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Abstract. In this paper we will study an improved elastic dissipation model for a
cantilevered beam, where the damping is assumed to be proportional to the bending rate
of the beam. For an earlier formulated dissipation model for the cantilevered beam it
has been recently shown that damping will not always be generated. However, for the
improved dissipation model it will be shown in this paper that damping will always be
generated.

1. Introduction. For many years different approaches were used to describe energy
dissipation in oscillating elastic bodies such as beams (see [1]-[4]). However, many ap-
proaches (such as molecular theories) are too complicated to use in practice. As a result,
different phenomenological models are used in mechanics. At the end of the nineteenth
century, Kelvin and Voigt noted that damping rates tend to increase with frequency. At
the end of the last century, Chen and Russell proposed the following dissipation model
(see [4]):

ẍ + Bẋ + Ax = 0, (1.1)

where A is an elastic operator, and where B is related in various ways to the positive
square root, A1/2, of A . For beam equations this approach was generalized and developed
further by Russell in [1], [2]. Russell studied a new phenomenological dissipation model
for a beam, where the damping is assumed to be proportional to the bending rate of the
beam

utt − δutxx + uxxxx = 0,

Received February 2, 2005 and, in revised form, on March 16, 2005.
2000 Mathematics Subject Classification. Primary 35B05, 35Q72, 74H45.
E-mail address: maria@dv.twi.tudelft.nl

E-mail address: W.T.vanHorssen@ewi.tudelft.nl

c©2005 Brown University
Reverts to public domain 28 years from publication

681



682 M. A. ZARUBINSKAYA AND W. T. VAN HORSSEN

dx

F+dF

Q+dQ

F

Q

M+dMM

u

x

Fig. 1. Forces and moments acting on an element of the beam.

where u(x, t) is the displacement of the beam in the vertical direction, and δ is a positive
damping constant. No derivation of the dissipation term δutxx is given in [1], [2]. How-
ever, it is noted that this new model has good mathematical properties. For example,
in the case for simply supported beams it turns out that damping rates increase with
frequency. Unfortunately for a cantilevered beam it turns out in [1] that A and B in (1.1)
do not commute. Russell showed in [3] that it is, in general, not true that the energy
decreases monotonically. In [5] it has been shown for the cantilevered beam problem as
formulated in [1], [2] that the first (the lowest) vibration mode is unstable. So, for this
mode there certainly is no energy dissipation.

In this paper an improved dissipation model will be studied for the cantilevered beam.
It will be shown that dissipation really occurs in the system. In Section 2 of this paper
it will be indicated how this dissipation model can be obtained. By using the recently
developed, adapted version of the method of separation of variables (see [5], [6]), we will
study the dissipation model in Section 3 of this paper. It will turn out that three cases
have to be distinguished, that is, δ = 2, δ > 2, and 0 < δ < 2. These cases will be studied
in Sections 4, 5, and 6, respectively. Finally, in Section 7 of this paper some conclusions
will be drawn.
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2. Mathematical model. In [1]-[4] the following partial differential equation for
u = u(x, t) has been introduced:

utt − δutxx + uxxxx = 0, ⇐⇒
utt + (uxxx − δutx)x = 0, 0 < x < π, t > 0, (2.1)

where δ is a positive damping parameter. In this model equation (2.1) it is assumed that
the damping is proportional to the bending rate of the beam. For a cantilevered beam,
the following boundary conditions have been used in [1]–[4]:

u(0, t) = ux(0, t) = uxx(π, t) = uxxx(π, t) = 0. (2.2)

However, by looking carefully at the PDE (2.1) it should be observed (see also Fig. 1)
that the shear force F (given by the term uxxx) is in some sense related to the damping
force Q (given by the term δuxt). So, the damping torque is assumed to be negatively
proportional to the angular velocity. Now at the free end of the cantilevered beam the
angular velocity is usually not zero. Hence, based on the structure of the PDE (2.1)
the boundary condition uxxx(π, t) = 0 should be replaced by uxxx(π, t) − δuxt(π, t) = 0.
In this paper we propose the following boundary value problem for u = u(x, t) as an
improved elastic dissipation model for a cantilevered beam:

utt − δutxx + uxxxx = 0, 0 < x < π, t > 0,

u(0, t) = ux(0, t) = uxx(π, t) = 0, t ≥ 0, (2.3)

uxxx(π, t) = δuxt(π, t), t ≥ 0,

where δ is a positive constant. For the boundary value problem (2.3) it can readily be
shown that the energy E(t), given by

E(t) =
1
2

∫ π

0

(
u2

t (x, t) + u2
xx(x, t)

)
dx,

decreases for increasing times. In fact, by using the boundary conditions in (2.3) it can
be shown simply that

dE

dt
= −δ

∫ π

0

u2
txdx ≤ 0.

3. Analysis of the dissipation model. A solution of the boundary value problem
(2.3) can be constructed by using the method of separation of variables. Recently it has
been shown in [6] that the method can be applied to a much larger class of problems
than is generally assumed. Substituting a solution of the form X(x)T (t) into the PDE
and dividing the so-obtained equation by X(x)T (t), we find

T̈

T
− δ

Ṫ

T

X ′′

X
+

X ′′′′

X
= 0, (3.1)

where ′ = ∂(...)
∂x and ˙ = ∂(...)

∂t . Generally it is assumed that (3.1) cannot be separated
because of the mixed term −δ Ṫ

T
X′′

X . However, by simply differentiating (3.1) with respect
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to x or t (see also [6]) we can separate the variables. For instance, differentiation with
respect to x yields

−δ
Ṫ

T

d

dx

(X ′′

X

)
+

d

dx

(X ′′′′

X

)
= 0, (3.2)

which can easily be separated, yielding

Ṫ

T
= λ, (3.3)

where λ is a complex valued separation constant. From (3.3) it follows that T̈ = λṪ =
λ2T , and then it can easily be deduced from (2.3) and (3.1) that X(x) has to satisfy the
following boundary value problem:

X ′′′′ − δλX ′′ + λ2X = 0, 0 < x < π, (3.4)

X(0) = X ′(0) = X ′′(π) = 0, X ′′′(π) = δλX(π), (3.5)

where λ = λ1 + iλ2 with λ1 and λ2 ∈ R. By considering the characteristic equation

k4 − δλk2 + λ2 = 0 ⇐⇒ (k2 − δλ

2
)2 +

λ2

4
(4 − δ2) = 0

for the differential equation (3.4), it is obvious that we have to consider three cases:
δ = 2, δ > 2, and 0 < δ < 2. These three cases will be studied in the next three sections.
It will be shown that nontrivial solutions for (3.4) can be found in all three cases. From
(3.3) the time-dependent behaviour of a nontrivial solution X(x)T (t) for (2.3) can be
determined. It is obvious from (3.3) that arbitrary vibrations of the cantilevered beam
can only be damped out if all eigenvalues λ have a negative real part; that is, λ1 should
be negative for all vibration modes.

4. The case δ = 2. In this section we will study the boundary value problem (3.4)–
(3.5) with δ = 2. The characteristic equation for the differential equation (3.4) becomes
in this case

(k2 − λ)2 = 0, (4.1)

where λ = λ1 + iλ2 with λ1, λ2 ∈ R. It can be shown simply that, for λ2 = 0, the bound-
ary value problem (3.4)–(3.5) has only trivial solutions. For λ2 �= 0 the characteristic
equation (4.1) has as roots

ζ1 + iζ2, and − ζ1 − iζ2,

where

ζ1 =

√√
λ2

1 + λ2
2 + λ1

2
, ζ2 =

√√
λ2

1 + λ2
2 − λ1

2
. (4.2)

Each root has multiplicity two. Putting k = ζ1+iζ2, the general solution of the differential
equation (3.4) can now be written as

X(x) = C1 cosh(kx) + C2 sinh(kx) + C3x cosh(kx) + C4x sinh(kx), (4.3)

where C1, C2, C3, and C4 are complex valued constants of integration. By substituting
(4.3) into the boundary conditions (3.5) we obtain a system of four linear, homogeneous
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Table 1. Approximations of the first ten eigenvalues λ = λ1 + iλ2

for the case δ = 2.

δ = 2
Nr. λ1 λ2

1 -0.569648 0.568575
2 -3.196156 2.351548
3 -7.934745 4.418493
4 -14.729552 6.690023
5 -23.558855 9.116748
6 -34.411923 11.668342
7 -47.284223 14.324380
8 -62.166337 17.070178
9 -79.060929 19.894671
10 -97.964247 22.789222

equations for C1, C2, C3, and C4. To have a nontrivial solution, the determinant of the
coefficient matrix has to be zero, yielding

−(k2 + 2λ) cosh (kπ)2 + π2k4 − k2(3 + 2λπ2) + 2λ = 0. (4.4)

Taking apart real and imaginary parts in (4.4), we get a system of two nonlinear equations
for ζ1 and ζ2 (note that k = ζ1 + iζ2 with ζ1 and ζ2 given by (4.2)):

3
2
(ζ2

1 − ζ2
2 ) cosh (2πζ1) cos (2πζ2)−3ζ1ζ2 sinh (2πζ1) sin (2πζ2) + π2(ζ4

1 + ζ4
2 )

+
5
2
(ζ2

1 − ζ2
2 ) − 6πζ2

1ζ2
2 = 0, (4.5)

3
2
(ζ2

1 − ζ2
2 ) sinh (2πζ1) sin (2πζ2)+3ζ1ζ2 cosh (2πζ1) cos (2πζ2) + 4π2ζ1ζ2(ζ2

1 − ζ2
2 )

+5ζ1ζ2 = 0.

Using the formula manipulation package Maple, numerical approximations of the solu-
tion of (4.5) can easily be obtained. Using these approximations and (4.2), the eigenvalues
λ = λ1 + iλ2 can be approximated. The first ten approximations of the eigenvalues λ of
the boundary value problem (3.4)–(3.5) are listed in Table 1.

5. The case δ > 2. In this section we will study the boundary value problem (3.4)-
(3.5) with δ > 2. The characteristic equation for the differential equation (3.4) is

k4 − λδk2 + λ2 = 0, (5.1)

where λ = λ1 + iλ2 with λ1, λ2 ∈ R. It is easy to show that, for λ2 = 0, the boundary
value problem (3.4)–(3.5) has only trivial solutions. For λ2 �= 0 it follows from the
characteristic equation (5.1) that

k2 = λ
(δ

2
+

1
2

√
δ2 − 4

)
, or k2 =

λ(
δ
2 + 1

2

√
δ2 − 4

) . (5.2)
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Putting a =
(

δ
2 + 1

2

√
δ2 − 4

)
it follows from (5.2) that k2 = λa or k2 = λ

a . And so, the
roots of the characteristic equation (5.1) are

ap, −ap, p, and − p,

where p = ξ1 + iξ2 with

ξ1 =

√√
λ2

1 + λ2
2 + λ1

2
and ξ2 =

√√
λ2

1 + λ2
2 − λ1

2
. (5.3)

For λ2 �= 0, the solution of the differential equation (3.4) can now be written as

X(x) = C1 cosh(px) + C2 sinh(px) + C3 cosh(apx) + C4 sinh(apx), (5.4)

where C1, C2, C3, and C4 are complex valued constants of integration. By substituting
(5.4) into the boundary conditions in (3.5), we obtain a system of four linear, homoge-
neous equations for C1, C2, C3, and C4. To have a nontrivial solution the determinant
of the coefficient matrix has to be zero, yielding

a(a2p2 + p2 − 2δλ) sinh(apπ) sin(pπ) + (a2δλ + δλ − 2a2p2) cosh(apπ) cos(pπ)

+ a4p2 − a2δλ + p2 − δλ = 0. (5.5)

Taking apart the real and imaginary parts in (5.5), we finally obtain a system of two
nonlinear equations for ξ1 and ξ2 (note that p = ξ1 + iξ2 with ξ1 and ξ2 given by (5.3)):

1
2
(δ − a)(a + 1)2(ξ2

1 − ξ2
2) cosh((a − 1)πξ1) cos((a − 1)πξ2)

+
1
2
(δ + a)(a − 1)2(ξ2

1 − ξ2
2) cosh((a + 1)πξ1) cos((a + 1)πξ2)

− (δ − a)(a + 1)2ξ1ξ2 sinh((a − 1)πξ1) sin((a − 1)πξ2)

− (δ + a)(a − 1)2ξ1ξ2 sinh((a + 1)πξ1) sin((a + 1)πξ2)

+ (a4 − a2δ − δ + 1)(ξ2
1 − ξ2

2)

= 0,

1
2
(δ − a)(a + 1)2(ξ2

1 − ξ2
2) sinh((a − 1)πξ1) sin((a − 1)πξ2)

+
1
2
(δ + a)(a − 1)2(ξ2

1 − ξ2
2) sinh((a + 1)πξ1) sin((a + 1)πξ2)

+ (δ − a)(a + 1)2ξ1ξ2 cosh((a − 1)πξ1) cos((a − 1)πξ2)

+ (δ + a)(a − 1)2ξ1ξ2 cosh((a + 1)πξ1) cos((a + 1)πξ2)

+ 2(a4 − a2δ − δ + 1)ξ1ξ2

= 0.

Numerical approximations of the solution of the previous system can easily be obtained
by using the formula manipulation package Maple. The first ten approximations of the
eigenvalues λ are listed in Table 2 for δ = 2.001, δ = 3 and δ = 10.
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Table 2. Approximations of the first ten eigenvalues λ = λ1 + iλ2

for the case δ > 2.

δ = 2.001 δ = 3 δ = 10
Nr. λ1 λ2 λ1 λ2 λ1 λ2

1 -0.559725 0.530103 -0.649612 0.259728 -0.202361 0.082725
2 -3.109869 2.249036 -1.896037 0.482367 -0.404255 0.115733
3 -7.705232 4.235023 -3.766306 0.587929 -0.673610 0.148573
4 -14.293713 6.414330 -6.162337 0.846289 -1.414891 0.214689
5 -22.854824 8.737879 -9.234287 0.922084 -1.886259 0.248083
6 -33.378299 11.174803 -12.845145 1.255758 -2.424643 0.281221
7 -45.858192 13.703768 -21.970719 1.580228 -3.030494 0.313897
8 -60.290729 16.308973 -27.644080 1.730575 -3.704214 0.346494
9 -76.673362 18.978011 -33.566568 1.854684 -4.445579 0.379587
10 -95.004283 21.701164 -40.469762 2.193531 -5.253938 0.413208

6. The case 0 < δ < 2. In this section we will study the boundary value problem
(3.4)–(3.5) with 0 < δ < 2. The characteristic equation for the differential equation
(3.4) has the form (5.1). It can be shown elementarily that, for λ2 = 0, the boundary
value problem (3.4)–(3.5) has only trivial solutions. For λ2 �= 0 it follows from the
characteristic equation (5.1) that

k2 = λ
(δ

2
+ i

√
4 − δ2

2

)
, or k2 =

λ
δ
2 + i

√
4−δ2

2

. (6.1)

Putting a = δ
2 + i

√
4−δ2

2 it follows from (6.1) that k2 = λa, or k2 = λ
a . And so, the roots

of the characteristic equation (5.1) are

ap1, −ap1, p1, −p1,

where p1 = η1 + iη2 with

η1 =
1
2

(√√
λ2

1 + λ2
2 + λ1

2
(2 + δ) −

√√
λ2

1 + λ2
2 − λ1

2
(2 − δ)

)
,

η2 =
1
2

(√√
λ2

1 + λ2
2 − λ1

2
(2 + δ) +

√√
λ2

1 + λ2
2 + λ1

2
(2 − δ)

)
.

(6.2)

As in Section 5, the solution of the differential equation (3.4) can be written in the form
(5.4). Again we obtain a system of four linear, homogeneous equations for C1, C2, C3,
and C4 by substituting (5.4) into the boundary conditions (3.5). To have a nontrivial
solution the determinant of the coefficient matrix has to be zero, yielding (5.5). The
only difference now with the previous section is that a and p1 are both complex valued.
Taking apart the real and imaginary parts in equation (5.5), we obtain a system of two
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nonlinear equations for λ1 and λ2 (note that p1 = η1 + iη2, a = a1 + ia2 = δ
2 + i

√
4−δ2

2 ):

(a5
1−10a3

1a
2
2+5a1a

4
2+a1−δ(a2

1−a2
2+1))λ1+2a1a2(−2a3

1+2a1a
2
2+δ)λ2

+
1
2

[
(a4

1− 6a2
1a

2
2 + a4

2 + a2
1 − a2

2 − 2a1δ)λ1 + a2(a1a
2
2 − 3a3

1 − a1 + 2δ)λ2

]
·
(

cosh(b1) cos(b2) − cosh(b3) cos(b4)
)

− 1
2

[
2a2(2a3

1 − 2a1a
2
2 + a1 − δ)λ1 + a1(a3

1 − 3a1a
2
2 + a1 − 2δ)λ2

]
·
(

sinh(b1) sin(b2) − sinh(b3) sin(b4)
)

+
1
2

[
(−2a3

1 + 6a1a
2
2 + δ(a2

1 − a2
2 + 1))λ1 + 2a1a2(2a1 − δ)λ2

]
·
(

cosh(b1) cos(b2) + cosh(b3) cos(b4)
)

− 1
2

[
2a2(a2

2−3a2
1+a1δ)λ1+ (−2a3

1+2a1a
2
2+δ(a2

1−a2
2+1))λ2

]
·
(

sinh(b1) sin(b2) + sinh(b3) sin(b4)
)

= 0,

a2(5a4
1−10a2

1a
2
2+a4

2+1−2a1δ)λ1+(a5
1−6a3

1a
2
2+a1a

4
2+a1−δ(a2

1−a2
2+1))λ2

+
1
2

[
(a4

1− 6a2
1a

2
2 + a4

2 + a2
1 − a2

2 − 2a1δ)λ1 + a2(a1a
2
2 − 3a3

1 − a1 + 2δ)λ2

]
·
(

sinh(b1) sin(b2) − sinh(b3) sin(b4)
)

+
1
2

[
2a2(2a3

1 − 2a1a
2
2 + a1 − δ)λ1 + a1(a3

1 − 3a1a
2
2 + a1 − 2δ)λ2

]
·
(

cosh(b1) cos(b2) − cosh(b3) cos(b4)
)

+
1
2

[
(−2a3

1 + 6a1a
2
2 + δ(a2

1 − a2
2 + 1))λ1 + 2a1a2(2a1 − δ)λ2

]
·
(

sinh(b1) sin(b2) + sinh(b3) sin(b4)
)

+
1
2

[
2a2(a2

2−3a2
1+a1δ)λ1 + (−2a3

1+2a1a
2
2+δ(a2

1−a2
2+1))λ2

]
·
(

cosh(b1) cos(b2) + cosh(b3) cos(b4)
)

= 0,

where

b1 = ((a1 + 1)η1 − a2η2)π, b2 = (a2η1 + (a1 + 1)η2)π

b3 = ((a1 − 1)η1 − a2η2)π, b4 = (a2η1 + (a1 − 1)η2)π,

and where η1 and η2 are given by (6.2). Using the formula manipulation package Maple,
numerical approximations of the solution of the previous system can easily be obtained.
The first ten approximations of the eigenvalues λ of the boundary value problem (3.4)–
(3.5) are listed in Table 3 for δ = 1.9999, δ = 1.0, and δ = 0.1.
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Table 3. Approximations of the first ten eigenvalues λ = λ1 + iλ2

for the case 0 < δ < 2.

δ = 1.9999 δ = 1.0 δ = 0.1
Nr. λ1 λ2 λ1 λ2 λ1 λ2

1 -0.547494 0.579371 -0.164894 0.005946 -0.108821 0.526155
2 -3.135791 2.404405 -1.240607 0.705894 -0.351004 3.389543
3 -7.820001 4.574476 -3.173444 3.149545 -0.640398 8.52632
4 -14.559196 6.982240 -6.078811 7.370027 -1.03256 15.571784
5 -23.329186 9.586525 -10.000888 13.333311 -1.527404 24.586572
6 -34.119770 12.356921 -14.929597 21.031815 -2.123395 35.587779
7 -46.925065 15.273024 -20.861508 30.463386 -2.89967 48.581077
8 -61.741344 18.320226 -27.795212 41.627437 -3.616871 63.568843
9 -78.566087 21.487563 -35.730008 54.523756 -4.513981 80.552240
10 -97.397507 24.766517 -44.665516 69.152246 -5.511228 99.531906

7. Conclusion. In this paper an improved version of a dissipation model for a can-
tilevered beam has been studied. The damping is assumed to be proportional to the
bending rate of the beam. For the cantilevered beam the relationship between the damp-
ing rates and the frequencies has been obtained by using the recently developed, adapted
version of the method of separation of variables (see [6]). It should be remarked that this
relationship also can be obtained by applying the Laplace transform method to (2.3).
The boundary value problem (3.4)–(3.5) then also is obtained. It has been shown that
this phenomenological model for the cantilevered beam always generates damping, and
this was the goal of the paper. Although it has not been shown, it seems most likely that
the eigenfunctions form a Riesz basis for an appropriate energy space for the problems
studied in this paper. It is well known that damping rates tend to increase with the
frequency. Laboratory results as given in [3] for composite and wooden beams indicate
a predominantly linear relationship between the damping rate and the frequency. For
simply supported beams, it is obvious that the relationship between the damping rate
and the frequency is linear. However, using this improved model for the cantilevered
beam, our calculations indicate that there is not a strong linear dependence between the
damping rate and the frequency.
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