p′t

(α)(+)(ω), pt
(α)(−)(ω) = p′t

(α)(−)(ω) − 1
2α(−)(ω)

I(n)
(α)−(ω,Et), (8.15)

pt
(k)(+)(ω) = p′t

(k)(+)(ω), pt
(k)(−)(ω) = p′t

(k)(−)(ω) − 1
2k(−)(ω)

I(n)
(k)−(ω,gt). (8.16)

If we introduce Et
n(s) = Et(−s) ∀s ≤ 0 with its extension Et

n(s) = 0 ∀s > 0 and,
analogously, gt

n(s) = gt(−s) ∀s ≤ 0 with gt
n(s) = 0 ∀s > 0, whose Fourier transforms

are
Et

nF
(ω) = Et

n−(ω) =
(
Et

+(ω)
)∗

, gt
nF

(ω) = gt
n−(ω) =

(
gt

+(ω)
)∗

, (8.17)

then (8.5) and (8.6) assume the form

I(R)
(α) (τ,Et) = −

∫ +∞

−∞
α(e)(τ − s)Et

n(s)ds, (8.18)

I(R)
(k) (τ,gt) = −

∫ +∞

−∞
k(e)(τ − s)gt

n(s)ds, (8.19)

so that

I(R)
(α)F

(ω,Et) = −2αc(ω)
(
Et

+(ω)
)∗

, (8.20)

I(R)
(k)F

(ω,gt) = −2kc(ω)
(
gt

+(ω)
)∗

. (8.21)

Thus, from (8.20) and (8.21), due to (7.13), we get

1
2α(−)(ω)

I(R)
(α)F (ω,Et) = −α(+)(ω)

(
Et

+(ω)
)∗

, (8.22)

1
2k(−)(ω)

I(R)
(k)F

(ω,gt) = −k(+)(ω)
(
gt

+(ω)
)∗

. (8.23)

On the other hand, using (8.15)1 and (8.16)1, the relations, analogous to (7.17) and
(7.18), written for p′t

(α)(+)(ω) and p′t
(k)(+)(ω) taking into account (7.19) and (7.20) with

(8.22) and (8.23), give

pt
(α)(+)(ω) = lim

z→ω−
p′t

(α)(+)(z) = − lim
z→ω−

1
2πi

∫ +∞

−∞

α(+)(ω′)
(
Et

+(ω′)
)∗

ω′ − z
dω′, (8.24)

pt
(k)(+)(ω) = lim

z→ω−
p′t

(k)(+)(z) = − lim
z→ω−

1
2πi

∫ +∞

−∞

k(+)(ω′)
(
gt

+(ω′)
)∗

ω′ − z
dω′ (8.25)

and hence (
pt

(α)(+)(ω)
)∗

= lim
ξ→ω+

1
2πi

∫ +∞

−∞

α(−)(ω′)Et
+(ω′)

ω′ − ξ
dω′, (8.26)

(
pt

(k)(+)(ω)
)∗

= lim
ξ→ω+

1
2πi

∫ +∞

−∞

k(−)(ω′)gt
+(ω′)

ω′ − ξ
dω′. (8.27)

Using the Plemelj formulae, we obtain

α(−)(ω)Et
+(ω) = qt

(α)(−)(ω) − qt
(α)(+)(ω), (8.28)

k(−)(ω)gt
+(ω) = qt

(k)(−)(ω) − qt
(k)(+)(ω), (8.29)



668 GIOVAMBATTISTA AMENDOLA AND ADELE MANES

where

qt
(α)(±)(ω) = lim

z→ω∓

1
2πi

∫ +∞

−∞

α(−)(ω′)Et
+(ω′)

ω′ − z
dω′, (8.30)

qt
(k)(±)(ω) = lim

z→ω∓

1
2πi

∫ +∞

−∞

k(−)(ω′)gt
+(ω′)

ω′ − z
dω′. (8.31)

We observe that the notation we have used here coincides with that of [3, 5]; so qt
(α) and

qt
(k) must not be confused with the heat flux.
Therefore, we have(

pt
(α)(+)(ω)

)∗
= qt

(α)(−)(ω),
(
pt

(k)(+)(ω)
)∗

= qt
(k)(−)(ω), (8.32)

and (7.26) becomes

ψm(t) =
1
2

{
c

Θ0
ϑ2(t) +

1
ε
[εE(t) + ϑ(t)a]2 + µH2(t)

}

+
1
2π

∫ +∞

−∞

[
| qt

(α)(−)(ω) |2 +
1

Θ0
| qt

(k)(−)(ω) |2
]

dω, (8.33)

which is the new expression of the minimum free energy in terms of qt
(α)(−)(ω) and

qt
(k)(−)(ω).

9. A particular model. We now consider the results obtained in the previous sec-
tions for a particular class of relaxation functions, which are characterized by two linear
combinations of decaying exponentials, that is, we give explicit formulae for a discrete
spectrum model material response.

Let

α(t) =
n∑

i=1

gie
−αit, k(t) =

n∑
i=1

hie
−kit, n ∈ N, (9.1)

where the inverse decay times αi, ki ∈ R++ (i = 1, 2, ..., n) and the coefficients gi and
hi (i = 1, 2, ..., n) are assumed to be positive, too. We also put α1 < α2 < ... < αn and
k1 < k2 < ... < kn.

From (9.1) we have, in particular,

α(0) =
n∑

i=1

gi > 0, k(0) =
n∑

i=1

hi > 0, (9.2)

hence (3.12)2 and the analogous relation for α [14] are satisfied. Then, we have the
Fourier transforms

αF (ω) =
n∑

i=1

gi

αi + iω
, kF (ω) =

n∑
i=1

hi

ki + iω
, ω ∈ R, (9.3)

and hence we get, in particular,

αc(ω) =
n∑

i=1

αigi

α2
i + ω2

, kc(ω) =
n∑

i=1

kihi

k2
i + ω2

, ω ∈ R. (9.4)
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Then, from (7.11) it follows that

K(α)(ω) =
n∑

i=1

αigi
1 + ω2

α2
i + ω2

, K(k)(ω) =
n∑

i=1

kihi
1 + ω2

k2
i + ω2

, ω ∈ R, (9.5)

hence we get

K(α)
∞ = lim

ω→±∞
K(α)(ω) =

n∑
i=1

αigi > 0, K(k)
∞ = lim

ω→±∞
K(k)(ω) =

n∑
i=1

kihi > 0. (9.6)

The two functions f (α)(z) = K(α)(ω) and f (k)(z) = K(k)(ω) with z = −ω2 have a
zero equal to one, which will be denoted by γ2

1 = 1 and by δ2
1 = 1, respectively. If we

consider the case when 1 < α2
1 and 1 < k2

1 or the other one when α2
n < 1 and k2

n < 1,
it follows that α2

i �= 1 and k2
i �= 1 (i = 1, 2, ..., n). In these cases the two functions have

n simple poles at α2
i and k2

i (i = 1, 2, ..., n) and n simple zeros denoted by γ2
1 = 1, γ2

j

(j = 2, 3, ..., n) and δ2
1 = 1, δ2

j (j = 2, 3, ..., n).
Only the conditions α2

i �= 1 and k2
i �= 1 (i = 1, 2, ..., n) yield the possibility that

α2
p < 1 < α2

p+1 and k2
p′ < 1 < k2

p′+1, with p equal to only one of the values {1, 2, ..., n − 1}
as well as p′. In this case we have γ2

1 = 1<
≥γ2

p+1 and δ2
1 = 1<

≥δ2
p′+1 and it may occur that

they coincide with 1, which, therefore, has multiplicity 2; thus, the two functions have n

simple poles but only n − 1 distinct zeros.
In all these cases the zeros γ2

j and δ2
j (j = 2, 3, ..., n), i.e. those different from 1, are

such that

α2
1 < γ2

2 < α2
2 < ... < α2

p < γ2
p+1 < α2

p+1 < ... < α2
n−1 < γ2

n < α2
n, (9.7)

k2
1 < δ2

2 < k2
2 < ... < k2

p′ < δ2
p′+1 < k2

p′+1 < ... < k2
n−1 < δ2

n < k2
n. (9.8)

Therefore, let us suppose that α2
i �= 1, k2

i �= 1 (i = 1, 2, ..., n). We can write (9.5) as
follows:

K(α)(ω) = K(α)
∞

n∏
i=1

{
γ2

i + ω2

α2
i + ω2

}
, K(k)(ω) = K(k)

∞

n∏
i=1

{
δ2
i + ω2

k2
i + ω2

}
, (9.9)

from which we have, in particular,

K
(α)
(−)(ω) = k(α)

∞

n∏
i=1

{
ω + iγi

ω + iαi

}
, K

(k)
(−)(ω) = k(k)

∞

n∏
i=1

{
ω + iδi

ω + iki

}
, (9.10)

where

k(α)
∞ =

√
K

(α)
∞ , k(k)

∞ =
√

K
(k)
∞ , (9.11)

γ1 = 1, δ1 = 1 and eventually only one of the other zeros, say γp+1 and δp′+1, can
coincide with γ1 and δ1, that is, they have multiplicity 2.

Thus, (7.14) and (9.10), being γ2
1 = δ2

1 = 1, yield

α(−)(ω) = ik(α)
∞

n∏
j=2

(ω + iγj)

n∏
i=1

(ω + iαi)
, k(−)(ω) = ik(k)

∞

n∏
j=2

(ω + iδj)

n∏
i=1

(ω + iki)
, (9.12)
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which can be put in the form

α(−)(ω) = ik(α)
∞

n∑
r=1

U
(α)
r

ω + iαr
, k(−)(ω) = ik(k)

∞

n∑
r=1

U
(k)
r

ω + ikr
(9.13)

with

U (α)
r =

n∏
j=2

(γj − αr)

n∏
i=1,i �=r

(αi − αr)
, U (k)

r =

n∏
j=2

(δj − kr)

n∏
i=1,i �=r

(ki − kr)
(r = 1, 2, ..., n). (9.14)

When one of the inverse decay times αi as well as of ki (i = 1, 2, ..., n) is equal to 1,
we can consider these three cases: (i) α2

1 ≡ γ2
1 = 1, k2

1 ≡ δ2
1 = 1; (ii) α2

n ≡ γ2
1 = 1,

k2
n ≡ δ2

1 = 1; (iii) α2
p ≡ γ2

1 = 1, k2
p′ ≡ δ2

1 = 1. In these cases we have different expressions
for K(α)(ω) and K(k)(ω), but the final expressions of α(−)(ω) and k(−)(ω), given by
(9.13), do not change, as well as the expressions of the coefficients U

(α)
r and U

(k)
r , given

by (9.14). The only differences, with respect to the previous case with α2
i �= 1 and k2

i �= 1,
are the following ones: in (9.14) we must put α1 = 1 and k1 = 1 in the case (i), αn = 1
and kn = 1 in the case (ii) and αp = 1 and kp′ = 1 in the case (iii).

Therefore, we can use (9.13) and (9.14) in any case to obtain the expression of the
minimum free energy. However, we observe that they are consistent only if n > 1; thus,
the case when n = 1 must be studied directly from (9.10), where we have one zero both
for K(α)(ω) and K(k)(ω): γ1 = 1, δ1 = 1; the expressions (7.14) written for n = 1 yield
U

(α)
1 = 1, U

(k)
1 = 1.

Thus, (8.30) and (8.31), taking account of (9.13), yield

qt
(α)(−)(ω) =

1
2πi

n∑
r=1

ik(α)
∞ U (α)

r

∫ +∞

−∞

Et
+(ω′)/(ω′ − ω+)
ω′ − (−iαr)

dω′, (9.15)

qt
(k)(−)(ω) =

1
2πi

n∑
r=1

ik(k)
∞ U (k)

r

∫ +∞

−∞

gt
+(ω′)/(ω′ − ω+)

ω′ − (−ikr)
dω′. (9.16)

These quantities can be evaluated by closing on C(−). Taking account of the sense of
the integrations, we obtain

qt
(α)(−)(ω) =ik(α)

∞

n∑
r=1

U
(α)
r

ω + iαr
Et

+(−iαr), (9.17)

qt
(k)(−)(ω) =ik(k)

∞

n∑
r=1

U
(k)
r

ω + ikr
gt

+(−ikr), (9.18)

so that (
qt

(α)(−)(ω)
)∗

= − ik(α)
∞

n∑
r=1

U
(α)
r

ω − iαr

(
Et

+(−iαr)
)∗

, (9.19)

(
qt

(k)(−)(ω)
)∗

= − ik(k)
∞

n∑
r=1

U
(k)
r

ω − ikr

(
gt

+(−iαr)
)∗

, (9.20)
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where, by virtue of (3.6)1,

Et
+(−iαr) =

∫ +∞

0

Et(s)e−αrsds =
(
Et

+(−iαr)
)∗

, (9.21)

gt
+(−ikr) =

∫ +∞

0

gt(s)e−krsds =
(
gt

+(−ikr)
)∗

. (9.22)

Thus, using (9.17)–(9.22), we get

1
2π

∫ +∞

−∞
| qt

(α)(−)(ω) |2 dω

= K(α)
∞

n∑
r,l=1

U (α)
r U

(α)
l Et

+(−iαr) · Et
+(−iαl)

1
2πi

∫ +∞

−∞

i/(ω + iαr)
ω − iαl

dω

= K(α)
∞

n∑
r,l=1

U
(α)
r U

(α)
l

αr + αl
Et

+(−iαr) · Et
+(−iαl) (9.23)

and
1
2π

∫ +∞

−∞
| qt

(k)(−)(ω) |2 dω

= K(k)
∞

n∑
r,l=1

U (k)
r U

(k)
l gt

+(−ikr) · gt
+(−ikl)

1
2πi

∫ +∞

−∞

i/(ω + ikr)
ω − ikl

dω

= K(k)
∞

n∑
r,l=1

U
(k)
r U

(k)
l

kr + kl
gt

+(−ikr) · gt
+(−ikl), (9.24)

which allow us to obtain from (8.33), on account of (9.21)1 and (9.22)1,

ψm(t) =
1
2

{
c

Θ0
ϑ2(t) +

1
ε
[εE(t) + ϑ(t)a]2 + µH2(t)

}

+
1
2

∫ +∞

0

∫ +∞

0

2

⎡
⎣ n∑

r,l=1

K(α)
∞

U
(α)
r U

(α)
l

αr + αl
e−αrs1−αls2Et(s1) · Et(s2)

+
1

Θ0

n∑
r,l=1

K(k)
∞

U
(k)
r U

(k)
l

kr + kl
e−krs1−kls2gt(s1) · gt(s2)

⎤
⎦ ds1ds2. (9.25)

In the particular case when n = 1 the minimum free energy has a meaningful form. It
follows from (9.25), taking into account that U

(α)
1 = 1 and U

(k)
1 = 1, as we have already

observed, and that from (9.6) we have

K(k)
∞ = α1g1, K(k)

∞ = k1h1; (9.26)

we get

ψm(t) =
1
2

{
c

Θ0
ϑ2(t) +

1
ε
[εE(t) + ϑ(t)a]2 + µH2(t)

}

+
1
2

{
g1

[∫ +∞

0

Et(s)e−α1sds

]2

+
1

Θ0
h1

[∫ +∞

0

gt(s)e−k1sds

]2
}

. (9.27)
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