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Abstract. We consider a three-dimensional elastic body with a plane fault under
a slip-weakening friction. The fault has ε-periodically distributed holes, called (small-
scale) barriers. This problem arises in the modeling of the earthquake nucleation on a
large-scale fault.

In each ε-square of the ε-lattice on the fault plane, the friction contact is considered
outside an open set Tε (small-scale barrier) of size rε < ε, compactly inclosed in the
ε-square. The solution of each ε-problem is found as local minima for an energy with
both bulk and surface terms. The first eigenvalue of a symmetric and compact operator
Kε provides information about the stability of the solution.

Using Γ-convergence techniques, we study the asymptotic behavior as ε tends to 0 for
the friction contact problem. Depending on the values of c =: limε→0 rε/ε2 we obtain
different limit problems.

The asymptotic analysis for the associated spectral problem is performed using G-
convergence for the sequence of operators Kε. The limits of the eigenvalue sequences
and the associated eigenvectors are eigenvalues and respectively eigenvectors of a limit
operator.

From the physical point of view our result can be interpreted as follows:
i) if the barriers are too large (i.e. c = ∞), then the fault is locked (no slip),
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ii) if c > 0, then the fault behaves as a fault under a slip-dependent friction. The slip
weakening rate of the equivalent fault is smaller than the undisturbed fault. Since the
limit slip-weakening rate may be negative, a slip-hardening effect can also be expected.

iii) if the barriers are too small (i.e. c = 0), then the presence of the barriers does not
affect the friction law on the limit fault.

1. Introduction. The origin of friction has been found in the hard contacts between
two rough surfaces, and the the geometry of the contact, let us say the roughness, has
been shown to be a decisive parameter for frictional behavior [33]. Since friction is a
phenomenon that concerns both microscopic and macroscopic scales, the contact on a
geological fault is also modelled at the scale of the seismic waves (i.e. kilometric).

The friction properties are likely heterogeneous on the fault, particularly with the
presence of barriers. By the term barrier, we denote a patch on the fault plane where no
slip occurs. This concept cannot be applied for the evolution of the fault at the geological
time scale, but it has been shown to be useful and relevant in the description of fault
heterogeneity during an earthquake [30, 31].

The macroscopic behavior of a fault with small-scale heterogeneity of rupture resis-
tance (small-scale barriers) is difficult to relate to the local properties of the fault. A
formal measure of the friction on the fault itself would just be a local particular law,
that is, varying with the position along the fault. In this paper we focus on the fol-
lowing question: How can we obtain an effective (equivalent) friction law which, used
on a homogeneous fault, leads to a slip evolution similar to the one produced on the
heterogeneous fault?

Mathematically the problem is related to the homogenization of the Newmann Sieve
problem for the Laplacian studied by several authors [15, 14, 5, 12]. In the geophysical
context the problem was studied (see [11, 10, 32]) in two dimensions (anti-plane geometry)
to obtain the rescaling of the weakening rate through a spectral analysis.

The Newmann Sieve problem associated to the linear elasticity operator was studied
by Lobo and Perez [25, 8]. An extension to the non-linear case of the Neumann Sieve
has been studied by Ansini in [2]. Our friction problem is similar to the previous one,
with the important difference being that the tangential component of the displacement
has zero jump on the barriers, and the limit analysis is therefore developed on a larger
functional space.

Let us outline the contents of the paper.
In section 2 we consider the three-dimensional shearing of an elastic domain which

contains an internal boundary (the fault) located on a plane (the fault plane). The
contact on the fault is described through a slip-weakening friction (i.e. the decrease
of the friction force with slip). This friction law is used in the geophysical context of
earthquake modeling, and experimental studies [29] pointed out the good agreement of
this model with experimental data. The symmetry of the displacement field with respect
to the fault plane (see for instance [20] for the geophysical meaning) gives an important
simplification of the problem: the normal over-stress on the fault vanishes. The fact
that the normal stress has a weak variation of during the dynamic rupture was already
observed in direct computations [4, 26] as well as in the inversion of seismological data
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[13]. An important consequence of the above assumption is the fact that we can associate
to the physical problem a minimization problem for the energy function. In modelling
seismic phenomena, where at least two equilibria (before and after an earthquake) are
involved, the energy function cannot be supposed convex.

In section 3 we obtain (as in [24] under slightly different assumptions) sufficient condi-
tions of stability through the first eigenvalue of the tangent problem. Since this eigenvalue
problem has an important significance in the description of the physical properties of the
fault, we shall study it in the next section.

In section 4 we give the main results of the paper. First we set the perturbed (or
heterogeneous) problem: a fault which has ε-periodically distributed barriers of radius
rε. For 0 < c =: limε→0 rε/ε2 < ∞ we prove that the sequence of energy functionals Γ-
converges to a limit energy functional. For the proof of liminf and the limsup inequalities
we adapt an idea from [2].

The limit functional is associated to another slip-weakening friction problem called the
equivalent friction law. In the last part of this section we prove that the eigenvalues and
eigenfunctions of the perturbed tangent problem converge to the eigenvalues and eigen-
functions of the equivalent (limit) tangent problem. For this we adapt G-convergence
techniques, developed for the Newmann-Sieve problem in [27].

The slip-weakening rate of the equivalent (or limit) fault is smaller than the undis-
turbed fault. Since the limit slip-weakening rate may be negative, a slip-hardening effect
can also be expected. Moreover, we have to point out that even if the small-scale friction
law is isotropic, the equivalent one is not. This surprising fact is natural if we have in
mind that the periodic distribution of the barriers is not isotropic, hence the limit prob-
lem will inherit this anisotropic geometrical perturbation. We have to mention here that
this property was also obtained [8, 25] for an elastic body with a surface having small
no-slip regions. We make the observation that the proof of the convergence is based on
the explicit computation of the solution for the cell problem, which in our case cannot
be easily computed because of the general mixed-type boundary conditions on the parts
of the boundary. This is the reason we chose the Γ-convergence approach in our paper.

In the last section we give the physical interpretation of the previous theoretical results
in the context of a barrier erosion process during the earthquake nucleation (or initiation)
phase, which precedes the dynamic rupture. We point out the important role played by
the process of erosion of the barriers in the effective properties of the homogenized fault.
We deduce from our analysis that the nucleation phase can be divided into three time
periods. First we are dealing with a locking stage with no “macroscopic” slip. The
second time period is characterized by a smaller, and even negative, weakening rate and
by the loss of the isotropy of the friction law. The third time period corresponds to
the last stage of (effective) initiation when the friction properties are the same with the
undisturbed fault.

2. Statement of the physical problem. We consider the three-dimensional shear-
ing of an elastic domain D ⊂ R

3. If we denote by u : D −→ R
3 the displacement field,
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Fig. 1. The geometry of the 3-D problem

then the elastic constitutive equation and the equilibrium equation read

σ(u) = Aε(u), div(Aε(u)) = 0 in D, (2.1)

where A is the fourth-order elastic tensor, σ(u) is the over stress tensor and ε(u) =
1
2
(∇u+∇T u) is the small strain tensor. A is a symmetric and positively defined fourth-

order tensor, i.e.

Aijkl ∈ L∞(D), A(x)ε · σ = A(x)σ · ε, a.e. x ∈ D, (2.2)

such that A(x)ε · ε ≥ M1|ε|2 and |A(x)ε| ≤ M2|ε| a.e x ∈ D with M1, M2 > 0 , (2.3)

for all i, j, k, l = 1, 3 and for all σ, ε ∈ R3×3
S .

The smooth boundary Σ = ∂D is divided into two disjoint parts, Σ = Σd ∪ Γf :
Σd = ∂D̄ the exterior boundary and Γf the interior one (i.e. it is a subset of the interior
of D̄). For the sake of simplicity on the exterior boundary we shall suppose vanishing
displacement conditions, i.e. u = 0 on Σd. The interior boundary is located in the plane
Π = {x3 = 0}, and will be called the fault or fault region. We assume that the pre-stress
σ∞ ∈ C0(D̄) is such that the fault does not open. Moreover the fault Γf is under a
slip-dependent friction law:

[σi3(u)] = 0, i = 1, 3, [u3] = 0, on Γf , (2.4)

στ (u) + τ∞ = −µ(|[uτ ]|)|σ33(u) − S| [uτ ]
|[uτ ]| if [uτ ] 	= 0 on Γf , (2.5)

|στ (u) + τ∞| ≤ µ(0)|σ33(u) − S| if [uτ ] = 0 on Γf , (2.6)

where [ ] denotes half of the jump across Γf (i.e. [w] = (w+ − w−)/2), στ (u) =
−(σ13(u), σ23(u), 0) is the tangential over-stress, σ33(u) is the normal over-stress, uτ =
(u1, u2, 0) is the tangential displacement, and τ∞ =: −(σ∞

13 , σ
∞
23 , 0) and −S =: σ∞

33 are the
tangential and the normal pre-stress acting on Γf . From the above assumptions on σ∞

we have S, τ∞
i ∈ C0(Γf ). Equations (2.5)–(2.6) assert that the tangential (friction) stress

is bounded by the normal stress multiplied by the value of the friction coefficient µ(0). If
this limit is not attained, sliding does not occur. Otherwise the friction stress is opposed
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to the slip [uτ ], and its absolute value depends on the slip modulus through µ(|[uτ ]|).
Concerning the regularity of µ : R+ → R+ we suppose that the friction coefficient is a
Lipschitz function with respect to the slip, i.e. there exists Lµ ≥ 0 such that

|µ(s1) − µ(s2)| ≤ Lµ|s1 − s2|, (2.7)

and we denote by H its antiderivative

H(u) :=
∫ u

0

µ(s) ds.

We suppose that there exists γ ∈ L∞(R+) and a ≥ 0 such that

H(r) − H(s) ≥ µ(s)(r − s) − γ(s)(r − s)2/2 − a|r − s|3, ∀r, s ≥ 0. (2.8)

Let us remark that if µ is two times differentiable with a bounded second derivative, then
(2.8) holds with γ(s) = −µ′(s). If µ is continuous but only piecewise differentiable, then
(2.8) holds with γ(s) = −min{µ′(s+), µ′(s−)}.

A specific friction law with a linear piecewise slip weakening, which is a reasonable
approximation of the experimental observations (see [29]), can be written as follows:

µ(s) =

⎧⎨
⎩

µd − µs

Dc
s + µs if s ≤ Dc,

µd if s ≥ Dc,
(2.9)

where µs > µd are the static and, respectively, dynamic friction coefficients, and Dc is
the critical slip. In this case γ(x) = (µs − µd)/Dc.

In the following we shall suppose that D is symmetric with respect to the plane Π.
As in [20] the following symmetries of the displacement field with respect to the plane Π
will be considered:

u1(x,−x3) = −u1(x, x3), u2(x,−x3) = −u2(x, x3), u3(x,−x3) = u3(x, x3), (2.10)

where x = (x1, x2) and (x, 0) belongs to Σ0, the intersection of D̄ with the plane Π. In
the case of an isotropic elastic material, i.e.

Aijkl = λδijδkl + Gδikδjl, (2.11)

with λ, G > 0 the Lamé coefficients, we deduce the following symmetries of the stress
field σ33:

σ33(x,−x3) = −σ33(x, x3).

The condition of continuity of the stress vector (2.4) on the fault plane Γf gives the
fact that the normal over-stress σ33 does not present any variation during the slip

σ33(x, 0+) = σ33(x, 0−) = 0, for any (x, 0) ∈ Σ0. (2.12)

Since the displacement field is continuous outside the faults, from the symmetry condi-
tions (2.10) we get that the tangential displacement is vanishing outside Γf :

u1(x, 0+) = u1(x, 0−) = u2(x, 0+) = u2(x, 0−) = 0, for all (x, 0) ∈ Σ0 \ Γf , (2.13)

and the jump on Γf is given by

[ui(x, 0)] = ui(x, 0+) = −ui(x, 0−), i = 1, 2, for all (x, 0) ∈ Γf . (2.14)
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Let us denote by Ω := D ∩ {x3 > 0} the upper half of the domain D and by Γd :=
Σd ∩ {x3 > 0}, Γt := Σ0 \ Γf , which implies that ∂Ω = Γd ∪ Γt ∪ Γf . From the above
symmetry properties we can restrict ourselves to the upper half Ω of D. We state the
problem (P): find the displacement field u : Ω → R

3 solution of

σ(u) = Aε(u), div(Aε(u)) = 0 in Ω, (2.15)

u = 0 on Γd, σ33(u) = 0, uτ = 0 on Γt, (2.16)

σ33(u) = 0,

⎧⎨
⎩

στ (u) = −Sµ(|uτ |)
uτ

|uτ |
− τ∞ if uτ 	= 0,

|στ (u) + τ∞| ≤ Sµ(0) if uτ =,
on Γf . (2.17)

3. Existence and stability. Let us denote by V the closed subspace of [H1(Ω)]3

given by
V := {v ∈ [H1(Ω)]3/v = 0 on Γd, vτ = 0 on Γt}. (3.1)

From Korn’s inequality and Poincare’s inequality one can easily deduce that the inner
product

〈u, v〉V :=
∫

Ω

Aε(u) · ε(v), ∀u, v ∈ V, (3.2)

generates a norm, denoted by ‖ ‖V , which is equivalent with the natural norm on [H1(Ω)]3

and
M1 ‖ Du ‖2

L2≤‖ u ‖2
V ≤ M2 ‖ Du ‖2

L2 , ∀u ∈ V.

We have the following variational formulation of the physical problem (2.15)–(2.17) (see
also [24]):

u ∈ V, 〈u, u − v〉V + j(u, u) − j(u, v) ≤ f(u − v), ∀v ∈ V, (3.3)

where j : V × V −→ R+ and f : V −→ R are given by

j(u, v) =
∫

Σ0

Sµ(|uτ |)|vτ |, f(v) = −
∫

Σ0

τ∞ · vτ ∀u, v ∈ V. (3.4)

Let us now introduce the total energy functional W : V −→ R given by

W(v) =
1
2
‖v‖2

V +
∫

Σ0

SH(|vτ |) − f(v), ∀v ∈ V, (3.5)

which characterizes the “physically acceptable” solutions. Indeed we have the following
result.

Theorem 3.1. If u ∈ V is a local minimum for W , then u is a solution of (3.3). Moreover
there exists a global minimum for W , i.e. there exists u ∈ V such that

W(u) ≤ W(v), ∀v ∈ V. (3.6)

Proof. Let u be a local minimum, i.e. there exists δ such that W(u) ≤ W(w) for all
w ∈ V with ‖w − u‖V ≤ δ. For all v ∈ V we put w = u + t(v − u), with t > 0 small
enough, in the last inequality and we pass to the limit with t → 0 to deduce (3.3).

In order to prove that W has a global minimum we remark that the trace map is com-
pact from V to L2(Γf ). Hence v →

∫
Γf

SH(|vτ |)−f(v) is weakly continuous on V , which
implies that W is weakly lower semicontinuous. Bearing in mind that lim inf W(v) = ∞
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for ‖v‖V → ∞, from a Weierstrass-type theorem we deduce that W has at least one
global minimum. �

Let us now consider the following eigenvalue problem, which will be useful to charac-
terize the stability of the local minima, (E): find u : Ω −→ R

3, u 	= 0 and λ ∈ R such
that

σ(u) = Aε(u), div σ(u) = 0, in Ω, (3.7)

u = 0 on Γd, σ33(u) = 0, uτ = 0 on Γt, (3.8)

σ33(u) = 0, στ (u) = λuτ on Γf , (3.9)

which has the following variational formulation:

u ∈ V, 〈u, v〉V = λ

∫
Γf

uτ · vτ , ∀v ∈ V. (3.10)

The same technique as in [24] can be used to get the structure of the spectrum. For
the convenience of the reader we shall give the proof.

Theorem 3.2. The eigenvalues and eigenfunctions of (3.10) form a sequence (λn, un)n≥1

with 0 < λ1 ≤ λ2 ≤ ... and λn −→ +∞. Moreover we have

||u1||2V∫
Γf

|u1τ |2 dx
= λ1 = min

v∈V

||v||2V∫
Γf

|vτ |2 dx
. (3.11)

Proof. Let L = {f = (f1, f2, 0)/f1, f2 ∈ L2(Σ0), f1 = f2 = 0 on Γt} be a closed
subspace of [L2(Σ0)]3. Denote by γτ : V → L the compact operator which associates to
all v ∈ V the tangential component of its trace on Γf , i.e.

γτ (v) .= vτ = v − (v · n)n along Γf

for any v ∈ V .
Let V1 = ker γτ . Using the definition of V we can see that

V1 = {v ∈ V/vτ = 0 on Σ0}.

Now consider
W = V ⊥

1 = {v ∈ V/〈v, w〉V = 0 ∀ w ∈ V1}.
Let PW : V → W be the orthogonal projection onto W and define T : L → W to be
the linear and bounded operator which associates to each f ∈ L the unique solution
T (f) ∈ W of the following linear equation:

〈T (f), v〉V =
∫

Γf

f · vτ dx, ∀v ∈ V. (3.12)

We can now define the linear bounded operator K : W → W by Kv
.= T (vτ ). From

(3.12) we get

〈Ku, v〉V =
∫

Γf

uτvτ (3.13)

for all u, v ∈ W , which implies that K is symmetric compact and strictly positive. Hence
K has a positive and decreasing sequence of eigenvalues (βn)n≥1 with βn → 0 and an
orthonormal sequence of corresponding eigenvectors, (un)n≥1.
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It is easy to observe that λn
.=

1
βn

will be the eigenvalues of the problem (E) and un

will be the orthonormal eigenvectors corresponding to it. Then Rayleigh’s principle for
K gives us the statement of the theorem. �

The following theorem makes use of the first eigenvalue of the above spectral problem
to give sufficient conditions for a solution of (3.3) to be stable.

Theorem 3.3. Let u ∈ V be a solution of (3.3) and let λ1 be the first eigenvalue of E . If

λ1 > cu =: ess sup
x∈Γf

S(x)γ(|uτ (x)|), (3.14)

where γ has been defined in (2.8) and −S is the normal stress on Γf , then u is an isolated
local minimum for W , i.e. there exists δ > 0 such that

W(u) < W(v) ∀ v ∈ V, v 	= u, ‖v − u‖V < δ. (3.15)

Proof. Let us suppose that u is not a local minimum for W , i.e. there exists (vm)m ⊂
V , vm → u and W(vm) ≤ W(u). If we put v = vm in (3.3) from the last inequality and
from (2.8), we get

‖u − vm‖2
V −

∫
Γf

Sγ(|uτ |)(|uτ | − |vmτ |)2 ≤ 2a

∫
Γf

S | |vmτ | − |uτ | |3 .

Since the trace map is continuous from V to L3(Γf ) the last inequality becomes

‖u − vm‖2
V − cu

∫
Γf

(|uτ | − |vmτ |)2 ≤ C‖u − vm‖3
V , (3.16)

where C is a generic constant. If cu ≤ 0, then we obtain 1 ≤ C‖u−vm‖V , a contradiction.
If cu > 0, then from (3.11) and (3.16) we get λ1−cu

λ1
‖u − vm‖2

V ≤ C‖u − vm‖3
V which

implies λ1−cu ≤ Cλ1‖ū−vm‖V . Since vm → u we obtain λ1−cu ≤ 0, which contradicts
(3.14). �

4. The perturbed problem. Denote it by R
3
+ = {x ∈ R

3; x3 > 0} and R
3
− =

{x ∈ R
3; x3 < 0}.

Throughout the paper we will use M as an arbitrary constant independent of any
parameter. Also by B2

1(0) we denote the two-dimensional ball centered in 0 and with
radius 1.

Let Γ0
f ⊂ Σ0, with dist(Γ0

f , Σ0) > 0, be the unperturbed (or equivalent) fault and
let ε > 0 be a small parameter. Let T be a fixed open set compactly inclosed in the
2-dimensional unit square and consider the lattice ε

2Z
2 on the plane Π. Let

Qε
i,2 =

{
xε

i +
(
− ε

2
,
ε

2

)2
}
× {0} (4.1)

denote the periodic cell on Π, centered at x = (xε
i , 0), where xε

i = iε for i ∈ Z
2.

The perturbed fault Γε
f ⊂ Σ0 has ε-periodically distributed holes, called (small-scale)

barriers. More precisely in each ε-square of the ε-lattice on the fault plane Π, the friction
contact is considered outside an open set Tε (small-scale barrier) of size rε < ε (see Figure
2) with Tε = rεT + k

2 ε, k ∈ Z2. For the simplicity of the exposition we will assume that
Tε is a 2-dimensional ball, denoted by B2(xε

i , rε) centered in xε
i , i ∈ Z2, and of radius rε.
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We shall denote by Bε the set of all the microscopic barriers and let Γε
f := Γ0

f \ B̄ε be
the perturbed fault. As before we define Γε

t := Σ0 \ Γε
f .

Now define the spaces

X = {u ∈ [H1(Ω)]3/u = 0 on Γd}, V = {u ∈ X / uτ = 0 on Σ \ Γ0
f}

and let W = V ⊥
1 be the orthogonal complement of V1 in V .

We define the perturbed problem

find uε : Ω → R
3, the solution of (2.15)–(2.17) with Γf = Γε

f and Γt = Γε
t. ((Pε))

We consider

Vε := {v ∈ [H1(Ω)]3/v = 0 on Γd, vτ = 0 on Γε
t} (4.2)

to formulate (Pε) in terms of the minimum of energy, Wε : Vε → R, i.e.

uε ∈ Vε, Wε(uε) ≤ Wε(v), ∀v ∈ Vε. (4.3)

We define the perturbed eigenvalue problem, associated to the above perturbed minimum
problem, as

find uε : Ω → R
3, and λε, the solution of (3.7)–(3.9) with Γf = Γε

f and Γt = Γε
t,

((Eε))
which has the variational formulation

uε ∈ Vε, 〈uε, v〉V = λε

∫
Γ0

f

uε
τ · vτ , ∀v ∈ Vε. (4.4)

Let Lε = {f = (f1, f2, 0)/f1, f2 ∈ L2(Σ0), f1 = f2 = 0 on Γε
t} and let the tangential

trace on Γε
f be defined as before. Thus if we consider

V ε
1 = {v ∈ Vε ; vτ = 0 on Γε

f}

we can see that

V ε
1 = V1 = {v ∈ V ; vτ = 0 on Σ0},

and V1 is a subspace of Vε. Let us define Wε
.= V ⊥

1 to be the orthogonal complement of
V1 in Vε, and PWε

: Vε → Wε to be the orthogonal projection onto Wε.
Then as is the proof of Theorem 3.2 we can write (4.4) as an eigenvalue problem for

the operator Kε : Wε → Wε, defined by

〈Kεu, v〉 =
∫

Γ0
f

uτvτ .

Thus the problem (4.4) will have an orthonormal sequence of eigenvectors {uε
n}n≥1

and a sequence of corresponding eigenvalues {λε
n}n≥1, such that 0 < λε

1 ≤ λε
2 ≤ ...,

λε
n −→ +∞, and

||uε
1||2V∫

Γε
f
|uε

1τ |2 dx
= λε

1 = min
v∈Wε

||v||2V∫
Γε

f
|vτ |2 dx

. (4.5)
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Fig. 2. The splitting of Σ0 into Γε
f (the friction surface) in grey and

Γε
t (the barrier surface) in white for the perturbed problem.

4.1. Asymptotic analysis of the problem (Pε). The main theorem concerning the ho-
mogenization of problem (Pε) is given next:

Theorem 4.1. The sequence of functionals Wε : Vε → R

Wε(v) =
1
2
‖ v ‖V +

∫
Γ0

f

SH(|vτ |) − f(v)

Γ-converge with respect to the weak topology of V to, W : V → R with

W(v) =
1
2
‖ v ‖2

V +
∫

Γ0
f

SH(|vτ |) − f(v) +
1
2
c

3∑
i,j=1

∫
Γ0

f

Cijvivj ,

where for k, l = 1, 3,

Ckl =

⎧⎨
⎩

0 if (k − 3)(l − 3) = 0,∫
R

3
+

Aε(wk)ε(wl)dx otherwise,

0 < c = lim
ε→0

rε

ε2
< ∞ and wk, for k = 1, 2, is the solution of the following local problem:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂
∂yj

σij(wk) = 0 on R
3
+ for i = 1, 2, 3,

σ33(wk) = 0, wk
τ = ek on B2

1(0),
σi3(wk) = 0 on R

2\B2
1(0),

wk(y) → 0 where y3 ≥ 0 and |y| → ∞.

Before beginning the proof we make the following useful remark.
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Remark 4.2. The result above can be rewritten in the following way: Γ−limε→0 Wε =
W , where W : V → R is defined as

W(v) =
1
2
‖ v ‖2

V +
∫

Γ0
f

SH(|vτ |) − f(v) +
1
2
c

∫
Γ0

f

vτCvτ

with c and the matrix C defined as above.
Proof. We mention that the asymptotic analysis of this problem uses similar tech-

niques as those developed in [2] and [3]. For the convenience of the reader we present
the proof of our results, referring to the above-mentioned papers when needed. The next
lemma can be easily adapted from [2] using Korn’s inequality.

Lemma 4.3. Let (uj) be bounded in V and let N, k ∈ N. Let εj be a decreasing sequence
of positive numbers converging to 0 and let

Z
j
f,1 = {i ∈ Z

2/B2(xεj

i , rεj
) ∩ Γ0

f 	= ∅} and Z
j
f = {i ∈ Z

2/Q
εj

i,2 ⊂ Γ0
f}.

Let (ρεj
) be a sequence of positive numbers, such that Nρεj

< 1
2εj . For all i ∈ Z

j
f there

exists ki ∈ {0, . . . , k − 1} such that, having set

Cj
i = {x ∈ R

3
+ / 2−ki−1Nρεj

< |x − (xε
i , 0)| < 2−kiNρεj

},

ui
j = 1

|Cj
i |

∫
Cj

i
ujdx (the mean value of uj on Cj

i ) and ρj
i = 3

42−kiNρεj
(the middle radius

of Cj
i ), there exists a sequence (wj) such that

wj = uj on Ω \
⋃

i∈Z
j
f

Cj
i

wj(x) = ui
j if |x − (xε

i , 0)| = ρi
j and x3 > 0, for i ∈ Z

j
f , and

∑
i∈Z

j
f

∫
Cj

i

(Aε(wj)ε(wj) + Aε(uj)ε(uj)dx) ≤ M

k
,

where M is independent of j.
Moreover, if ρ3

εj
= o(ε2j ), and the sequence (|Duj |2) is equi-integrable in Ω, then we

can choose ki = 0 for all i ∈ Z
j
f and

lim
j→+∞

∑
i∈Z

j
f

∫
Cj

i

(Aε(wj)ε(wj) + Aε(uj)ε(uj)) = 0.

As in [2] we can make the following remark.
Remark 4.4. If uj → u strongly in L2(Ω) and sup

j
Wεj

(uj) < +∞, then uj ⇀ u

weakly in V . Moreover if (wj) is defined as in the above lemma, then wj → u strongly
in L2(Ω) and since (wj) is bounded in V , we also get that (wj) converges weakly to u in
V . If (|Duj |2) is equi-integrable, then (|Dwj |2) is also equi-integrable.

For any R ∈ R+ we will denote by BR(x) ⊂ R
3 the ball centered in x ∈ R

3, and radius
R, and B+

R(x) = BR(x) ∩ R
3
+.
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Let

φN (z) = inf

{∫
B+

N (0)

Aε(v)ε(v)/ v ∈ H1(B+
N (0), R3),

vτ = 0 on B2
1(0), v = z on ∂B+

N (0) \ Σ0

}
. (4.6)

We will now make another useful remark:
Remark 4.5. If f is a convex function and 0 ≤ f(A) ≤ M(1 + |A|2), then f is locally

Lipschitz, i.e.

|f(A) − f(B)| ≤ M(1 + |A| + |B|)|A − B|, for all A, B ∈ M3×3. (4.7)

In addition if f is also homogeneous of order 2, then

|f(A) − f(B)| ≤ M(|A| + |B|)|A − B| for all A, B ∈ M3×3. (4.8)

Proof. Indeed from (4.7) if we consider a sequence εj , such that εj → 0, we have

|f(A) − f(B)| = ε2j

∣∣∣∣f
(

1
εj

A

)
− f

(
1
εj

B

)∣∣∣∣ ≤ ε2jM

(
1 +

1
εj
|A| + 1

εj
|B|

)
1
εj
|A − B|.

Thus

|f(A) − f(B)| ≤ Mεj |A − B| + M(|A| + |B|)|A − B|

for all A, B ∈ M3×3 and for any j ∈ N. Then passing to the limit where j → ∞, we
have (4.8). �

Now we have

Lemma 4.6. For all N ∈ N with N > 2, φN defined above verifies

| φN (z) − φN (w) |≤ M | w − z | (| z | + | w |) for all z, w ∈ R
3. (4.9)

Proof. Fix 1 > ν > 0. Using the definition of φN (z) we find w̄ ∈ H1(B+
N (0); R3), with

w̄ = 0 on ∂B+
N (0) \ Σ0 and w̄τ = −zτ on B2

1(0) such that∫
B+

N (0)

Aε(w̄)ε(w̄) ≤ φN (z) + ν. (4.10)

Let ϕ ∈ C∞
0 (B2(0)) be a cutoff function such that φ = 1 on B1(0) and | Dϕ |≤ M .

For w ∈ R
3 define ψ = w̄ + (1 − ϕ)(w − z) on B+

N (0). Then we can see that{
ψτ = −zτ on B2

1(0),
ψ = w − z on ∂B+

N (0) \ Σ0,

so ψ is a test function for φN (w). Thus using (2.3), (4.8) and (4.6) we have

φN (w) − φN (z) ≤
∫

B+
N (0)

Aε(ψ)ε(ψ)dx −
∫

B+
N (0)

Aε(w̄)ε(w̄) + ν

≤ M

∫
B+

N (0)

(| ε(ψ) | + | ε(w̄) |) · (| ε(ψ) − ε(w̄) |)dx + ν. (4.11)
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Next from the definition of the test function ψ in (4.11) we obtain

φN (w) − φN (z) ≤ M

∫
B+

N (0)

(2 | ε(w̄) | + | w − z | | Dϕ |) | w − z | | Dϕ | +ν

≤ M | w − z |
(∫

B+
N (0)

| ε(w̄) |2 dx

)1/2

·
(∫

B+
N (0)

| Dϕ |2 dx

)1/2

+ M | w − z |2
∫

B+
N (0)

| Dϕ |2 dx + ν. (4.12)

Since N > 2 we have that
∫

B+
N (0)

| Dϕ | dx and
∫

B+
N (0)

| Dϕ |2 dx are constants
independent of N , and by condition (2.3) and the definition of φN we get

M

∫
B+

N (0)

| ε(w̄) |2 dx ≤
∫

B+
N (0)

Aε(w̄)ε(w̄) ≤ φN (z) + ν (4.13)

and from Korn’s inequality and monotonicity of φN

φN (z) ≤ φ2(z) ≤ M | z |2 inf

{∫
B+

2 (0)

| Dv |2 dx v ∈ H1(B+
2 (0); R3) ,

vτ = 0 on B2
1(0), v =

z

| z | on ∂B+
2 (0) \ Σ0

}
. (4.14)

But {
v / v ∈ H1(B+

2 (0); R3), vτ = 0 on B2
1(0), v =

z

| z | on ∂B+
2 (0) \ Σ0

}
contains{

v / v ∈ H1(B2(0) \ C1,2; R3), v =
z

| z | on ∂B+
2 (0) \ Σ0, v = 0 on B2(0) ∩ R

3
−

}
as a subset, where

C1,2 =
{
(x′, 0) ∈ R

3 : 1 ≤ |x′| < 2
}

.

From (4.14) and the above inclusion we obtain

φN (z) ≤ φ2(z) ≤ M | z |2 inf

{∫
B+

2 (0)

| Dv |2 dx /v ∈ H1(B2(0) \ C1,2, R
3),

v =
z

| z | on ∂B+
2 (0) \ Σ0, v = 0 on B2(0) ∩ R

3
−

}
.

Now following the ideas in [2] (see (4.9)) we obtain

φN (z) ≤ M
| z |2

2
Cap (B2

1(0)),

where Cap(B2
1(0)) is the usual capacity, i.e.

Cap(B2
1(0)) = inf

{∫
R3

| Dφ |2 dx, φ ∈ H1(R3), φ = 1 on B2
1(0)

}
.

By (4.13) we get ∫
B+

N (0)

| ε(w̄) |2 dx ≤ M(
| z |2

2
+ ν). (4.15)
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Now, from the results obtained so far and from (4.15) and (4.12), we have

φN (w) − φN (z) ≤ M | w − z |
(
| z |2

2
+ ν

)1/2

+ M | w − z |2 +ν

≤ M | w − z | ((ν + 1) | z | + | w | +
√

ν) + ν.

Now by the arbitrariness of ν we get that

φN (w)−φN (z) ≤ M | w−z | (| z | + | w |). �

Lemma 4.7. φN → φ uniformly, where φ(z) =
∑3

k,l=1 Cklzkzl, and Ckl is given by (4.16)
and the local problem (LP ).

Proof. From Ascoli-Arzela’s Theorem we have that φN → φ uniformly on compact
sets of R

3.
For any N ∈ N the problem (4.9) has a unique solution w̃ + z for fixed z ∈ R

3. The
Euler-Lagrange equation for w̃ is

⎧⎪⎪⎨
⎪⎪⎩

σ(w̃ = Aε(w̃),−divσ(w̃) = 0 on B+
N (0),

σ33(w̃) = 0, w̃τ = −zτ on B2
1(0),

σij(w̃)nj = 0 on C1,N ,

w̃ = 0 on ∂B+
N (0)\Σ0.

So φN =
∫

B+
N (0)

Aε(w̃)ε(w̃)dx =
3∑

k,l=1

CN
klzkzl, where

CN
kl =

⎧⎨
⎩

0 (k − 3)(l − 3) = 0,∫
B+

N (0)

Aε(wk
N )ε(wl

N ) otherwise, for k, l = 1, 3,

where wk
N for k = 1, 2 is the solution of the local problem⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂
∂yj

σij(wk
N ) = 0 on B+

N (0), for i = 1, 3,

σ33(wk
N ) = 0, wk

Nτ = ek on B2
1(0),

σi3(wk
N ) = 0 on C1,N ,

wk
N = 0 on ∂B+

N (0) \ Σ,

where {ek}k=1,3 is the canonical base of R
3. Therefore φN → φ uniformly on compacts

subsets of R
3 where

φ(z) =
3∑

k,l=1

Cklzkzl and

Ckl =

⎧⎨
⎩

0 (k − 3)(l − 3) = 0,∫
R

3
+

Aε(wk)ε(wl)dx otherwise, for k, l = 1, 3, (4.16)
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and wk for k = 1, 2 is the solution of the local problem

(LP )

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂
∂yj

σij(wk) = 0 on R
3
+ for i = 1, 3,

σ33(wk) = 0, wk
τ = ek on B2

1(0),
σi3(wk) = 0 on R

2 − B2
1(0),

wk(y) → 0 when | y |→ ∞.

�
Remark 4.8. From Lemma 4.7 we can see that

φN (z) = φN (zτ ) and φ(z) = φ(zτ ).

Now using Remark 4.8, by similar techniques as in [2, Prop. 4.4] we have

Lemma 4.9. Let uj → u weakly in V and bounded in L∞(Ω; R3). Consider ψj to be
defined as

ψj =
∑
i∈Z

j
f

φN (ui
jτ )χ

Q
εj
i,2

,

where

Q
εj

i,2 = (xεj

i , 0) +
(
−εj

2
,
εj

2

)2

,

and ui
j and Z

j
f are defined in Lemma 4.3.

Then we have

lim
j→∞

∫
Γ0

f

| ψj − φN (uτ ) | ds = 0.

Proof. First we will show that

|Γ0
f \

⋃
i∈Z

j
f

Q
εj

i,2|
j→∞−→ 0.

Indeed, let

w
′′

j =
⋃

i∈Z
2\Z

j
f

Q
εj
i,2∩Γ0

f �=∅

Q
εj

i,2.

Then it can easily be seen that⎛
⎜⎝Γ0

f \
⋃

i∈Z
j
f

Q
εj

i,2

⎞
⎟⎠ ⊂ w

′′

j

and therefore we obtain, when j → ∞, that

lim
j→∞

|Γ0
f \

⋃
i∈Z

j
f

Q
εj

i,2| ≤ lim
j→∞

H2(w
′′

j ) ≤ H2(∂Γ0
f ) = 0. (4.17)
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Using Remark 4.8 we get

lim
j→∞

∫
Γ0

f

| ψj − φN (uτ ) | ds = lim
j→∞

∫
Γ0

f

∣∣∣∣ ∑
i∈Z

j
f

φN (ui
j)χQ

εj
i,2

− φN (u)
∣∣∣∣

≤ lim
j→∞

⎛
⎜⎝∑

i∈Z
j
f

∫
Q

εj
i,2

| φN (ui
j) − φN (u) | ds

⎞
⎟⎠ + lim

j→∞

∫
Γ0

f\
⋃

i∈Z
j
f

Q
εj
i,2

|φN (u)|.

Now from Lemma 4.6 and (4.17), the uniform boundedness of φN , Lemma 4.6 and the
boundedness of (uj)j in L∞(Ω, R3), we get

lim
j→∞

∫
Γ0

f

| ψj − φN (uτ ) | ds ≤ M lim
j→∞

∑
i∈Z

j
f

∫
Q

εj
i,2

| ui
j − u | ds.

By similar arguments as in [2, Prop. 4.4], we can prove that

lim
j→∞

∑
i∈Z

j
f

∫
Q

εj
i,2

| ui
j − u | ds = 0,

and this proves the statement of the lemma. �
Using Remark 4.8, Lemma 4.7, Lemma 4.9, by similar arguments as in [2, Sec. 5], we

obtain the liminf inequality

Lemma 4.10. Consider ρεj

.= rεj
defined as in Lemma 4.3 such that

0 < lim
j→∞

rεj

ε2j
= c < +∞. (4.18)

Let k, N ∈ M fixed, and N > 2k. Then for any sequence (uj)j , such that uj ∈ Vεj
and

uj ⇀ u weakly in V , we have

lim inf
j→∞

‖ uj ‖2
V ≥‖ u ‖2

V +c

3∑
k,l=1

∫
Γ0

f

Cklukulds,

where the matrix (Ckl)k,l=1,3 is defined in Theorem 4.1.

Proof. Remark 4.8 is very important. Because of the property mentioned in Remark
4.8, we can follow the proof in [2, Sec. 5], although in our case the space Vε is not the
same as in [2] and therefore the functions φN and φ respectively are not the same as in
[2].

Let u ∈ V and consider {uj}j such that uj ∈ Vεj
and uj ⇀ u. Let wj and ρi

j be as in
Lemma 4.3 and

Ej =
⋃

i∈Z
j
f

Bj
i with Bj

i = Bρi
j
(xεj

i , 0) ∩ {x ∈ R
3 | x3 > 0} for all i ∈ Z

j
f .

We have

lim inf
j→∞

‖ uj ‖2
V ≥ lim inf

j→∞

∫
Ω\Ej

Aε(uj)ε(uj)dx + lim inf
j→∞

∫
Ej

Aε(uj)ε(uj)dx. (4.19)
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Next we can see that
M

k
+ lim inf

j→∞

∫
Ω\Ej

Aε(uj)ε(uj)dx ≥‖ u ‖2
V . (4.20)

The proof of (4.20) is identical to the proof in [2, Prop. 5.1] and therefore we will not
present it here.

Now similarly as in [2] let us define, for fixed j ∈ N and i ∈ Z
j
f ,

ϕ(x) =

{
wj((x

εj

i , 0) + rεj
x) if x ∈ B+

3
42−ki N

(0),

ui
j if x ∈ B+

N (0)\B+
3
42−ki N

(0),
(4.21)

where ki ∈ 1, k − 1 and ui
j are as in Lemma 4.3.

As in [2] we have, by Lemma 4.3,

M

k
+ lim inf

j→∞

∫
Ej

Aε(uj)ε(uj)dx ≥ lim inf
j→∞

∫
Ej

Aε(wj)ε(wj)dx (4.22)

and using ϕ, defined in (4.21), as a test function in the definition of φN (see [2, 5.31]) we
get

lim inf
j→∞

∫
Ej

Aε(wj)ε(wj)dx ≥ lim inf
j→∞

rεj

ε2j

∑
i∈Z

j
f

ε2jφN (ui
j).

By Remark 4.8 and the hypothesis (4.18) we obtain

lim inf
j→∞

∫
Ej

Aε(wj)ε(wj)dx ≥ c · lim inf
j→∞

∑
i∈Z

j
f

ε2jφN (ui
jτ ). (4.23)

Note now that for any j ∈ N we have∑
i∈Z

j
f

ε2jφN (ui
jτ ) =

∫
Γ0

f

ψjds, (4.24)

where ψj has been defined in Lemma 4.9. Combining (4.22), (4.23), (4.24) we obtain

M

k
+ lim inf

j→∞

∫
Ej

Aε(uj)ε(uj)dx ≥ c lim inf
j→∞

∫
Γ0

f

ψjds (4.25)

and from (4.20) and (4.25) we obtain

M

k
+ lim inf

j→∞

∫
Ω

Aε(uj)ε(uj)dx ≥‖ u ‖2
V +c lim inf

j→∞

∫
Γ0

f

ψjds. (4.26)

From Lemma 4.7, Lemma 4.9, (4.26) and the arbitrariness of k ∈ N, using Lemma 3.5
from [7] as in [2, Prop. 5.2], we can “remove” the L∞(Ω, R3) boundedness hypothesis
from Lemma 4.9, and obtain the liminf inequality in a similar manner. �

Next, we will prove the limsup inequality.

Lemma 4.11. Let rεj
be such that

0 < lim
j→∞

rεj

ε2j
= c < +∞.
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Then for all u ∈ V and for all δ > 0 there exists a sequence uj ∈ Vεj
converging to u, in

the weak topology of V , such that

lim sup
j→∞

‖ uj ‖2
V −δ ≤‖ u ‖2

V +c

∫
Γ0

f

3∑
k,l=1

Cklukulds,

where (Ckl)k,l=1,3 has been defined in Lemma 4.7.

Proof. Without loss of generality we will assume δ small enough. Again Remark 4.8
allows us to follow the same arguments as in [2, Sec. 6].

Indeed, suppose first that u ∈ L∞(Ω, R3). Recall that BNρεj
≡ BNρεj

(xεj

i , 0) and
B+

Nρεj
= BNρεj

∩ {x3 > 0}. From Lemma 4.3 for uj ≡ u and ρεj
= 4

3rεj
and from the

equi-integrability condition we obtain a sequence (wj)j such that

wj = ui
j =

1
|Cj

i |

∫
Cj

i

u on ∂B+
Nrεj

\ Σ0,

whereby |A| we denote the usual superficial measure supported by A. Define

vj = wj on Ω \
⋃

i∈Z
j
f,1

B+
Nrεj

. (4.27)

Then because |
⋃

i∈Z
j
f,1

B+
Nrεj

|∼
r3

εj

ε2j
and wj ⇀ u weakly in V , we obtain that vj ⇀ u

weakly in V . We will define vj on
⋃

i B+
Nrεj

below.
Next, using similar arguments as in [2, Sec. 6] we get

lim sup
j→∞

‖ vj ‖2
V ≤‖ u ‖2

V + lim sup
j→∞

∫
⋃

i∈Z
j
f,1

BNrεj

Aε(vj)ε(vj)dx . (4.28)

From Lemma 4.7, we have that for any δ > 0, there is an N0 ∈ N such that

φ(z) − δ

2
≤ φN (z) ≤ φ(z) +

δ

2
for any z with | z |≤ m, (4.29)

and for any N ≥ N0, where m =‖ u ‖L∞(Ω,R3).
By the definition of φN there is wi

j ∈ H1(B+
N (0); R3), wi

jτ = 0 on B2
1(0) and wi

j = ui
j

on ∂B+
N (0) \ Σ0, such that∫

B+
N (0)

Aε(wi
j)ε(w

i
j)dx ≤ φN (ui

j) +
δ

2
≤ φ(ui

j) + δ = φ(ui
jτ ) + δ, (4.30)

where we used Remark 4.8 for the last equality above. Next, similar to [2, Sec. 6], we
define vj on

⋃
i∈Z

j
f,1

BNρεj
to be

vj = wi
j

(
x − (xεi

i , 0)
rεj

)
on BNrεj

for i ∈ Z
j
f (4.31)

and

vj = h ·
(

x − (xεi
i , 0)

rεj

)
wj(x) on B+

Nrεj
for i ∈ Z

j
f,1 \ Z

j
f , (4.32)

where 0 ≤ h ≤ 1 is the same scalar function used in [2], i.e. h = 1 on ∂B+
N (0) \ Σ0 and

h = 0 on B2
1(0).
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From (4.27), (4.31) and (4.32) we can see that vj ∈ Vεj
and from (4.30) we have that∫

B+
Nrεj

Aε(vj)ε(vj)dx = rεj

∫
B+

N (0)

Aε(wi
j)ε(w

i
j)dx ≤

rεj

ε2j
(ε2jφ(ui

jτ ) + ε2jδ) (4.33)

for any i ∈ Z
j
f .

Obviously we have

lim sup
j→∞

∑
i∈Z

j
f,1

∫
B+

Nrεj

Aε(vj)ε(vj)dx ≤ lim sup
j→∞

∑
i∈Z

j
f,1\Z

j
f

∫
B+

Nrεj

Aε(vj)ε(vj)dx (4.34)

+ lim sup
j→∞

∑
i∈Z

j
f

∫
B+

Nrεj

Aε(vj)ε(vj)dx. (4.35)

Now let w′
j =

⋃
i∈Z

j
f,1\Z

j
f

Q
εj

i,2.

For any i ∈ Z
j
f,1 \ Z

j
f we have∫

B+
Nrεj

Aε(vj)ε(vj)dx ≤ M(N)
∫

B+
Nrεj

| Dvj |2 dx

≤ 1
r2
εj

M(N)
∫

B+
Nrεj

|Dh|2|wj |2dx +
∫

B+
Nrεj

|Dwj |2dx. (4.36)

Then using (4.36) and the equi-integrability and L∞ bound of wj we obtain

lim sup
j→∞

∑
i∈Z

j
f,1\Z

j
f

.

∫
B+

Nrεj

Aε(vj)ε(vj)dx

≤ M(N) lim
j→∞

rεj

ε2j
lim

j→∞
H2(w′

j) ≤ M(N) · c · H2(∂Γ0
f ) = 0. (4.37)

Next summing in (4.33) for all i ∈ Z
j
f and passing to the limit when j → ∞, we get

lim sup
j→∞

∑
i∈Z

j
f

∫
B+

Nrεj

Aε(vj)ε(vj)dx ≤ lim
j→∞

rεj

ε2j
lim sup

j→∞

∑
i∈Z

j
f

(ε2jφ(ui
jτ ) + ε2jδ). (4.38)

From (4.29) we have that∑
i∈Z

j
f

ε2jφ(ui
jτ ) ≤

∑
i∈Z

j
f

(
ε2jφN (ui

jτ ) + ε2j
δ

2

)
≤ Mδ +

∑
i∈Z

j
f

ε2jφN (ui
jτ ). (4.39)

From (4.39) and Lemma 4.9, we obtain

lim sup
j→∞

∑
i∈Z

j
f

ε2jφ(ui
jτ ) ≤ Mδ + lim sup

j→∞

∫
Γ0

f

ψjds = Mδ +
∫

Γ0
f

φN (uτ )ds. (4.40)

From (4.34), (4.37) and (4.38), we obtain that there exists a positive constant
M = M

(
‖ u ‖L∞ , c, M1, M2, |Γ0

f |
)

lim sup
j→∞

∑
i∈Z

j
f,1

∫
B+

Nrεj

Aε(vj)ε(vj)dx ≤ c ·
3∑

k,l=1

∫
Γ0

f

Cklukulds + Mδ. (4.41)



766 IOAN R. IONESCU, DANIEL ONOFREI, AND BOGDAN VERNESCU

From (4.41) and (4.28) we obtain

lim sup
j→∞

‖ vj ‖2
V ≤‖ u ‖2

V +c

3∑
k,l=1

∫
Γ0

f

Cklukulds + Mδ.

Because of the fact that M is a constant independent of δ, the statement follows
taking for example δ

.= δ
M in (4.33) and (4.30). Next the boundedness assumption for

u ∈ L∞(Ω; R3) can be removed exactly by the same arguments in [2]. �
Next we make the simple observation that the functional v �

∫
Γ0

f
SH(|vτ |) − f(v)

is continuous with respect to the weak topology on V . This can be seen by the trace
continuity and the definition of the function H. We can also easily observe that the limit
functional does not depend on the particular subsequence εj and therefore by Uryson’s
property for the Γ-limits, using Lemma 4.10 and Lemma 4.11 and the above observations,
we proved Theorem 4.1. �

The cases c = 0 and c = ∞ are discussed in the following remark:
Remark 4.12. We can see that when c = 0 the influence of the barriers disappear in

the limit problem. Indeed in this case we obtain

Γ − lim
ε→0

Wε = W ,

where W : V → R
3

W(v) =
1
2
‖ v ‖2

V +
∫

Γ0
f

SH(|vτ |) − f(v).

In the other case c = ∞ we obtain that

Γ − lim
ε→0

Wε = W

with W : V → R
3 and

W(u) =
{

1
2 ‖ u ‖2

V if u ∈ V1,

∞ otherwise.

4.2. Asymptotic analysis of the spectral problem Eε. Rayleigh’s principle for the oper-
ator Kε gives us

λε
n = inf

u∈Wε,u⊥uε
i

i=1,n−1

‖ u ‖2
V∫

Γ0
f

u2
τ

. (4.42)

where {uε
i}i form the orthonormal sequence of eigenvectors for Kε corresponding to the

sequence of eigenvalues {λε
i}i. Using trace inequality and (2.3) we obtain

λε
n ≥ M for any n ∈ N (4.43)

with M not depending on ε, and therefore {λε
n} is uniformly bounded from below. Next

we will prove that all the limit points λn of {λε
n}ε > 0 are finite.

Lemma 4.13. If lim
ε→0

rε

ε2
< ∞, then we have lim sup

ε→0
λε

n < ∞ for any n ∈ N.
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Proof. Let u ∈ V such that u = ū1 + ū2 where 0 	= ū1 ∈ W and 0 	= ū2 ∈ V1.
Next consider the recovering sequence for u, i.e. ūε defined in the proof of Theorem

4.1, (4.27) and (4.31). We have that ūε ∈ Vε and ūε ⇀ u weakly in V . Obviously from
the definition of u ∈ V we can see that there is an ε0 > 0 such that

ūε /∈ V1 and ūε /∈ Wε (4.44)

for ε < ε0.
Indeed if ūε ∈ V1 for a subsequence still denoted by ε, with ε → 0, then

0 = 〈ūε, ū1〉V → 〈ū1, ū1〉V =‖ ū1 ‖2
V > 0

and therefore the contradiction. Similarly it can be seen that ūε /∈ Wε for all ε < ε0.
From (4.42) we have that

λε
1 ≤ ‖ PW ε ūε ‖2

V∫
Γ0

f
(PW ε ūε)2τ

≤ ‖ ūε ‖2
V∫

Γ0
f

ū2
ετ

≤ M∫
Γ0

f
ū2

ετ

.

Since ūε is weakly convergent to u and using the continuity of the trace we get

lim sup
ε→0

λε
1 ≤ M∫

Γ0
f

ū2
1τ

< ∞,

where we used the orthogonal decomposition

Vε = Wε ⊕ V1

in order to obtain ∫
Γ0

f

(PWε
ūε)2τ =

∫
Γ0

f

ū2
ετ .

Next we will use an induction argument to prove the statement for all n ∈ N. Let us
assume that

lim sup
ε→0

λε
k < ∞ for any k ≤ n − 1. (4.45)

We need to prove
lim sup

ε→0
λε

n < ∞.

Let {λε
n}ε>0 be a subsequence of {λε

n}ε>0 still denoted by ε. Then, using the induction
hypothesis (4.45), the orthonormality of the associated sequence of eigenvectors and a
diagonalization argument, we find a decreasing sequence {εj}j∈N such that εj → 0 and

u
εj

k

j
⇀ uk ∈ W, (4.46)

lim
j→∞

λ
εj

k
.= λk < ∞, (4.47)

for k = 1, n − 1.
Let u ∈ V , u = ū1 + ū2, where 0 	= ū1 ∈ W and 0 	= ū2 ∈ V1, with

ū1 /∈ span{u1, ..., un−1}. (4.48)

We can do that because W has infinite dimension.
Let ūε be the recovering sequence defined before such that ūε ∈ Vε and ūε ⇀ u.
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From (4.42) we obtain

λεj
n = inf

u∈Wεj
,u⊥u

εj
i

i=1,n−1

‖ u ‖2
V∫

Γ0
f

u2
τdσ

. (4.49)

Now consider

z̄εj = ūεj
−

n−1∑
i=1

u
εj

i 〈ūεj
, u

εj

i 〉V . (4.50)

First we can see that
〈z̄εj , u

εj

i 〉V = 0 for any i = 1, n − 1. (4.51)

Then z̄εj ∈ Vεj
and z̄εj /∈ V1 for j big enough.

Indeed from (4.4) we have

〈ūεj
, u

εj

i 〉V = λ
εj

i

∫
Γ0

f

u
εj

iτ ūεjτ for i = 1, n − 1, (4.52)

and from the trace continuity, the definition of ūεj , (4.46) and (4.47) letting j go to the
∞ in (4.52) and using the result in (4.50), we have

z̄εj ⇀ z̄
.= u −

n−1∑
i=1

uiλi

∫
Γ0

f

uiτ ū1τ .

If we suppose zτ = 0 on Γ0
f , this is equivalent to(
u −

n−1∑
i=1

uiλi

∫
Σ0

uiτ ū1τ

)
τ

= 0 on Σ0,

and this is equivalent to(
ū1 −

n−1∑
i=1

uiλi

∫
Γ0

f

uiτ ū1τ

)
τ

= 0 on Σ0,

which implies

ū1 −
n−1∑
i=1

uiλi

∫
Γ0

f

uiτ ū1τ = 0 (4.53)

because ū1 −
∑n−1

i=1 uiλi

∫
Γ0

f

uiτ ū1τ ∈ W and W ⊥ V1.

But (4.53) leads to a contradiction with (4.48). Therefore z̄τ 	= 0 and this implies the
statement, i.e. z̄εj /∈ V1 for j big enough.

Next using (4.51) and (4.49) we obtain

λεj
n ≤ ‖ PW εj z̄εj ‖2

V∫
Γ0

f
(PW εj z̄εj )2τ

≤ ‖ zεj ‖2
V∫

Γ0
f
(z̄εj )2τ

≤ M∫
Γ0

f
(z̄εj )2τ

.

Passing to the limit when j → ∞ we obtain

lim sup
j→∞

λεj
n ≤ M∫

Γ0
f

z̄2
τ

< ∞. (4.54)
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So we have proved that any subsequence of λε
n has a subsequence {λεj

n }j∈N such that
(4.54) is satisfied. Therefore we have that

lim sup
ε→0

λε
n < ∞

for any n ∈ N. �
The next corollary shows that the weak-limits un of the sequence {uε

n}ε>0 of the
normal eigenvectors associated to the eigenvalue λε

n cannot be zero.

Corollary 4.14. Let {uε
n}n∈N be the orthonormal sequence of eigenvectors associated

to λε
n for the problem (Eε). Then for any n ∈ N we have that every weak-limit un of

{uε
n}n∈N (i.e. un such that on a subsequence uε

n
ε

⇀ un) is nonzero.

Proof. Let n ∈ N be arbitrarily fixed. Let un be a weak limit of {uε
n}. Thus there

exists a subsequence of {uε
n}ε still denoted by ε such that uε

n ⇀ un.
Using the variational form of Eε and the normality of {uε

n} we have

λε
n =

1∫
Γ0

f
uε

nτ
2
.

Letting ε go to zero above we obtain

λn =
1∫

Γ0
f

u2
nτ

.

Next using Lemma 4.13 we obtain that∫
Γ0

f

u2
nτ 	= 0,

and this together with the arbitrariness of n implies the statement. �
Let us now consider the duality operator Jε : Vε → (Vε)′

〈Jεu, w〉(Vε)′,Vε
= 〈u, w〉V for any u, w ∈ Vε.

Jε is an operator of subdifferential type

Jε = ∂ϕε, ϕε : V ε → R, (4.55)

ϕε(u) =
1
2
‖ u ‖2

V . (4.56)

Lemma 4.15. The sequence of operators Jε is G convergent to ∂ϕ, with respect to the
weak × strong topology in V × V ′.

Proof. From the proof of Theorem 4.1 the sequence of functionals {ϕε} is Γ-convergent
weakly in V to ϕ given by

ϕ(v) =
1
2
‖ v ‖2

V +
1
2
c

∫
Γ0

f

Cijvivj =
1
2
‖ v ‖2

V +
1
2
c

∫
Γ0

f

vτCvτ ,

where c and the matrix (Cij)i,j=1,3 are defined in Theorem 4.1. Using the G-convergence
result for subdifferentials of Γ-convergent sequences (see Attouch [5, Th. 3.67]), we have
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that the Γ-convergences of the sequence ϕε to ϕ imply the G-convergence of the subdif-
ferentials,

∂ϕε G→ ∂ϕ.

�

Theorem 4.16. There is a decreasing sequence {εj}j ∈ N with εj → 0 such that
u

εj
n ⇀un, λ

εj
n → λn where (λn, un) solves the limit problem, λn ∈ R and un ∈ W

such that

σ(un) = Aε(un), div σ(un) = 0, in Ω, (4.57)

un = 0 on Γd σ33(un) = 0 on Σ0, (4.58)

στ (un) = unτ (λnI3 − cC) on Γ0
f , (4.59)

where I3 is the unity matrix in M3×3 and c and the matrix C have been defined in
Theorem 4.1.

Proof. Let an arbitrary fixed n ∈ N. Let {λε
n}ε>0 be the sequence of eigenvalues for

the problem (Eε) and uε
n the corresponding orthonormal sequence of eigenvectors. Then

there is a subsequence {εj}j ∈ N such that

uεj
n ⇀ un and λεj

n → λn.

We have proved in Lemma 4.13 that λn < ∞ for all n ∈ N.
Let f

εj
n ∈ V ′ be defined as

f εj
n (w) = λεj

n

∫
Γ0

f

uεj
nτwτ for all w ∈ V.

Using the variational formulation (4.4) we have

f εj
n (w) = 〈Jεj uεj

n , w〉(Vεj
)′ ,Vεj

for all w ∈ Vεj
.

This implies

f εj
n ∈ ∂ϕεj (uεj

n ). (4.60)

The next observation is that

f εj
n

j→∞−→ fn strongly in V
′
, (4.61)

where

fn(w) = λn

∫
Γ0

f

unτwτ for all w ∈ V.

The proof of the above convergence is straightforward. Indeed,

‖ f εj
n − fn ‖V ′= sup

w∈V
‖w‖V ≤1

∣∣∣∣∣λεj
n

∫
Γ0

f

uεj
nτwτ − λn

∫
Γ0

f

unτwτ

∣∣∣∣∣ .
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Now from the reflexivity of the space V we have that there exists wj
0 ∈ V with

‖wj
0 ‖V ≤1 such that

‖ f εj
n − fn ‖V ′ =

∣∣∣∣∣λεj
n

∫
Γ0

f

uεj
nτwj

0τ − λn

∫
Γ0

f

unτwj
0τ

∣∣∣∣∣
=

∣∣∣∣∣(λεj
n − λn)

∫
Γ0

f

uεj
nτwj

0τ + λn

∫
Γ0

f

(uεj
nτ − unτ )wj

0τ

∣∣∣∣∣ .

Thus, from Cauchy-Schwartz inequality

‖ f εj
n − fn ‖V ′ ≤ |λεj

n − λn|
(∫

Γ0
f

|uεj
nτ |2

)1/2 (∫
Γ0

f

|wj
0τ |2

)1/2

+|λn|
(∫

Γ0
f

|uεj
nτ − unτ |2

)1/2 (∫
Γ0

f

|wj
0τ |2

)1/2

.

Next we will use the following interpolation inequality (see [22]):

Lemma 4.17. Let Ω ⊂ Rd be as above and let α ∈ [2, 2(d−1)
d−2 ] if d ≥ 3 and α ≥ 2 if d = 2.

Then, for β = d(α−2)+2
2α if d ≥ 3 or if d = 2 and α = 2, and for all β ∈]α−1

α , 1[ if d = 2
and α > 2, there exists a constant C = C(β) such that

||v||Lα(∂Ω) ≤ C||v||1−β
L2(Ω)||v||

β
H1(Ω), ∀v ∈ H1(Ω). (4.62)

In our case d = 3, α = 2 and β = 1
2 , and thus the inequality becomes

‖ uτ ‖2
L2(Σ)≤ M ‖ u ‖H1(Ω)‖ u ‖L2(Ω), ∀u ∈ V. (4.63)

Using the trace inequality, (4.63) and the fact that ‖ wj
0 ‖V ≤ 1, we obtain

f εj
n

j→∞−→ fn strongly in V
′
.

Therefore from (4.60), (4.61) and using the Lemma 4.15 we obtain that

fn ∈ ∂ϕ(un). (4.64)

But (4.64) is equivalent with

〈un, w〉V =
∫

Γ0
f

unτ (λnI3 − cC)wτ for any w ∈ W, (4.65)

which is the variational formulation for the problem (4.57), (4.58), (4.59).
From the arbitrariness of n ∈ N we have that the Theorem 4.16 is proved for all

positive integers n. �
The main homogenization result of this section is:

Theorem 4.18. If c = limε→0
rε

ε2 < ∞, then for any n ∈ N we have:
i) lim

ε→0
λε

n = λn on the entire sequence, and λn is the n-th eigenvalue of the limit
problem.

ii) There is a decreasing sequence {εj}j∈N with εj → 0 such that u
εj
n ⇀un, where un

is the normal eigenvector for the limit problem associated to λn.
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Proof. Suppose there is a λ eigenvalue of the limit problem such that λ 	= λn for any
n ∈ N.

Let u ∈ W be the normal eigenvector associated to λ, i.e., ‖ u ‖V = 1 and

〈u, w〉V =
∫

Γ0
f

uτ (λI3 − cC)wτ for any w ∈ W. (4.66)

Now obviously there is m ∈ N such that

λ < λm+1. (4.67)

From the Lax-Milgram lemma we have that there exists wε ∈ W ε such that

〈Jεwε, w〉(Vε
′
,Vε)

= λ

∫
Γ0

f

uτwτ for all w ∈ Wε.

It can easily be seen that wε is bounded in the norm of V . Then on a subsequence still
denoted by ε we have

wε ⇀ w̄ as ε → 0

for some w̄ ∈ W . But if we consider fλ ∈ V
′

with fλ(w) = λ
∫
Γ0

f
uτwτ , then clearly

from the definition of wε an Jε we have

fλ(w) = 〈Jεwε, w〉(Vε
′
,Vε)

=⇒ fλ ∈ ∂ϕε(wε).

So using the G-convergence result stated in Lemma 4.15 we obtain

fλ ∈ ∂ϕ(w̄) ⇐⇒ 〈w̄, v〉V + c

∫
Γ0

f

vτCw̄τ = λ

∫
Γ0

f

uτvτ

for any v ∈ W .
Therefore,from (4.66) we have that u = w̄. Now by Uryson’s property we can see that

wε ⇀ u when ε → 0.

Let

vε = wε −
m∑

i=1

uε
i〈wε, uε

i〉V .

Using the interpolation inequality (4.63) and (4.4) we obtain

〈wε, uε
i〉V = λε

i

∫
Γ0

f

uε
iτwε

τ
ε−→ λi

∫
Γ0

f

uiτuτ for i = 1, m.

On the other hand, using the definition of wε we can see that

〈wε, uε
i〉V = λ

∫
Γ0

f

uτuε
iτ

ε−→ λ

∫
Γ0

f

uiτuτ for i = 1, m.

Now because λ 	= λi for all i = 1, m from the last two relations, we have that∫
Γ0

f

uiτuτ = 0 for all i = 1, m.
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Thus 〈wε, uε
i〉V

ε−→ 0 and therefore vε ⇀ u weakly in V . Noting that vε ∈ W ε and
vε ⊥ uε

i for all i = 1, m from Rayleigh’s principle for (Eε), we have

λε
m+1 ≤ ‖ vε ‖2

V∫
Γ0

f
(vε

τ )2
. (4.68)

Now, from the definition of wε and the trace continuity we have

lim
ε→0

‖ vε ‖2
V = lim

ε→0
‖ wε ‖2

V = λ

∫
Γ0

f

(uτ )2.

From the last relation, the inequality (4.63) and Theorem 4.16, passing to the limit when
ε → 0 in (4.68), we obtain the contradiction. So i) has been proved and ii) is exactly the
same as in Theorem 4.16. �

Next, following an idea in [5], we give a Mosco-convergence (see [5] for the definition
of Mosco-convergence) result for the case c = limε→0

rε

ε2 < ∞:

Theorem 4.19. Let c = limε→0
rε

ε2 < ∞ and i ∈ N arbitrary fixed and let {λε
n, uε

n}n be
the couple of eigenvalues and normal eigenfunctions for Eε.

Then if mi is the order of multiplicity of λi, i.e.

λi−1 < λi = λi+1 = ... = λi+mi−1 < λi+mi
, (4.69)

then the sequence of subspaces generated by {uε
i , ..., u

ε
i+mi−1} Mosco-converge in L2(Ω)

to the eigenspace {ũi, ..., ũi+mi−1} associated to λi.

Proof. We remark that the multiplicity of λε
i might be strictly smaller than that of

λi. So if we denote

span{uε
i , ..., u

ε
i+mi−1}

.= Sε
i and span{ũi, ..., ũi+mi−1}

.= Si,

we can see that as in the above remark Sε
i may be strictly larger than the eigenspace of

λε
i . Now from Theorem 4.18 we have that, for any n ∈ N, there is a subsequence still

denoted by ε such that

lim
ε→0

λε
n = λn and uεj

n ⇀un weakly in V,

where (un, λn) solve the spectral limit problem (4.57), (4.58) and (4.59).
From the linearity of Eε and E we can say that

lim sup
ε→0

Sε
i ⊂ Si.

We can easily see that for arbitrary fixed l, j ∈ {i, ..., i + mi − 1}, with l 	= j and

uε
l ⇀ ul and uε

j ⇀ uj ,

we have
ul 	= uj . (4.70)

Indeed suppose that there are l, j ∈ {i, ..., i + mi − 1}, with l 	= j such that ul = uj .
Then from

2 =‖ uε
l − uε

j ‖2
V =

∫
Σ0

(λε
lu

ε
lτ − λε

ju
ε
jτ )(uε

lτ − uε
jτ )

passing to the limit when ε → 0, using the inequality (4.63) we obtain the contradiction.
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Next we will prove that set {ui, ..., ui+mi−1} is linear independent. Indeed let
i+mi−1∑

k=i

ckuk = 0. (4.71)

We have for any j ∈ {i, ..., i + mi − 1} that

cj = 〈
i+mi−1∑

k=i

ckuε
k, uε

j〉V = λε
j

∫
Σ0

(
i+mi−1∑

k=i

ckuε
kτ

)
uε

jτ
ε−→ λj

∫
Σ0

(
i+mi−1∑

k=i

ckukτ

)
ujτ = 0,

where the last equality above comes from (4.71).
Using the linear independence of {ui, ..., ui+mi−1}, (4.70) and the fact that the dimen-

sion of the eigenspace associated to λi is mi, we have in fact that

Si = span{ui, ..., ui+mi−1}
and therefore

lim sup
ε→0

Sε
i = Si.

Because of the compact imbedding of V in [L2]3 we have that there is a subsequence εj

such that
lim inf

ε→0
Sε

i = lim sup
j→∞

S
εj

i .

Now if there is v such that
v /∈ lim inf

ε→0
Sε

i ,

then from the above relation we have

v /∈ lim sup
j→∞

S
εj

i = Si

which implies
Si ⊂ lim inf

ε→0
Sε

i .

So we have proved the statement. �
In the next remark we will briefly discuss the cases c = 0 and c = ∞.
Remark 4.20. The case c = 0 can be seen as a particular case of the previous

theorems. The limit problem for the problem Eε is

σ(un) = Aε(un), div σ(un) = 0, in Ω, (4.72)

un = 0 on Γd σ33(un) = 0 on Σ0, (4.73)

στ (un) = λnunτ on Γ0
f . (4.74)

In the other case c = ∞ we have seen that the sequence {ϕε}ε>0 defined in Lemma
4.15 Γ-converges to ϕ, and we have

ϕ(u) =
{

‖ u ‖2
V dx if u ∈ V1,

∞ otherwise.

Now suppose that there is n ∈ N such that λε
n

ε→ λn < ∞.
Now using the same approach as before, from Theorem 4.16 and Lemma 4.15 we

obtain that fλ ∈ ∂ϕ(un), where fλ has been defined above. This means that

un ∈ Dom(ϕ) = V1.
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But we know that uε
n ∈ W ε ⊂ W which means that

un ∈ W.

Using the fact that W = V1
⊥ in V we obtain un = 0, which contradicts Corollary 4.14.

Then our assumption that λn < ∞ is false. Now from the variational form of (4.4), if uε
n

is the normal eigenvector associated to λε
n, we have

1
λε

n

=
∫

Σ0

(uε
nτ )2.

Consider un ∈ W to be the weak limit of uε
n when ε → 0. Passing to the limit for

ε → 0 in the equality above we obtain∫
Σ0

(unτ )2 = 0.

This together with the fact that un ∈ W and W ⊥ V1 give us that un = 0. So in this
case we have that all the eigenvectors of the Eε converges to zero and all the eigenvalues
of the same problem converges to ∞.

5. Physical interpretation. Here we give the physical interpretation of the previ-
ous theoretical results concerning the macroscopic behavior of a fault with small-scale
heterogeneity of rupture resistance (small-scale barriers). Through Theorems 4.1 and
4.16 we have obtained an effective (or equivalent) friction law which, used on a homoge-
neous fault, leads to a slip evolution similar to the one produced on the heterogeneous
fault. More precisely, for a fault which has ε-periodically distributed barriers of radius
rε, we have proved that for 0 < c =: limε→0 rε/ε2 < ∞ the sequence of energy functionals
Γ-converges to a limit energy functional. This limit functional is associated to another
slip-weakening friction problem called the equivalent friction law. These results can be
interpreted in the context of a barrier erosion process during the nucleation phase of an
earthquake.

The earthquake nucleation (or initiation) phase, preceding the dynamic rupture, has
been pointed out by detailed seismological observations (e.g. [21, 19]), and it has been
recognized in laboratory experiments (e.g. [18, 29]) to be related to the slip-weakening
friction. This physical model was thereafter used in the qualitative description of the
initiation phase in unbounded (e.g. [9, 1]) and bounded (e.g. [16, 34]) fault models.
Important physical properties of the nucleation phase (characteristic time, critical fault
length, etc.) were obtained in [9, 16, 17] through simple mathematical properties of the
unstable evolution.

During the nucleation phase, the stress concentration at the boundary between the
barriers and the slipping zone exceeds the barriers’ strength, and a part of the barrier is
broken (i.e. it is transformed in a slipping zone). The evolution of the shape and of the
distribution of the barriers can change the effective frictional properties of the fault and
can explain the qualitatively different behaviors with the same local friction law.

In order to see how the barriers’ evolution changes the effective friction properties
during the initiation phase, let us imagine that we deal with an external loading process
on the time interval [0, T ]. Since the loading rate of the tectonic plates is very slow we
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can suppose that the process is quasi-static. In this context [0, T ], the nucleation (or
initiation) phase of an earthquake turns out to be the transition between the quasi-static
and the dynamic slip. The fault is supposed to have periodically distributed barriers
of period ε (small non-dimensional distance with respect to the fault length) and of a
variable diameter rε(t) (non-dimensional length) with t ∈ [0, T ]. The erosion of the
barriers is described by the fact that the function t → rε(t) is non-increasing. Regarding
the evolution of the parameter

Aε(t) =:
rε(t)
ε2

we can distinguish three periods of time. At the beginning of the process, [0, T1], the
diameter of the barriers is large (i.e. Aε(t) is very large). In the second period of time
[T1, T2] the parameter Aε(t) is of the order of unity and in the last period [T2, T ] the
parameter Aε(t) is very small.

1) In the first period of time [0, T1] the barriers are too large with respect to the
distance between them (i.e. c(t) =: limε→0 rε(t)/ε2 = ∞), and the equivalent fault is
locked (i.e. no large-scale slip even if we can have a small-scale slip). This means that
the presence of the “large” barriers (i.e. with diameters of the same order of the distance
between them) will imply that the effective static friction force is larger than the local
one. Such a fault can stand “large-scale” locked without slipping even if the loading is
greater than the local friction resistance.

2) In the second period of time [T1, T2] the ratio between the barrier radius and the
inter-barrier distance is of order of the ratio between the the inter-barrier distance and
the fault length (i.e. 0 < c(t) =: limε→0 rε(t)/ε2 < ∞). In this case on the equivalent
fault is acting a slip-weakening friction law with a smaller weakening rate. That means
that during this period of time the equivalent fault has a larger critical slip Dc. The
presence of barriers that slow down the growth of the instability is accounted for in the
effective law by an initial weakening rate that is much smaller than that for the local
laws. Since the initial weakening of a friction law determines the initiation duration, as
discussed in [23], the initiation time associated with a large earthquake which develops
on a large area of a heterogeneous fault can be important. The equivalent slip-weakening
rate may be also negative, hence a slip-hardening effect can be expected. These types of
friction properties were used in [35] in describing the dynamic rupture arrest. Moreover,
the large-scale (equivalent) friction law is not isotropic (i.e. the tangential stress and the
slip are not collinear). This can be explained by the fact that the periodic distribution
of the barriers is not isotropic, hence the limit problem will heritage this anisotropic
geometrical perturbation.

3) In the third period of time [T2, T ] the barriers are too small with respect to the
distance between them (i.e. c(t) =: limε→0 rε(t)/ε2 = 0), and the presence of the barriers
does not affect the friction law on the equivalent fault. That means that the effective
friction law is the same as the local one only in the last stage of nucleation phase.
Moreover the slip weakening rate at the end of the initiation is larger than the rate of
the initial stage of nucleation.

Let us now summarize the role played by the process of erosion of the barriers in
the effective properties of the homogenized fault. In this context the time period [0, T1]
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turns to be the “(effective) locking period”, the second one, [T1, T2], is the “first stage
of (effective) initiation” and the last one, [T2, T ], becomes the “last stage of (effective)
initiation”.

i) The effective friction resistance (static friction) is greater than the local one.
ii) The slip-weakening rate is smaller at the beginning of initiation phase than at the

end. This implies a concave shape of the friction distribution with respect to the slip of
the effective friction law. From the concavity of the friction law we can expect a long
initiation phase.

iii )A negative weakening rate (i.e. hardening of the friction force) can be present in
some cases at the beginning of the initiation phase.

iv) A loss of the isotropicity of the friction force can be noted during the first stage of
the nucleation phase.

We have to mention that the partition of the initiation phase into two stages with two
weakening rates was also pointed out in [10] into a different context. Indeed, in [10] they
analyze a dynamic two-dimensional (anti-plane) process, and the separation between the
two stages is given by the fact that barriers are (almost) instantaneously broken. In
contrast to the present analysis this separation is given by a quasi-static erosion of the
barriers.
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