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Abstract. The method of intrinsic characterisation of shock wave propagation avoids
the cumbersome task of solving the basic systems of equations before and after the shock,
and has been used by various authors for direct calculation of relevant quantities on the
shock. It leads to an infinite hierarchy of ordinary differential equations, which, due to
the absence of a mathematical theory, is truncated to a finite system. In most practical
cases, but not in all, the solutions of the truncated systems approximate the solution of
the infinite system satisfactorily. The mathematical question of the error generated is
completely open. We precisely define the concept of approximation and rigorously justify
the local correctness of the approximation method for positive real analytic initial data
for the inviscid Burgers’ equation, which has certain features in common with systems
appearing in literature. At the same time we show that the nonuniqueness of the infinite
system can lead to wrong results when the initial data are only C∞ and that blow-
up of the solutions of the truncated systems are an obstacle for straightforward global
approximation. Global approximation is achieved by recomputing the initial conditions
for the approximating solutions in finitely many time steps. The results obtained will
have to be taken into account in a future theory for more advanced systems.

1. Introduction. The problem of determining the propagation of shock waves in
various branches of continuum mechanics has been a subject of interest since the early
work of S.D. Poisson and B. Riemann. Our present investigation is particularly related to
the branch of shock dynamics which started about 1970 und whose aim was an intrinsic
description of shock propagation, which means—in the words of T.W. Wright (1976)—
“a description such that the motion and the amplitude of the shock are determined by
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quantities known on the shock itself ” [31, p. 312]. We begin by sketching the main lines
of development (further references can be found in [5], [23], [30], [24], [25], [17]).

The authors P.J. Chen and M.E. Gurtin [6], [7], J.W. Nunziato and E.K. Walsh [15],
J. Dunwoody [8], K.W. Schuler, J.W. Nunziato and E.K. Walsh [23], and T.C.T. Ting
[29] following T.W. Wright [31] used the theory of singular surfaces to derive the shock
amplitude equation, which however has to be supplemented by further equations because
the involved coupling terms remain undetermined. Though in higher dimensions the
additional equations are of high complexity, and in many papers only the first equations
are explicitly given, the intrinsic description of shock propagation generally has to face
the problem of an infinite set of such “compatibility conditions” on the shock. In 1976
(the year of his original paper) V.P. Maslov [14] described the evolution of a weak shock
in an isentropic gas by a sequence of transport equations for the shock strength and
higher derivatives of flow variables behind the shock along rays. Following [14], M.A.
Grinfel’d [11] obtained an infinite set of equations for the shock kinematics in elastic
media. After 1980, further progress is due to F.B. Bailey and P.J. Chen [3] and Y.B. Fu
and N.H. Scott [9], [10]. A.M. Anile and G. Russo [1], [2] derived an infinite system of
identities to describe the propagation of step shocks in a nonisentropic flow of an ideal
gas. They also investigated the truncation error which occurs if the system of infinite
equations is replaced by a finite system obtained by truncating the infinite system.

In 1990, R. Ravindran and P. Prasad [18], [19] studied this question for a one-dimen-
sional model, namely the inviscid Burgers’ equation. The initial value problem is

∂tu + u∂xu = 0, (1.1)

with initial condition
u(0, x) = ϕ(x)χ(α,s], α < x < β, (1.2)

for positive ϕ given on (α, β) and s ∈ (α, β). For (1.1), (1.2), a shock starts from s at
t = 0. The spatial derivatives of u at the shock x = Xs(t) at time t determined by vn(t),

vn(t) :=
1
n!

∂nu

∂xn
(t, Xs(t)), n ∈ N0 := N ∪ {0},

satisfy an infinite system of differential equations

v̇n(t) = −n + 1
2

n∑
i=0

vi(t)vn+1−i(t), n ∈ N0, (1.3)

which represent the desired set of compatibility conditions in this case. Later, they
derived two compatibility conditions for the Euler equation in two space dimensions [20],
[16], after earlier papers of R. Srinivasan and P. Prasad [27], [28], which followed [14].
M.P. Lazarev, P. Prasad and S.K. Singh [13] calculated three conditions along a shock
path for a plane shock to study the one-dimensional piston problem. N.K.-R. Kevlahan
[12] investigated the propagation of weak shocks for the N wave, the expanding cylindrical
shock and for the sinusoidal flow in two space dimensions, and found that the results
coincided with those obtained by direct numerical simulation. Lately, V.D. Sharma,
C.H. Radha [24], [25] and V.D. Sharma, C.H. Radha and A. Jeffrey [17] gave applications
of the theory to one-dimensional planar and nonplanar shock waves in a relaxing gas, to
three-dimensional shock waves in an ideal gas and to bores of arbitrary strength over a
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sloping beach in a one-dimensional setting. In these three cases which are related to [14],
[1], [2], the infinite set of transport equations is derived, and the effect of the truncation
at lowest and higher orders is carefully investigated. Indeed, the problem of how well the
truncated systems can replace the infinite system is present in all the work mentioned
and represents motivation for subsequent mathematical work.

The present paper intends to throw new light on this general problem by a detailed
study of the model example given by (1.1), (1.2). The question here is whether the first
n components of the R

∞-valued solution v with v(0) = η ∈ R∞,

ηn :=
ϕ(n)(s)

n!
, n ∈ N0,

can be approximated by the first n components of the Rp+1-valued solution V p of the
(p + 1)-dimensional (“p-truncated”) system

V̇ p
n (t) = −n + 1

2

n∑
i=0

V p
i (t)V p

n+1−i(t), n = 0, 1, · · · , p − 1,

V̇ p
p (t) = −p + 1

2

p∑
i=1

V p
i (t)V p

p+1−i(t),

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(1.4)

with

V p(0) = (η0, η1, · · · , ηp)

for suitable p ∈ N. Then the shock strength v0(t) can be approximately calculated, and
the shock position Xs(t) can be obtained by the Rankine-Hugoniot condition

Ẋs(t) =
1
2
v0(t),

with Xs(0) = s. Numerical calculations [18], [19], show that this is the case, but a
mathematical proof of the correctness of this procedure has not yet been given. In fact,
the existence theory for the infinite system (1.3) is completely open. Because of the
diverging coefficients, it also seems to defy treatment by the well-developed theory of
differential equations in Banach spaces. In the same way, to begin with, little is known
about the time interval of the existence of solutions of the quadratic p-truncated systems.

One of the purposes of the present paper is to give a rigorous mathematical justification
of the approximation for positive, real analytic ϕ. Our main results are given in §7. A
number of preliminaries are required, because the conditions may not necessarily entail
the solvability of the model equation for all t > 0. In §2, we study the existence and
uniqueness of the system for the position Xs and the strength us of the shock, which
is given by the Rankine-Hugoniot condition (Propositions 1 and 2). With an equivalent
formulation involving an associated function ξs, we are able to characterise those ϕ for
which Xs, us (and ξs) exist only on a bounded interval [0, Ts) or (globally) for all t ≥ 0
(Proposition 3). §3 provides the necessary background for the solvability of the initial
value problem (1.1), (1.2) on its maximal domain of existence (Proposition 4). For the
solution u of (1.1), we derive the infinite system (1.3) in §4 (Proposition 5). In the
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following two sections, the system (1.3) and its p-truncated system (1.4) are studied as
“convolution-” differential equations of the form

ż(t) = z(t) ∗ z(t), z(0) = η ∈ R
∞

with a suitable “convolution” ∗ as a mapping R
∞ × R

∞ → R
∞. A formula for a real

analytic solution is given in the form of a power series

z(t) =
∞∑

k=0

fktk

with R∞-valued coefficents fk, k ∈ N0, depending on η (Lemmas 6 and 8). To prove the
convergence of the series for η satisfying the condition

|ηn| ≤ Aρn, n ∈ N0,

for some A, ρ > 0, we modify the idea of E. Cartan’s majorizing solution for complex
analytic solutions of finite systems of differential equations with holomorphic right-hand
sides, together with a detailed discussion of the distribution of signs in the infinite system.
A majorizing solution is (almost) explicity given by the solution to ηn = (−1)nAρn. §7
contains the desired result of local approximation (Theorem 1): The analytic solution
v of the system (1.3) with ηn := ϕ(n)(s)/n! and the corresponding solutions V p of the
truncated systems have converging power series expansions on a common time interval
[0, T ) and V p(t) → v(t) in R∞ uniformly on every compact subinterval as p → ∞.

Several examples illustrate inherent features of the approximation:
(1) The power series expansion of the solution v on [0, T ) about zero may converge

only on an interval whose right endpoint is strictly smaller than T (Example 4).
(2) The solution v may exist for t > 0, but the V p may blow up at a finite time

(Example 5).
(3) If ϕ is not real analytic but only C∞, the V p do not necessarily tend to v, but

to the real analytic solution of (1.3) (Example 3 and §8).
Our last result is the following: It is possible to recompute the initial conditions for

the V p in finitely many steps and thus achieve global approximation (Theorem 2 in §7).
We conclude by remarking in §8 that the infinite system investigated here reflects certain
properties of systems appearing in the literature. It seems therefore likely that future
research of more advanced systems will find phenomena which we have pointed out in
our present work.

2. Shock position and shock strength.
2.1. Existence and uniqueness. The general assumption here is:
A1) ϕ ∈ C2(α, β), ϕ > 0 on (α, β) (α = −∞ not excluded).
For fixed s ∈ (α, β), we consider the system of equations

Ẋ(t) =
1
2
u(t), X(0) = s, (2.1)

u̇(t) = ϕ(X(t) − tu(t)), u(0) = ϕ(s). (2.2)
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A solution on an interval [0, T ), where 0 < T ≤ ∞, is a pair of functions X, u ∈
C1[0, T ) such that X(t) − tu(t) ∈ (α, s] and (2.1), (2.2) are satisfied on [0, T ). Together
with the system (2.1), (2.2), we consider the equation

t

2
ϕ2(ξ(t)) +

ξ(t)∫
s

ϕ(y)dy = 0. (2.3)

A solution on [0, T ) is a function ξ ∈ C1[0, T ) with values in (α, s] which satisfies (2.3)
on [0, T ), or equivalently

(ξ(t) + tϕ(ξ(t)))· =
1
2
ϕ(ξ(t)), ξ(0) = s. (2.4)

We prove the equivalence: the differentiation of (2.3) gives (2.4) in view of the as-
sumption that ϕ > 0, and the integration of (2.4) yields (2.3).

We are going to solve the system (2.1), (2.2) with the help of the following proposition:

Proposition 1. The system (2.1), (2.2) is solvable on an interval [0, T ) if and only if
equation (2.3) (equivalently (2.4)) is solvable on [0, T ): if (X, u) is a solution of (2.1),
(2.2), then

ξ(t) := X(t) − tu(t)

is a solution of (2.3); conversely, if ξ is a solution of (2.3) (equivalently (2.4)), then

X(t) := ξ(t) + tϕ(ξ(t)),
u(t) := ϕ(ξ(t))

is a solution of (2.1), (2.2).

The proof follows from the equivalence (2.3) ↔ (2.4). �

Let us define the function t : (α, s] → [0,∞) by

t(ξ) :=
2

ϕ2(ξ)

s∫
ξ

ϕ(y)dy. (2.5)

We have t(s) = 0. The derivative is given by

t′(ξ) = − 2
ϕ3(ξ)

Fs(ξ)

with

Fs(ξ) := ϕ2(ξ) + 2ϕ′(ξ)

s∫
ξ

ϕ(y)dy, α < ξ ≤ s.

Let us define
αs := inf{a ∈ (α, s] : Fs > 0 on (a, s]} ≥ α.

We note that αs < s because Fs(s) = ϕ2(s) > 0. We have t′(ξ) < 0 on (αs, s], and this
is the maximal interval on which t′ < 0, in the sense that either αs = α or αs > α, in
which case F (αs) = 0 and t′(αs) = 0. Because t is strictly decreasing on (αs, s], we may
define

Ts := lim
ξ→αs

t(ξ) ∈ (0,∞]. (2.6)
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The restriction t|(αs,s] (again denoted by t) is one-to-one.

Proposition 2 (Local existence). The inverse function of

t : (αs, s] → [0, Ts)

denoted by

ξ : [0, Ts) → (αs, s]

is a solution of (2.3). In the case αs > α, we have

lim
t→Ts

ξ(t) = αs, lim
t→Ts

ξ̇(t) = −∞, (2.7)

lim
t→Ts

(1 + tϕ′(ξ(t))) = 1 + Tsϕ
′(αs) = 0. (2.8)

ξ is the maximal uniquely determined solution of (2.3).

Proof. For ξ = ξ(t), t ∈ [0, Ts), we have

t = t(ξ(t)) =
2

ϕ2(ξ(t))

s∫
ξ

ϕ(y)dy,

hence ξ is a solution of (2.3) on [0, Ts). Now let αs > α. Then the first equation in (2.7)
follows from (2.6). Because t′(αs) = 0,

lim
t→Ts

ξ̇(t) = lim
t→Ts

1
t′(ξ(t))

= lim
ξ→αs

1
t′(ξ)

= −∞,

which is the second equation in (2.7). (2.4) implies

1 + tϕ′(ξ(t)) = −1
2

ϕ(ξ(t))
ξ̇(t)

= −1
2

ϕ(ξ(t)) t′(ξ(t)),

and (2.8) follows by taking the limit t → Ts. Hence ξ cannot be extended beyond Ts. We
have to prove uniqueness. Assume ξ̄ : [0, T̄ ) → (α, s] is a solution of (2.3). It is sufficient
to show that ξ̄ = ξ on [0, T̂ ) for any T̂ < min(T̄ , Ts). (2.4) and (A1) imply

(1 + tϕ′(ξ̄(t))) ˙̄ξ(t) = −1
2

ϕ(ξ̄(t)) < 0 on [0, T̂ ).

Hence the two factors on the left side cannot change sign on [0, T̂ ). Because the first
factor is positive near t = 0, we have ˙̄ξ(t) < 0 on [0, T̂ ). Let us define

λ := lim
t→T̂

ξ̄(t).

Then ξ̄ : [0, T̂ ) → (λ, s] is one-to-one. Its inverse function τ : (λ, s] → [0, T̂ ) satisfies

τ (ξ)
2

ϕ2(ξ) +

ξ∫
s

ϕ(y)dy = 0 on (λ, s],

and ξ̄ and ξ have the same inverse on [0, T̂ ). �
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Propositions 1 and 2 imply that there exist unique maximal solutions (X, u) of (2.1),
(2.2) and ξ of (2.3) ↔ (2.4) on [0, Ts). From the equation

X(t) = ξ(t) + 2tẊ(t),

it is easy to deduce the equivalent representations on [0, Ts):

X(t) = ξ(t) −
√

t

t∫
0

ξ̇(τ )√
τ

dτ,

Ẋ(t) = − 1
2
√

t

t∫
0

ξ̇(τ )√
τ

dτ, X(0) = s.

From this and from the proof of Proposition 2, we obtain the following lemma.

Lemma 1. For the solutions (X, u) of (2.1), (2.2) and ξ of (2.3) ↔ (2.4) on [0, Ts), we
have

ξ̇(t) < 0, u(t) = 2Ẋ(t) > 0 on [0, Ts),

1 + tϕ′(ξ(t)) > 0, αs < ξ(t) < s < X(t) on (0, Ts), (2.9)

ξ̇(t) = −1
2

ϕ(ξ(t))
1 + tϕ′(ξ(t))

on [0, Ts). (2.10)

In the next proposition, we give necessary and sufficient conditions for ξ being global,
that is, Ts = ∞.

Proposition 3. Assume that ϕ(α) := lim
y→α

ϕ(y) exists. Then a maximal solution ξ of

(2.3) is global if and only if the following conditions hold:
i) α = αs, that is, Fs(x) := ϕ2(x) + 2ϕ′(x)

∫ s

x
ϕ(y)dy > 0 on (α, s].

ii) lim
x→α

2
ϕ2(x)

∫ s

x
ϕ(y)dy = ∞.

Furthermore we have:
a) If ϕ′ > 0 or (for finite α) ϕ′′ < 0 on (α, s], then i) holds.
b) If ϕ(α) = 0, then ii) holds.

Proof. If α < αs, then Ts = t(αs) < ∞. If αs = α, then the limit in ii) is Ts. If ϕ′ > 0
on (α, s], then i) obviously holds. If ϕ′′ < 0 on (α, s], then

F ′
s(x) = 2ϕ′′(x)

s∫
x

ϕ(y)dy < 0,

hence Fs(x) > Fs(s) > 0, and i) holds as well. This shows a) and b) follows from
s∫

α

ϕ(y)dy > 0. �

Example 1. ϕ(x) :=
x∫
0

(y− 1
3 )(y− 2

3 )dy on (0,2) satisfies A1) and ϕ(0) = 0. For s = 1

it violates ii) with 1
2 < αs < 1, so that Ts < ∞. We have ϕ′ > 0 on (0, 1

3 )∪ ( 2
3 , 1), ϕ′ < 0

on ( 1
3 , 2

3 ), ϕ′′ < 0 on (0, 1
2 ), and ϕ′′ > 0 on ( 1

2 , 1).
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For the solution u of the initial value problem (1.1), (1.2), the system (2.1), (2.2)
represents the Rankine-Hugoniot condition for the position X and the strength u of the
shock, which emanates from s ∈ (α, β) at t = 0 (see Proposition 4).

2.2. Variable s. The general assumption of this section is again A1). We consider
the one-parameter families (ξs), (Xs), (us) as s varies in (α, β). The t-sections of the
collection of graphs

G := {(t, Xs(t)), 0 ≤ t < Ts, α < s < β}
might not be connected. For a compact subinterval [a, b] ⊂ (α, β) define

Ga,b := {(t, Xs(t)), 0 ≤ t ≤ Ta,b, a ≤ s ≤ b},

where
Ta,b := inf

s∈[a,b]
Ts > 0,

because it is easily seen that s �→ Ts is lower semi-continuous on (α, β). We will study
the functions s �→ ξs(t), Xs(t) on Ga,b in the next lemma.

Lemma 2. Let 0 ≤ t < Ta,b. The following maps are strictly increasing bijections:

a) ξ·(t) : [a, b] → [ξa(t), ξb(t)], s �→ ξs(t),
b) yt : [ξa(t), ξb(t)] → [Xa(t), Xb(t)], s �→ yt(s) := ϕ(s)t + s, ξs(t) �→ Xs(t),
c) X·(t) : [a, b] → [Xa(t), Xb(t)], s �→ Xs(t).

Furthermore,
1 + tϕ′(x) > 0, ξa(t) ≤ x ≤ ξb(t). (2.11)

Proof. a) If we differentiate

t

2
ϕ2(ξs(t)) +

ξs(t)∫
s

ϕ(y)dy = 0 (2.12)

with respect to s, we obtain

∂ξs(t)
∂s

=
ϕ(s)

ϕ(ξs(t))(1 + tϕ′(ξs(t)))
> 0

with (2.9). Hence ξ·(t) is one-to-one. Therefore, for x ∈ [ξa(t), ξb(t)], there exists s ∈ [a, b]
such that x = ξs(t), and (2.11) follows from (2.9).

b) For s ∈ [ξa(t), ξb(t)], we have

∂yt(s)
∂s

= ϕ′(s)t + 1 > 0

with (2.11). Because

yt(ξs(t)) = ϕ(ξs(t)) · t + ξs(t) = Xs(t) (2.13)

by Proposition 1, yt is also one-to-one.
c) If a ≤ s < σ ≤ b, then it follows from a) and b) that

Xs(t) = yt(ξs(t)) < yt(ξσ(t)) = Xσ(t).

�
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REMARK. An often considered case is that ϕ has an extension Φ ∈ C2(α′, b) with
α′ < α and Φ(α) = 0. In this case ξ, X, u are not defined for s = α. However, one can
show that

lim
s→α

ξs(t) = α, lim
s→α

ξ̇s(t) = 0,

lim
s→α

yt(s) = 0, lim
s→α

Xs(t) = α,

using (2.12), (2.10) and (2.13). Also ξ·(t), yt, X·(t) can be extended to bijections on [α, b],
[α, ξb(t)], and [α, b], respectively. �

The inverse of yt will be denoted by

st : [Xa(t), Xb(t)] → [ξa(t), ξb(t)], (2.14)

Xs(t) → ξs(t). (2.15)

We have

x = ϕ(st(x))t + st(x), (2.16)

∂st(x)
∂x

=
1

1 + tϕ′(st(x))
on [Xa(t), Xb(t)]. (2.17)

As a consequence of Lemma 2, we note that

Ga,b = {(t, x) : Xa(t) ≤ x ≤ Xb(t), 0 ≤ t ≤ Ta,b},

and as a consequence of the lower semi-continuity of Ts, we have

G =
⋃

α<a<b<β

Ga,b. (2.18)

3. The solution of the model equation. The general assumption of this section
is again A1).

We consider the sets G and Ga,b introduced in §2.2, and remark that for (t, x) ∈ Ga,b,
the function

u �→ u − ϕ(x − tu)

is strictly increasing in the u-interval J(t, x) := [1t (x − ξb(t)), 1
t (x − ξa(t))], because

1
t
(x − ξb(t)) ≤ u ≤ 1

t
(x − ξa(t)) ←→ x − tu ∈ [ξa(t), ξb(t)]

and hence
∂

∂u
(u − ϕ(x − tu)) = 1 + tϕ′(x − tu) > 0

with (2.11).

Proposition 4. There exists a unique solution u ∈ C1(G) of the initial value problem

∂tu + u∂xu = 0 in G, u(0, x) = ϕ(x) on (α, β).

It is given by
u(t, x) = ϕ(st(x)).

For (t, x) ∈ G, t > 0, u(t, x) is the unique solution of the equation

u = ϕ(x − tu)
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in the u-interval 1
t (x − ξb(t)) ≤ u ≤ 1

t (x − ξa(t)). Hence

u(t, Xs(t)) = us(t) = ϕ(ξs(t)), α < s < β, 0 ≤ t < Ts.

G is the maximal domain of existence of u.

Proof. In view of (2.18), it is sufficient to prove the result on Ga,b. If u(t, x) = ϕ(st(x)),
then by (2.16),

x = tu(t, x) + st(x).

Hence
u(t, x) = ϕ(x − tu(t, x)). (3.1)

It follows from (2.14) that
1
t
(x − ξb(t)) ≤

1
t
(x − st(x)) = u(t, x) ≤ 1

t
(x − ξa(t)), (3.2)

hence by the preceeding remark

−tϕ′(x − tu(t, x)) = 1. (3.3)

We differentiate (3.1) and get

∂tu(t, x) + u(t, x)∂xu(t, x) = ϕ′(x − tu(t, x))(−u(t, x)− t∂tu(t, x))
+u(t, x)ϕ′(x − tu(t, x))(1 − t∂xu(t, x))

= −t ϕ′(x − tu(t, x))(∂tu(t, x) + u(t, x)∂xu(t, x)).

It follows from (3.3) that u satisfies the differential equation. From (3.2) and the preceed-
ing remark, we conclude that u(t, x) is the unique solution of the equation u = ϕ(x− tu)
in J(t, x). In particular

u(t, Xs(t)) ∈ J(t, Xs(t))

is a solution of the equation
u = ϕ(Xs(t) − tu).

We know from Proposition 1 that

us(t) = ϕ(ξs(t)) = ϕ(Xs(t) − tus(t)),

which says that us(t) also satisfies this equation and that

us(t) =
1
t
(Xs(t) − ξs(t)) ∈ J(t, Xs(t))

by Lemma 2a). Hence u(t, Xs(t)) = us(t) by uniqueness. Now, let v be any solution of
the model equation assuming the initial value ϕ. Let t �→ η(t, s) be the solution of the
initial value problem

η̇(t, s) = v(t, η(t, s)), η(0) = s.

Then
d

dt
v(t, η(t, s)) = 0,

hence
v(t, η(t, s)) = v(0, η(0, s)) = ϕ(s)

and
η̇(t, s) = ϕ(s), η(t, s) = ϕ(s)t + s = yt(s).
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Therefore v(t, yt(s)) = ϕ(s) and v(t, x) = ϕ(st(x)) = u(t, x). The maximality of G follows
from Proposition 2. �

Uniqueness also follows—in a more complicated manner—from the entropy condition
[26, p. 251]

u(t, x + c)−u(t, x)
c

=
ϕ(st(x + c))−ϕ(st(x))

c
= ϕ′(st(x + θc))

∂st

∂x
(x + θc)

=
ϕ′(st(Xγ(t)))

1 + tϕ′(st(Xγ(t)))
=

ϕ′(ξγ(t))
1 + tϕ′(ξγ(t))

≤ 1
t

on Ga,b, for c > 0, 0 < θ < 1, a < γ < b with Lemma 2b), (2.15), (2.17). �

4. An infinite system of ordinary differential equations. The general assump-
tion of this section is

A2) ϕ ∈ C∞(α, β), ϕ > 0 on (α, β) (α = −∞ not excluded).
This assumption implies that t = ts(ξ) is C∞-differentiable on α < s < β, αs < ξ ≤ s

by (2.5). Furthermore, ξ = ξs(t) is C∞ on α < s < β, αs < t ≤ s (as a solution of (2.3)
with the implicit function theorem and (2.9)) and so are X = Xs(t) and u = us(t) (as
compositions of C∞-functions with Proposition 1). Similarly, s = st(x) is C∞ on G (as
a solution of (2.16) with the implicit function theorem and (2.9)) and so is u = u(t, x)
(as composition of C∞-functions by Proposition 4). If ϕ is, in addition, real analytic (as
in §7), then all the functions just considered are real analytic (see [4]).

We consider a compact subinterval [a, b] ⊂ (α, β) and for 0 ≤ t ≤ Ta,b, ξa(t) ≤ s ≤
ξb(t), we define

wn(t, s) :=
1
n!

(
1

1 + tϕ′(s)
∂

∂s

)n

ϕ(s), n ∈ N0; (4.1)

see (2.11). Then

wn(t, s) =
1
n

1
1 + tϕ′(s)

∂wn−1

∂s
(t, s), n ∈ N. (4.2)

With Proposition 4

u(t, x) = w0(t, st(x)),

and by induction with respect to n and (2.17) and (4.2), we obtain

1
n!

∂nu

∂xn
(t, x) =

1
n

∂

∂x

1
(n − 1)!

∂n−1u

∂xn−1
(t, x) =

1
n

∂

∂x
wn−1(t, st(x))

=
1
n

∂st

∂x
(x)

∂wn−1

∂s
(t, st(x)) = wn(t, st(x)).

Lemma 3. We have

∂w0

∂t
= 0, w0(0, s) = ϕ(s),

∂wn

∂t
= −n + 1

2

n∑
i=1

wiwn+1−i, wn(0, s) =
ϕ(n)(s)

n!
, n ∈ N.
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Proof. We prove the last equation by induction with respect to n. For n = 1,

∂w1

∂t
=

∂

∂t

ϕ′

1 + tϕ′ = − ϕ′2

(1 + tϕ′)2
= −w2

1.

Now we assume the assertion holds for n − 1. Applying (4.2) 2n − 1 times, we get

∂wn

∂t
= − 1

n

ϕ′

(1 + tϕ′)2
∂wn−1

∂s
+

1
n

1
1 + tϕ′

∂

∂s

∂wn−1

∂t

= −w1wn +
1
n

1
1 + tϕ′

∂

∂s
(−n

2
)

n−1∑
i=1

wiwn−i

= −w1wn − 1
2

1
1 + tϕ′

n−1∑
i=1

(
∂wi

∂s
wn−i + wi

∂wn−i

∂s

)

= −w1wn − 1
2

n−1∑
i=1

((i + 1)wi+1wn−i + (n + 1 − i)wiwn+1−i)

= −w1wn − 1
2

(
n−1∑
i=2

(i + n + 1 − i)wiwn+1−i + nwnw1 + w1 · nwn

)

= −n + 1
2

n∑
i=1

wiwn+1−i. �
Now we define

vn(t) :=
1
n!

∂nu

∂xn
(t, Xs(t)) = wn(t, st(Xs(t))) = wn(t, ξs(t)), n ∈ N0,

with (2.15). We have
v0(t) = u(t, Xs(t)) = us(t).

Proposition 5. The vn, n ∈ N0, are solutions of the infinite system

v̇n = −n + 1
2

n∑
i=0

vivn+1−i, vn(0) =
ϕ(n)(s)

n!
, n ∈ N0. (4.3)

Proof. By Lemma 3, (4.2) and (2.10),

v̇n(t) =
∂wn

∂t
(t, ξs(t)) +

∂wn

∂s
(t, ξs(t))ξ̇s(t)

=
n + 1

2

n∑
i=1

vi(t)vn+1−i(t) + (n + 1)vn+1(t)(−
1
2
v0(t))

= −n + 1
2

n∑
i=0

vi(t)vn+1−i(t). �

Example 2. The initial value problem

v̇n(t) = −n + 1
2

n∑
i=0

vi(t)vn+1−i(t), vn(0) = (−1)n, n ∈ N0,

has the (almost) explicit solution

vn(t) = wn(t, ξ(t)), n ∈ N0,
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on [0, e−1), where

w0(t, s) =
1
s
, w1(t, s) = − 1

s2 − t
,

wn(t, s) =
(−1)n

n!(s2 − t)2n−1

n−1∑
j=1

an
j tj−1s3n−1−2j , n ≥ 2,

with positive coefficients an
1 , an

2 , · · · , an
n−1 recursively defined by

a2
1 := 2, an+1

1 := (n + 1)an
1 ,

an+1
j := (n − 1 + 2j)an

j + (3n + 1 − 2j)an
j−1, j = 2, · · · , n − 1,

an+1
n := (n + 1)an

n−1, n ≥ 2,

and ξ : [0, e−1] → [e−1/2, 1] is the inverse of the function t : [e−1/2, 1] → [0, e−1], t(ξ) :=
ξ2 ln(ξ−2).

Proof. We let ϕ(x) := 1
x on (0, ∞) and s := 1. Then ϕ(n)(1) = (−1)nn!, αs = e−1/2,

and ξ(t) satisfies (2.5). One shows by induction that the wn satisfy (4.1) and the assertion
follows from Proposition 5 (note that ξ2(t) − t > 0 on [0, e−1)). �

Example 2 will play an important role in the next section. We need to know that the
solution v = (vn)n∈N0 can be represented by its power series about t = 0 everywhere on
the interval of its existence (which is not the case in general; see Example 5).

Lemma 4. The solution v of Example 2 has a power series expansion about t = 0 which
converges for |t| < e−1.

Proof. We consider the complex analytic extension of t on S := {z ∈ C\{0}, |arg z| <

π/4}, say, given by
t(z) = z2 ln(1/z2) = −z2 ln(z2).

Its derivative t′(z) = −2z (ln(z2)+1) is zero only for z = e−1/2. On the disk B1 := {z ∈
C; |z − 1| < 1 − e−1/2} ⊂ S, t is holomorphic with t′(z) = 0. It can be shown that t is
injective on B1 and t(B1) ⊃ B0 := {ζ ∈ C; |ζ| < e−1}. Hence the inverse ξ : t(B1) → B1

is holomorphic on t(B1) and never zero, and the same is true for ξ|B0 . Hence v0(ζ) = 1
ξ(ζ)

is holomorphic on B0 and has a power series expansion about ζ = 0 converging on B0.
Because v0 = 0 on B0, v1(ζ) = −2v′0(ζ)/v0(ζ) is holomorphic on B0, and, by induction
with respect to n ∈ N, so are all vn. �

We remark that for any initial condition η = (η0, η1, · · · ), the initial value problem

ẇ0 = 0, w0(0) = η0,

ẇn = −n + 1
2

n∑
i=1

wiwn+1−i, wn(0) = ηn, n ∈ N,

is uniquely solvable. In fact,

w0(t) = η0, w1(t) = η1(1 + η1t)−1,

wn(t) = (1 + η1t)−(2n−1)
n−2∑
j=0

αn,jt
j , n ≥ 2,
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where the αn,j depend upon η1, η2, · · · , ηn. However, there exist C∞-initial data ϕ1, ϕ2

with ϕ1(n)(s) = ϕ2(n)(s), n ∈ N0, for some s, for which the corresponding v1, v2 are
different, though they satisfy the same initial value problem (4.3); see the following
example.

Example 3. On R, let ϕ1(x) := 1, ϕ2(x) := 1 + exp(−1/x2), x = 0, ϕ2(0) := 1.
Then ϕi(0) = 1, ϕi(n)(0) = 0, n ∈ N, i = 1, 2. Hence for s < 0

w1(t, s) = (1, 0, 0, · · · ), w2
0(t, s) = ϕ2(s),

so that by the definition of v1, v2,

v1(t) = (1, 0, 0, · · · ), v2
0(t) = ϕ2(ξ2(t)) > 1, t > 0,

and v1 = v2 (in fact v1
n = v2

n for all n ∈ N0).

5. A convolution and real analytic solutions of the infinite system. We are
going to present the infinite system (4.3) in another form using the concept of a “convo-
lution” of two elements in R∞.

Definition 1. For a = (a0, a1, a2, · · · ), b = (b0, b1, b2, · · · ) ∈ R∞, we define the con-
volution a ∗ b ∈ R∞ by

(a ∗ b)n := −n + 1
2

n∑
i=0

aibn+1−i, n ∈ N0.

Whereas the operation ∗ as a mapping from R∞ × R∞ into R∞ is obviously not
commutative, nor associative even for equal factors, that is, in general,

a ∗ (a ∗ a) = (a ∗ a) ∗ a,

we do have the following properties which will be crucial in the sequel. Here the limit of
a sequence will be the componentwise limit, and |a| = (|a|n)n∈N0 .

Lemma 5. a) The operation ∗ : R
∞ × R

∞ → R
∞ is linear in the first and in the second

factor, i.e. for λ, µ ∈ R and a, b, c ∈ R∞, we have

(λa + µb) ∗ c = λ · a ∗ c + µ · b ∗ c,

a ∗ (λb + µc) = λ · a ∗ b + µ · a ∗ c.

b) If ak → a and bk → b in R∞, then ak ∗ bk → a ∗ b in R∞.
c) If (ak)k∈N0 and (bk)k∈N0 are two sequences in R∞ and if the series

∞∑
k=0

ak = A,
∞∑

k=0

bk = B

are absolutely convergent in R∞, then every series of the convolutions ak ∗ bi (based on
a specific enumeration J of N0 × N0) ∑

(k,i)∈J

ak ∗ bi (5.1)
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is absolutely convergent in R∞ and has the same value A ∗ B, in particular

A ∗ B =
∞∑

k=0

(a0 ∗ bk + a1 ∗ bk−1 + · · · ak ∗ b0)

(Cauchy product).

Proof. We only need to prove c). The assumption is that for all n ∈ N0

∞∑
k=0

|ak
n| < ∞,

∞∑
k=0

|bk
n| < ∞.

The estimate
∞∑

k=0

k∑
m=0

|(am ∗ bk−m)n| =
∞∑

m=0

∞∑
k=m

|(am ∗ bk−m)n|

=
n + 1

2

∞∑
m=0

∞∑
k=m

|
n∑

i=0

am
i bk−m

n+1−i|

≤ n + 1
2

n∑
i=0

∞∑
m=0

|am
i |

∞∑
k=m

|bk−m
n+1−i|

=
n + 1

2

n∑
i=0

( ∞∑
m=0

|am
i | ·

∞∑
k=0

|bk
n+1−i|

)
< ∞

shows that every series (5.1) is absolutely and hence unconditionally convergent. For the
particular choice J in the form of squares, we have for the partial sum with index r2

by a) ∑
0≤k,i≤r

ak ∗ bi =
r∑

k=0

ak ∗
r∑

i=0

bi.

Hence for the subsequence of partial sums given by the sequence with indices (r2)r∈N,
we have

lim
r→∞

∑
0≤k,i≤r

ak ∗ bi = A ∗ B,

by b). Because the sequence of partial sums given by J converges, its limit is also
A ∗ B. �

Using the concept of convolution, we can write the infinite system (4.3) in the form

ż(t) = z(t) ∗ z(t)

for a vector function t �→ z(t) = (z0(t), z1(t), z2(t), · · · ) taking values in R∞. The initial
value condition reads

z(0) = η

for a vector η ∈ R
∞.
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Lemma 6. Assume the power series

z(t) =
∞∑

k=0

aktk, ak ∈ R
∞, (5.2)

is convergent for |t| < T. Then z is a solution of

ż(t) = z(t) ∗ z(t), z(0) = η ∈ R
∞ (5.3)

on [0, T ) if and only if

ak = fk, k ∈ N0,

where the fk are recursively defined as follows:

f0 := η,

f1 := f0 ∗ f0 = η ∗ η,

f2 :=
1
2
(f0 ∗ f1 + f1 ∗ f0) =

1
2
(η ∗ (η ∗ η) + (η ∗ η) ∗ η),

...

fk+1 :=
1

k + 1
(f0 ∗ fk + f1 ∗ fk−1 + · · · + fk ∗ f0)

=
1

k + 1

k∑
m=0

fm ∗ fk−m, k ∈ N0,

that is,

fk+1
n = −1

2
n + 1
k + 1

k∑
m=0

n∑
i=0

fm
i fk−m

n+1−i, n, k ∈ N0. (5.4)

Consequently, every real analytic solution of (5.3) is uniquely determined.

Proof. If the power series (5.2) is convergent for |t| < T , then

ż(t) =
∞∑

k=1

kaktk−1 =
∞∑

k=0

(k + 1)ak+1tk

converges on |t| < T and so does

z(t) ∗ z(t) =
∞∑

k=0

k∑
m=0

(amtm) ∗ (ak−mtk−m) =
∞∑

k=0

k∑
m=0

(am ∗ ak−m)tk

by Lemma 5a) and c). The differential equation is satisfied if and only if

ak+1 =
1

k + 1

k∑
m=0

am ∗ ak−m, k ∈ N0,

and the initial condition if and only if

a0 = η.

So, the initial value problem is solved if and only if ak = fk, k ∈ N0. �
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Notation: If we want to indicate that the fk are defined by η ∈ R∞, we will write
f = f [η].

We remark that the following relation is easily proved by induction with respect to k

using (5.4): If η ∈ R∞, A, ρ ∈ R, then

fk
n [(Aρmηm)m∈N0 ] = Ak+1ρk+nfk

n [η], n ∈ N0, (5.5)

k ∈ N0. To solve the initial value problem, we observe a further important property of
the convolution. Let us consider

R
∞
+− := {a ∈ R

∞, ∀ n ∈ N0 : (−1)nan = |an| ≥ 0}.

Lemma 7. The operation ∗ maps R
∞
+− × R

∞
+− into R

∞
+−. For a, b ∈ R

∞
+−, we have

(−1)n(a ∗ b)n =
n + 1

2

n∑
i=0

(−1)iai(−1)n+1−ibn+1−i ≥ 0, n ∈ N0.

Consequently, if η ∈ R∞
+− and f = f [η], then fk ∈ R∞

+−, k ∈ N0, and

(−1)nfk+1
n =

1
2

n + 1
k + 1

k∑
m=0

n∑
i=0

(−1)ifm
i (−1)n+1−ifk−m

n+1−i ≥ 0, n ∈ N0. (5.6)

Proof. The first assertion follows from the definition of the convolution and

(−1)i(−1)n+1−i = −(−1)n.

The second then follows from f0 := η ∈ R∞
+− by induction with respect to k using

the fact that R
∞
+− is closed under addition and multiplication by nonnegative

constants. �

Proposition 6. Let η ∈ R∞ have the property ∃ A > 0 ∃ ρ > 0 ∀ n ∈ N0 : |ηn| ≤ Aρn.

Then the initial value problem ż(t) = z(t) ∗ z(t), z(0) = η has a real analytic solution on
[0, (Aρe)−1) with a power series

z(t) =
∞∑

k=0

fk[η] tk (5.7)

converging for |t| < (Aρe)−1.

Proof. According to Lemma 6, we have to prove that the series (5.7) converges for
|t| < (Aρe)−1. We let η̄ := ((−1)n)n∈N0 , ¯̄η := (Aρn(−1)n)n∈N0 . By Lemma 7, f [η̄], f [¯̄η] ∈
R∞

+−. We show

|fk
n [η]| ≤ (−1)nfk

n [¯̄η], n ∈ N0, (5.8)
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for k ∈ N0. This holds for k = 0. If (5.8) holds for 0, 1, · · · , k, then we have with (5.4)
and (5.6),

|fk+1
n [η]| ≤ 1

2
n + 1
k + 1

k∑
m=0

n∑
i=0

|fm
i [η]| · |fk−m

n+1−i[η]|

≤ 1
2

n + 1
k + 1

k∑
m=0

n∑
i=0

(−1)ifm
i [¯̄η](−1)n+1−ifk−m

n+1−i[¯̄η]

= (−1)nfk+1
n [¯̄η].

From (5.6),
fk

n [¯̄η] = Ak+1ρk+nfk
n [η̄].

On the other hand, Lemma 4 shows that the solution v of the infinite system with initial
condition η̄ has a power series about t = 0, which converges on [0, e−1). By Lemma 6

v(t) =
∞∑

k=0

fk[η̄] tk on [0, e−1).

Hence the series
∞∑

k=0

fk
n [¯̄η] tk = Aρn

∞∑
k=0

fk[η̄](Aρt)k, n ∈ N0,

converges on [0, (Aρe)−1) and by (5.8), so does (5.7). �
COROLLARY. If η ∈ R

∞ satisfies the estimate |ηn| ≤ Aρn, n ∈ N0, then

|fk
n [η]| ≤ Ak+1ρk+n|fk

n [η̄]|, k ∈ N0,

where η̄ := ((−1)n)n∈N0 and

|zn(t)| < Aρn|vn(Aρt)|, n ∈ N0, |t| < (Aρe)−1

with the (vn) from Example 2.

6. The p-truncated system and the ∗p-convolution. We intend to approximate
the real analytic solution z of the initial value problem of the infinite system

żn = −n + 1
2

n∑
i=0

zizn+1−i, z(0) = η ∈ R
∞

by the real analytic solution Z = (Z0, Z1, · · · , Zp) of the “p-truncated” system

Żn = −n + 1
2

n∑
i=0

ZiZn+1−i , n < p,

Żp = −p + 1
2

p∑
i=1

ZiZp+1−i , Z(0) = (η0, η1, · · · , ηp) ∈ R
p+1

for sufficiently large p ∈ N.
Let us define the convolution ∗p of two elements in R

p+1.



CALCULATION OF SHOCKS 739

Definition 2. For a = (a0, a1, · · · , ap), b = (b0, b1, · · · , bp) ∈ Rp+1, we define the
convolution a ∗p b ∈ R

p+1 by

(a ∗p b)n := (a ∗ b)n, n < p,

(a ∗p b)p := −p + 1
2

p∑
i=1

aibp+1−i .

The operation ∗p is a mapping from Rp+1 × Rp+1 into Rp+1 or from R∞ × R∞ into
R∞ if we identify Rp+1 with the subspace (Rp+1, 0, 0, · · · ) in R∞. The approximation
of the R∞-valued solutions of the infinite system by the Rp+1-valued solutions of the
p-truncated system

ż(t) = z(t) ∗p z(t), z(0) = ηp := (η0, η1, · · · , ηp) ∈ R
p+1 (6.1)

will then take place in R∞.

Lemma 8. Lemma 6 and Lemma 7 remain valid with the recursive definition

fp,0 := ηp,

fp,1 := fp,0 ∗p fp,0,

fp,2 :=
1
2
(fp,0 ∗p fp,1 + fp,1 ∗p fp,0)

...

fp,k+1 :=
1

k + 1

k∑
m=0

fp,m ∗p fp,k−m, k ∈ N0,

that is,

fp,k+1
n := −1

2
n + 1
k + 1

k∑
m=0

n∑
i=0

fp,m
i fp,k−m

n+1−i , n < p,

fp,k+1
p := −1

2
p + 1
k + 1

k∑
m=0

p∑
i=1

fp,m
i fp,k−m

p+1−i , k ∈ N0.

(6.2)

The notation is fp = fp[ηp]. We have for a, b ∈ R∞
+−

(−1)n(a ∗p b)n =
n + 1

2

n∑
i=0

(−1)iai(−1)n+1−ibn+1−i ≥ 0, n < p,

(−1)p(a ∗p b)p =
p + 1

2

p∑
i=1

(−1)iai(−1)p+1−ibp+1−i ≥ 0,

(−1)n(a ∗p b)n = 0, n > p.

Consequently, for η ∈ R
∞
+−, we have fp,k ∈ R

∞
+−, k ∈ N0, and for n < p,

(−1)nfp,k+1
n =

1
2

n + 1
k + 1

k∑
m=0

n∑
i=0

(−1)ifp,m
i (−1)n+1−ifp,k−m

n+1−i ≥ 0,

(−1)pfp,k+1
p =

1
2

p + 1
k + 1

k∑
m=0

p∑
i=1

(−1)ifp,m
i (−1)p+1−ifp,k−m

p+1−i ≥ 0,

fp,k+1
n = 0, n > p.

(6.3)
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For η ∈ R∞, we now study relations between f = f [η] and fp = fp[ηp]. For a ∈ R∞,
we use the notation

a|[m,n] := (am, am+1, · · · , an) ∈ R
n−m+1, m ∈ N0, n ∈ N, m ≤ n.

Lemma 9. For η ∈ R∞ let f = f [η] and fp = fp[ηp]. Then for n ∈ N0,

p ∈ N and p > n, we have

∀ k ∈ (0, 1, 2, · · · , p − n) fk|[0,n] = fp,k|[0,n].

Proof. We note the following obvious statements for a, ā, b, b̄ ∈ R∞:

i) For n ∈ N0, p ∈ N, n < p : a ∗ b|[0,n] = a ∗p b||[0,n].

ii) If a|[0,n] = ā|[0,n] and b|[1,n+1] = b̄[1,n+1], then for n ∈ N0,

a ∗ b|[0,n] = ā ∗ b̄|[0,n].

We prove the assertion by induction with respect to m := p − n ∈ N. For m = 1 we
have p = n + 1, hence

f0|[0,n] = (η0, η1, · · · , ηn) = fp,0|[0,n],

and with i) and ii)

f1|[0,n] = η ∗ η|[0,n] = η ∗p η|[0,n] = ηp ∗p ηp|[0,n] = fp,1|[0,n].

Now assume the assertion is true for m = j, that is,

∀n ∈ N0 ∀p ∈ N, p − n = j ∀k ∈ (0, 1, 2, · · · , j) : fk|[0,n] = fp,k|[0,n]. (6.4)

We have to show

∀n ∈ N0 ∀p ∈ N, p − n = j + 1 ∀k ∈ (0, 1, 2, · · · , j + 1) : fk|[0,n] = fp,k|[0,n]. (6.5)

Consider the case k ∈ (0, 1, · · · , j). Since p − (n + 1) = j, we have from (6.4)

fk|[0,n+1] = fp,k|[0,n+1]. (6.6)

Now let k = j + 1. For l ∈ (0, 1, 2, · · · , j), we have j − l ∈ (0, 1, 2, · · · , j) and hence from
(6.6)

f l|[0,n+1] = fp,l|[0,n+1], f j−l|[0,n+1] = fp,j−l|[0,n+1].

Therefore by ii)

fk|[0,n] =
1
k

j∑
l=0

f l ∗ f j−l|[0,n] =
1
k

j∑
l=0

fp,l ∗p fp,j−l|[0,n] = fp,k|[0,n],

and (6.5) is proved. �
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7. The approximation of shock position, shock strength and partial deriva-
tives of u. Let ϕ be a real analytic and positive function on (α, β) and let s ∈ (α, β).
For the initial condition ϕ.χ|(α,s], the solution u of the equation

∂tu + u∂xu = 0

will develop a shock emanating from s at t = 0. Its position at time t > 0 is given
by Xs(t) and its strength by v0(t) = u(t, Xs(t)) = ϕ(ξs(t)) > 0. We know from §2 on
which maximal interval these functions exist, namely on [0, Ts). They are real analytic
on [0, Ts) and so are the (one-sided) derivatives

vn(t) :=
1
n!

∂nu

∂xn
(t, Xs(t)), t ∈ [0, Ts), n ∈ N0. (7.1)

Proposition 5 shows that v := (vn)n∈N0 is a solution of the initial value problem

v̇(t) = v(t) ∗ v(t), v(0) = η, ηn :=
ϕ(n)(s)

n!
, n ∈ N0. (7.2)

We are going to approximate v on [0, Ts) by the Rp+1-valued functions V p of the p-
truncated system

V̇ p(t) = V p(t) ∗p V p(t),

subject to suitable initial conditions at times, which will be specified later. We obtain a
local result in Theorem 1 and a global result in Theorem 2.

Theorem 1 (Local approximation). Let ϕ be a real analytic and positive function on
(α, β), let s ∈ (α, β) and let

ηn :=
ϕ(n)(s)

n!
, n ∈ N0.

Then there exist constants A, ρ ≥ 0 such that |ηn| ≤ Aρn, n ∈ N0. Let (η(p))p∈N be a
sequence in R∞ such that

η(p) → η in R
∞(p → ∞) and |ηn(p)| ≤ Aρn, n ∈ N0, p ∈ N

(e.g. η(p) = ηp) and V p be the solution of the initial value problem

V̇ p(t) = V p(t) ∗p V p(t), V p(0) = η(p)p.

Then V p exists on [0, (Aρe)−1), p ∈ N, and

V p(t) → v(t) in R
∞(p → ∞)

uniformly on every compact subinterval of [0, (Aρe)−1).

Proof. The first assertion follows from Cauchy’s integral formula (see also Theorem
2a)). We prove the main assertion in the following form:

∀T ∈ (0, (Aρe)−1) ∀ε > 0 ∀m ∈ N0 ∃p0 ∈ N ∀p ≥ p0 ∀n ∈ N0, n ≤ m,

∀t ∈ [0, T ] : |V p
n (t) − v(t)| < ε.

We have shown in the proof of Proposition 6 that (5.4) and (5.6) imply (5.8), that is,

|fk
n [η]| ≤ (−1)nfk

n [¯̄η], n ∈ N0. (7.3)
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In a similar way, (6.2), (6.3) and Lemma 8 imply

|fp,k
n [η(p)p]| ≤ (−1)nfp,k

n [¯̄ηp] ≤ (−1)nfk
n [¯̄η]. (7.4)

We have from Proposition 6 that the series
∞∑

k=0

|fk
n [¯̄η]| tk

converges on [0, (Aρe)−1). Hence with Lemmas 8 and 6

V p
n (t) =

∞∑
k=0

fp,k
n [η(p)p]tk and v(t) =

∞∑
k=0

fk
n [η]tk, n ∈ N0,

as these expansions converge on [0, (Aρe)−1) by (7.4) and (7.3). For every k0 ∈ N0 we
know from Lemma 9 that for p ≥ m + k0,

fp,k
n [η(p)p] = fk

n [η(p)], n ≤ m, k ≤ k0.

Hence for p ≥ m + k0 and n ≤ m

|V p
n (t) − v(t)| ≤ |

k0∑
k=0

(fk
n [η(p)] − fk

n [η]) tk| + |
∞∑

k=k0+1

(fp,k
n [η(p)p] − fk

n [η]) tk|

≤
k0∑

k=0

|fk
n [η(p)] − fk

n [η]| T k + 2
∞∑

k=k0+1

|fn
k [¯̄η]| T k.

The second term is smaller than ε/2 for some large k0. Because η(p) → η, we have
fk

n [η(p)] → fk
n [η], and the first term is then smaller than ε/2 for sufficiently large p. �

Can the approximation interval [0, (Aρe)−1) of Theorem 1 be enlarged? In general,
the answer is no, as Example 2 shows for η(p) := η, A = ρ = 1, where v(t) blows up as
t → e−1. However, even if v exists globally and coincides with all approximations V p,
the length of the approximation interval given by Theorem 1 can be finite and even be
smaller than the radius of convergence of the power series of v = V p about t = 0. This
is shown in the following Example 4.

Example 4 ([19]). Let ϕ(x) := x on (0,∞) and s = 1. Then v0(t) = V p
0 (t) =

(t + 1)−1/2 = ξ(t), v1(t) = V p
1 (t) = (t + 1)−1, vn(t) = V p

n (t) = 0, n ≥ 2, t ≥ 0, p ∈ N.

We have A = ρ = 1; the mentioned quantities are e−1 and 1.
A serious obstacle for a straightforward approximation of v can be a blow up of V p

at a finite T > 0 even if v exists for t ≥ 0, as in the following example.
Example 5. For p = 2, V p can be represented in (almost) explicit form. We assume

η0, η1, η2 > 0 and η2
1 < 4

3η0η2. We define c1 := 2√
3

√
η0η2 , c2 := 1− (η1

c1
)2 > 0 and xτ > 0

by e−3xτ /2 = c2. The functions

g : [0, xτ ] → [0, τ := g(xτ )], g(x) := c−1
1

x∫
0

eξ(e−3ξ/2 − c2)−1/2dξ,

h : (−∞, xτ ] → [0, T := h(−∞)), h(x) := τ + c−1
1

xτ∫
x

eξ(e−3ξ/2 − c2)−1/2dξ
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are bijections, with finite T > 0. If we define

f(t) :=
{

g−1(t), 0 ≤ t ≤ τ,

h−1(t), τ ≤ t < T,

it is easy to verify that

V 2
1 (t) = sgn(τ − t)c1e

−f(t)
√

e−3f(t)/2 − c2 ,

V 2
0 (t) = η0e

−f(t)/2, V 2
2 (t) = η2e

−3f(t), 0 ≤ t < T.

Hence we get
lim
t→T

V 2
1 (t) = −∞, lim

t→T
V 2

0 (t) = lim
t→T

V 2
2 (t) = +∞.

Now let ϕ(x) := − 1
x on (−∞, 0) and s < 0. By Propositions 3 and 5, the infinite

system with ηn := 1
n!ϕ

(n)(s) = 1
|s|n+1 , n ∈ N0, has a solution for all t ≥ 0. We get

ξ : [0,∞) → (−∞, s] as the inverse of t : (−∞, s] → [0,∞), t(x) = x2 ln(x
s )2, with

ξ(t) → −∞ as t → ∞, and according to §4,

v0(t) = − 1
ξ(t)

→ 0, v1(t) =
1

ξ(t)2 + t
→ 0, v2(t) = − ξ(t)3

(ξ(t)2 + t)3
→ 0.

Since

ϕ′(s)2 =
1
2
ϕ(s)ϕ′′(s) <

4
3
ϕ(s)

ϕ′′(s)
2

,

the conditions on the ηi, i = 0, 1, 2, are satisfied, which entail the blow up of V 2 as
we have shown. These conditions are also satisfied for ϕ(x) − γ, γ > 0, γ sufficiently
small, defined on (− 1

γ , 0), for which ϕ(− 1
γ ) − γ = 0 (global existence of v follows from

Proposition 3). �

The last theorem shows that one can approximate v on every compact subinterval
[0, T ] of [0, Ts) by partitioning [0, Ts) into intervals [T1, T2], · · · , [Tr, Tr+1] of sufficiently
small (equal) lengths and solving the p-truncated system on [Ti, Ti+1] for increasing i,
with an adjusted initial condition at Ti for i ≥ 2.

The solution of the problem V̇ p(t) = V p(t) ∗p V p(t), V p(τ ) = γp, γ ∈ R∞ will be
denoted by V p(·, τ, γp).

Theorem 2 (Global approximation). Let ϕ be a real analytic and positive function on
(α, β), let s ∈ (α, β) and let v be the solution of (7.2) on [0, Ts). Then:

a) For all T ∈ [0, Ts) there exist constants A, ρ > 0 such that for all t ∈ [0, T ],

|vn(t)| < Aρn, n ∈ N0. (7.5)

b) Let [T1, T2] be any closed subinterval of [0, T ] of length smaller than (Aρe)−1. If
(η(1, p))p∈N is a sequence in R∞ such that

η(1, p) → v(T1) in R
∞(p → ∞) and |ηn(1, p)| < Aρn, n ∈ N0, p ∈ N,

then V p(·, T1, η(1, p)p) exists on [T1, T2] and

V p(t, T1, η(1, p)p) → v(t) in R
∞(p → ∞)

uniformly on [T1, T2].
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c) For a sequence (pn)n∈N0 ⊂ N with the property

∀q ≥ pn : |V q
n (T2, T1, η(1, q)q| < Aρn, n ∈ N0,

we define
ηn(2, p) := V p+pn

n (T2, T1, η(1, p + pn)p+pn).

Then

η(2, p) → v(T2) in R
∞(p → ∞) and |ηn(2, p)| < Aρn, n ∈ N0, p ∈ N.

Proof. a) There exist a subinterval [a, b] ⊂ (α, β) such that s ∈ (a, b), Ta,b ≥ T and
r > 0 such that for 0 ≤ t ≤ T ,

[Xs(t) − r, Xs(t) + r] ⊂ [Xa(t), Xb(t)].

The function u = u(t, x) is real analytic on a neighbourhood of the compact set

{(t, x) : 0 ≤ t ≤ T, Xs(t) − r ≤ x ≤ Xs(t) + r} ⊂ Ga,b ⊂ G

(see §3). This implies there exists a positive r1 ≤ r such that the complex extension
u(t, z) is continuous on

{(t, z) : 0 ≤ t ≤ T, z ∈ C, |z − Xs(t)| ≤ r1}
and hence bounded there, |u(t, z)| ≤ M for some M ≥ 0, and for all t ∈ [0, T ] the
function z �→ u(t, z) is complex analytic on {z ∈ C, |z − Xs(t)| ≤ r1}. By Cauchy’s
integral formula,

1
n!

∣∣∣∣∂nu

∂zn
(t, Xs(t))

∣∣∣∣ ≤ M

rn
1

, n ∈ N0,

and a) follows for every A > M with (7.1) and ρ := r−1
1 .

b) follows from Theorem 1 (applied to the initial value η(1, p) at T1).
c) is obvious. �

8. Concluding remarks. The analyticity of ϕ is a natural assumption for our ap-
proach. If ϕ is only C∞, the existence of an analytic solution z to the infinite system
(7.2) is open. Even if we add the assumption

|ϕ
(n)(s)
n!

| ≤ Aρn, n ∈ N0, (8.1)

to guarantee its existence (using Proposition 6), we do not know if z coincides with the
physically relevant solution v of (7.2), so that in Theorem 1 the approximation might
tend to z instead of v. Example 3 shows that such a situation can indeed occur: If we let
ϕ := ϕ2, then z = v1 = (1, 0, 0, · · · ) is the real analytic solution of (7.2) and v = v2 = v1.
That is, if ϕ is only C∞ and satisfies (8.1), the solutions of the truncated system can
tend to the wrong limit. With ϕ being C∞ and (8.1) valid, the analyticity of ϕ means
requiring (8.1) to hold on every compact subinterval of (α, β).

Finally, our work has given special attention to the study of the possibly restricted
life span of the solutions of the infinite system and their uniqueness, and to a clear
mathematical concept of the kind of approximation which can be expected. We feel that
these are indispensable requirements for any further work. Such further investigations
do not seem so hopeless because of the fact that our model does in fact reflect properties
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observed in other infinite systems appearing in the literature—we mention the linearity
of all equations after the first two or the additive appearance of the term “vn+1” in the
equation for “v̇n”. A challenging problem, even for the model considered here, is the
asymptotic approximation for t → ∞.
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