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Abstract. The forward problem of Magnetoencephalography for an ellipsoidal inho-
mogeneous shell-model of the brain is considered. The inhomogeneity enters through a
confocal ellipsoidal shell exhibiting different conductivity than the one of the brain tissue.
It is shown that, as far as the leading quadrupolic moment of the exterior magnetic field
is concerned, the complicated expression associated with the field itself is the same as in
the homogeneous case, while the effect of the shell is focused on the form of the general-
ized dipole moment. In contrast to the spherical case, where no shell inhomogeneities are
“readable” outside the skull, the ellipsoidal shells establish their existence on the exterior
magnetic induction field in a way that depends not only on the geometry but also on the
conductivity of the shell. The degenerated spherical results are fully recovered.

1. Introduction. The mathematical theory of Electroencephalography (EEG) and
Magnetoencephalography (MEG) was founded in the late 60s, mainly on the basis of the
works of Geselowitz [7 [§]. Since then, many efforts have been made to produce analytic
solutions for the related direct problem where the field generated by a given source is
sought. We mention the works of Ilmoniemi, Himé&ldinen and Knuutila [10], Sarvas [15]
and Fokas, Kurylev and Marinakis [5] for the spherical brain model, the works of Cuffin
and Cohen [I] and de Munck [6] for the spheroidal brain model and the work of Nolte,
Fieseler and Curio [I4] for perturbative models of the brain. But, as anatomy indicates,
the actual geometry of the human brain is best approximated by a triaxial ellipsoid [16],
a geometrical shape far more complicated than the sphere or even the spheroid. Intense
efforts towards a complete analytic solution for EEG and MEG problems in ellipsoidal
geometry led to results included in [3| 4] [IT], [12]. The present work aims in obtaining an
analytic expression of the leading quadrupolic term for the exterior magnetic field in the
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presence of an ellipsoidal shell with different conductivity from the one characterizing
the brain tissue.

The result is amazingly similar to the corresponding result of the single ellipsoidal
model [3]. The only effect that the inhomogeneous shell has on the form of the magnetic
field, is attributed to the expression of the generalized dipole moment appearing in the
quadrupole term. As we show, this generalized dipole moment is a complicated expression
of the conductivity profiles in the two compartments as well as of the semiaxes of the
brain and its covering shell.

Everything connected to the geometry of the problem is expressed in terms of canon-
ical dyadics. It is important to realize that the form of the generalized dipole moment
dictates the orientation of the silent sources which are drastically effected by the con-
ductive ellipsoidal shell. It is also shown that the part of the solution associated with
the observation point, where the magnetic field is measured, is not influenced by the
existence of the shell.

Section 2 involves the mathematical statement of the direct MEG problem for an
ellipsoidal brain which is excited by a current dipole in its interior and it is surrounded
by a confocal ellipsoidal shell of different conductivity. In order to solve this problem
we need to solve first the related EEG problem, a task that has been fulfilled in [11].
The main result of the present work is exposed in Section 3 where the exterior magnetic
field is evaluated through a series of appropriate manipulations with elliptic integrals. In
Section 4 we reduce the ellipsoidal results to the corresponding spherical ones as well as
to the case of the single component homogeneous brain model.

2. Statement of the problem. First we define the geometry of the problem. The
brain is modeled with the triaxial ellipsoid

Ty | T3 | T3
S +—=+=<1 (2.1)
b b3 b3

which has the constant conductivity o,. We denote this region by V, and let S, = 9V,
The confocal ellipsoidal shell V, bounded by the ellipsoid S, and the ellipsoid S, given
by

St 5t—5=1 (2.2)

surrounds the brain and is characterized by the conductivity o, # op. The space V,
models either the cerebrospinal fluid, the bone, the skin, or an average of all of them.
The semiaxes are ordered as follows:

ag < g < Oaq,

2.3
b3<b2<bl<a1} ( )
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In terms of the ellipsoidal coordinates (p,u,v) [9], which are connected to the Cartesian
coordinates (x1,xs2,x3) by

h2h3$1 = PpUV,
hlhgxg = \/p27h§\/ﬂ2 *h%\/h%*VQ, (24)

hahows = \/p? — h3\/h3 — w2\ /13 — 02,
where the semifocal distances hy, hs, h3 are given by
hi = a3 —of = b3 — b3,
h3 = af — a3z = b} — b2, (2.5)

2 2 2 2 2
h3 = ai — a; = by — b3,

the surface S, corresponds to p = by, the surface S, to p = a1, the core-domain Vj to
p € [ha,b1), and the shell-domain V, to p € (b1, a1). The exterior domain V is then
described by p > a7 and has zero conductivity. The magnetic permeability pg is taken
to be constant in all of R3.

At the point rq = (po, po, Vo), being within V,, an equivalent dipole current source
with dipole moment Q models the local electrochemical activity of the neurons.

Within the framework of quasistatic electromagnetic theory [I3], which is generally
accepted for MEG problems [15], this current

J(r) = Qd(r — 1) (2.6)
gives rise to an electric potential u and to a magnetic induction field B.

Let us denote by up, u, and u the electric field in Vy, V, and V, respectively. Then
the magnetic field B, generated in V, is a consequence of the primary current J and the
induction currents —o,Vu, and —op, Vuy, which are supported in V, and Vy, respectively.

Hence, Ampere’s law [13]

B@:%/ﬁmxfi%@m (2.7)
G

where G stands for the support of the total current J?, implies the representation
o r—roo Ho0 o / 1 /
B(r) ="— — Vo Vy——|d
(r) 47TQX |I'—I'0|3 471_ /( U’Oé(r )) X < |r_r/|> U(r)

Va
- Loy / (Vwun(r')) x (v%) du(r’) Y

4 r—r|
Vi

or, in view of Geselowitz formula [2],

B =0 Qx T - [ (Ve L) dse)
% (2.9)
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where p’ denotes the outward unit normal on the corresponding ellipsoid.

Representation (23] recasts the contribution of the conductive domains to B in the
form of surface distributions of dipoles oriented normally to the interfaces S, and S. The
density of these dipole distributions is proportional to —o,u, on S, and to oaue — Tpup
on Sy. Therefore, our first task is to solve the following boundary value problem, for the
electric potential

Au(r) =0, reV, (2.10)

Aug(r) =0, reV,, (2.11)
1

Aup(r) = —V - J(r), reV, (2.12)
o

where J(r) is given by (2.6).
Continuity conditions demand that the fields u, uy, up are connected through the
surface conditions

Ue(r) =u(r), r€S,, (2.13)
Onua(r) =0, reS,, (2.14)
U (r) = up(r), r €S, (2.15)
TaOntin(r) = 0p0nup(r), 1 € S, (2.16)

where 0,, stands for the outward normal differentiation on the corresponding surface.
Furthermore, the exterior electric field has to satisfy the asymptotic condition

u(r) = O (1) oo (2.17)

r

The solution of the problem (ZI0))-(2I7), which has been obtained in [I1], assumes
the following appropriate-for-our-purpose form:

oo 2n+1 Q )
n=1 m=1 Tn Cn (218)
1 I (p) m
X ’ n Y 71/
Em(an)ERY (on)agas 17 (ax) (.1, )
forr eV,
co 2n+1
Q
n=1 m=1 (219)

1

x | I (p) — I (o) + ;
(°) (o) Er(on) EpY (ar)azas

) B (p, 1, v)

forr € V,, and

oo 2n+1
Q VE™ {(C,T m m
=d} — (I (b1) — I

(2.20)
1

b))+ s )| ER )
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for r € Vj, where for eachn =1,2,... and m=1,2,....,2n+ 1,

C =04+ (0b — 04)

Ey (b1) By (b1)babs (2.21)

I™(by) — I™ E™(b))E™ (b1 )beb
X (n(l) n(al)) n(l) n (1)23+E21(a1)E7T/(041)042043

and d} is an arbitrary constant (as any potential function owes to have).
The rest of the variables appearing in (ZI8)-(22I]) are connected to the ellipsoidal
harmonics

Ey (p, p,v) = B3 (p) B3 (0 EY (V) (2.22)
Fo(p, o v) = FiM(p) B3 () ER (v) = (2n + 1) I (p)ER (o, 1, v) (2.23)

given in terms of the Lamé functions E* and F)" and the elliptic integrals I7*(p) which
are defined in the Appendix.
Finally, 4, denote the ellipsoidal normalization constants

= j/ B (1) B2 (0) Ly (1) ds (1, v) (2.24)

P=Po

for each n = 1,2,... and m = 1,2,...,2n + 1, where [,,(u,v) is the ellipsoidal weighting
function defined by

Lpo (1, v) = [(P2 — 1) (0 — V)] 2. (2.25)

3. The magnetic field. Our main task in this section is to find analytic expressions
for the integrals appearing in (2.9). This will be achieved via appropriate transforma-
tions, the orthogonality of the surface ellipsoidal harmonics and the evaluation of the
normalization integrals. We start with the evaluation of the integral

L(r) = / o (t)F X Vi

Sa

——ds(r'). (3.1)

v — /|
Detailed analysis of the part p’ x V. |r — r/|~! leads to the expansion [3]

3

> BLET(W)ET (V)
5 m=t (3.2)
3 6B ER W) |+ Oely)

=la (:U'/a V/)
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where [, is obtained from (Z20]) by substituting pp = a1,

B, = %EZEZ—:Xm rxHi(p), m=1,2,3,
01 = —ﬁfia x F‘l(r)a
8o = %A; x Folr),
53 = ii?fifié’ Z—jxl ® %o + Z—;xg ® X1 x Fa(r),
04 = Ziig:j :Z—?fq ® X3 + Z—lfig ® fil: X F,(r),
05 = Z%Zi:j :sziz ® X3 + %25(3 ® fiz: X Fo(r),

with the cross-dot product defined by
(a®b) x (c@d) = (axc)(b-d),

and the related polyadics defined as follows:

3

e im ® )’\(m
Aa = A a2’
m=1"% m
3 A -
A/ _ Xm ® Xm
o A — a2’
m=1"¢« m

3
Hi(p) = Y I7"(p)%m © &,
m=1

Hy(p)= > L7 (p)%o% 0% 0%,
i=1
i
_ ]Fl ~ FQ
Fa (I‘) I 2(1‘) A 2(1’)

Ao — AL T AL — AL

Al +15r @ Hy(p).

(3.3)

(3.4)

(3.5)

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)

The constants A, A, are given in (A7) and the notation O(el}) indicates ellipsoidal

terms in r’ that are of the octapole or higher multipole type.
A similar expansion for the potential u, on S, leads to

3 5
ualan, i v) = dg+ Y (PEP(WET (V) + Y B (0 E5' (v) + O(ely)  (3.15)
m=1

m=1
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where forn =1,2 and m =1,2,...,2n + 1,

w_ Q VER() 1

. 3.16
n ymCm  apazENV (oq) (3.16)

Using the expression ([2.21]) as well as (A3)-(A19) we can rewrite the ¢ for n = 1,2
and m=1,2,...,2n + 1 as follows:

Cl:4hhh - b1bab P (317)
Thilehsa1 Q203 5 + (0, — 04) ((I{L’L(bl) — I (1)) b1b2bs + alszoi)
form=1,2,3,
d=- :
2 8w (Ao — AL)a1asas
x Q@ro: Aa A : (3.18)
0o + (04 — 0a) ((121(51) — I3 (01))2Mpb1bobs + %)
G- °
2 C8m(Ay — A )ajasas
x Qo : A, (3.19)
Got (0 = 70) (13 (b1) = 13(01))20]brbaby + spinte)
i+j _ 15Cki04jhihj
2 47T(h1h2h3)2(0522 + a?)a1a2a3
Q- (zoiXj + z0jX;)
o o) (2 00) — 137 0)) 0% + ooy + iy (320
Oq Op — Oq 2 1 2 (e5] ] /910203 (a?+a?)a1a2a3
with 4,5 € {1,2,3} and i # ;.
Inserting B2)) and 3I5) in (B and using orthogonality we arrive at
5 5
Lo(r) = Y ¢ B () + Y (573 8 (x) + Ofels) (3.21)
m=1 m=1

or, in view of B3)-BI4), BI7)-B20) and some long calculations, we can rewrite
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B.21) as

3
=t Ga + (0 = 0a) (I (01) = I7"(01))brbabs + itk )

1023

(Ao — ) (Ao — a3)(Aa —03)Q@1g : Ay @ Ay x Fo(r)

3Q - X @ %m @1 x Hi(p)

B(Aa =A%) (00 + (06— 7a) ((1(b1) = (01 brbaby + fibataba )|

Aqaiasas

(A'a*a?)(/\ —a3)(A, —a3)Q@ry: A, @Al x Fa(r)
_|_

3(Aa — A4) [00 + (0 — 00) ((13(b1) — () babobs + etz ) |

Al arasas |

3

+ Q Xrg: Z
i,j=1
i#j

(f(z ®)A(j +f(j ®)A(z) ® (Oé?f(j ®)A(i +Oé?§(i ®f(])
(af +aj)

1
G+ (01— ) (I3 (b1) = I (@) (67 + B2)babads + M)

(OL?+O¢?)OL10¢20¢3

x Fo(r) + O(els) (3.22)

X

where the actual dependence on the position rg and moment Q of the source dipole, on
the observation point r, on the geometrical parameters a;,b;, « = 1,2,3 , and on the

conductivities o, and oy, is explicitly shown.
Next we move to the integral

Iy(r) = /ub(r’)[)’ X Vr/rlr/‘ds(r’). (3.23)

Sp

Following the same track of calculations as with the integral I,(r) we obtain

N r — I‘l m
p/ X m lz /8 El El ( )
’:bl
. (3.24)
+Z&wwmwwv+m%»
m=1
B = 511222233 Zm m @1 x Hi(p), m=1,2,3, (3.25)
bibosbs ~ =
% = 578, A < ol (3.26)
bibobs  ~
8, = ﬁA Fy(r), (3.27)
;_ bibabs bzA by ~
63 = h1h2h§ a X1 ® X2 + b—XQ X X1 " Fb(r), (328)
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bibobs [bs . b1 -

o) = hah2hs {E X @ X3 + EX?, ® X1:| x Fy(r), (3.29)
b1bobs b3 . b ~

5/5 = 12hahs |:E Xy ® X3+ EXB oY X2] x Fy(r), (3.30)

where Ay, A} and I,(y/, ") are given by (A7) and (A1) respectively, with «; replaced
by bi7 1= 172737

Z K ® Xy
Ay — b2
m3 1 (331)

b= AT 12
Ay — b2,

m=1
and

iwb(r):_ ]F%(I') Ab"’ FQ(r)

Y Y A, +15r @ : Hy(p). (3.32)

The dyadic function H;(p) and the tetradic function ﬁQ (p) are defined by (312) and

(BI3) respectively.
It is straightforward to show that as a consequence of confocality

Ao = AL =My — Ay, (3.33)
Ao —a? =Ny =02, i=1,2,3 534
A, —a? =N, — b2, i=1,2,3 (3.34)
and
A=A, =A
. (3.35)
A=A, =N
Hence
F.(r) =Fy(r) = F(r). (3.36)

The potential ([220) provides

3 5
up(br, i v) = df+ Y OV ET () B (v) + ) 05" B (WES (v) + Olelz)  (3.37)

m=1

where forn =1,2 and m=1,2,....2n + 1,

o = o n I(by) — I . 3.38
" SRen A O By ey ) O
Further manipulations imply that
STy b Q- K (17"(b1) = I (01) + o
o = . ( o) (3.39)

Anhahzhs G 1 (0, — 04) (I (b1) — I7(1))brbobs + 2ababe
1 1

1203
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form=1,2,3,
91 o 5Q ® o : A (121 (bl) IQ (al))QAb + m (3 40)
2 — ' ) :
8r(Ao = AL 5 4 (04— o) ((Iz(bl) ! (al))2Abb1b2b3 n %)
~ 2 /
62 :5Q ®rg: A . (I3(b1) — I3 ()20 + A araaas areaan (3.41)

B0 = A) g+ (0 — ) (3(b1) = T3(01)) 285 bibabs + grioate )

A arazas
9i+j o 15Q . (QJOZ‘)A(]' + $0jﬁi)hihjbibj
2 - 21212
4mh2h2h32
L (b) = 157 (o) + orpard

2+o¢2)a1a2a3

O+ (00— 00) (17 (01) = 7 (@) (07 + B)bibabs + (g

a?+a?)arasas

(3.42)

X

with 4,5 = {1,2,3} and i % j.
Using orthogonality, the integral ([B:23]), with the help of the multipole expansions

B24) and (B37), provides
3
= 0B, (r) + Z 948! (r) + Oels). (3.43)
m=1
Using (B:25)-B30) and B339)-(342), as well as a long series of calculations, it is

possible to rewrite (3:43)) as

1 (r) ji: (I7(by) — I (ar))brbobs + 2b2be
J(r) =
=t 0+ (00— o) (1 (01) = I (00 brbabs + Latate )

x3Q-im®im®r>§ﬁ1(p)

Agarazag
B(Aa = AL |0a + (00— 0a) ((T3(b1) = T3(01))2A bbby + bitata ) |
X Q®rg: A®A><F( )

(A = a2)(Aa — a3)(Aa — a3) ((13(b1) — [3(02))280b1bobs + rtate )

(A, — a?) (A — ) (A, — a3) ((13(b1) — 3(01))28bibobs + it )

B(Aa =A%) [ + (0 = o) ((I3(b1) = 13(00))204b1baby + pyirizte )]
xQery: A'®A x F(r)

+

. . . . 2 2
3 (I;H(bl) _ Ié‘i'](al))(b? + b?)blbgbg + M

a?+a)ajazas

G100+ (0 = 00) (157 (b1) = I (00)) (62 + D)bababs + porhyoo)

i3] (af+af)aiazas
Qary- (X @K +%; @) © (bjX; ® Ri + IR ® Xj) X F(r)
b7 + 0

_|_

X

(3.44)
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The multipole expansion of the first term on the right-hand side of (Z9) implies that
3]

r—rTo

Q x =3Q x Hy(p) -1+ Q xry-F(r)+ O(els). (3.45)

[r —ro3

At this stage we have the multipole expansions of all terms appearing in (Z9]), which
by virtue of the continuity condition (218 is written as

B(r) = 22 [Q x ﬁ — oul(r) — (op — aa)Ib(r)] . (3.46)

First we observe that the dipole term of the expression involving I, (r) and I;(r) gives

3 3
[Fala(r) + (00 = 0a)b(r)], oy = 00 D ("B (¥ + (00 —0a) Y 67" By (X1
m=1 m=1

3UaQ Ry, @Ky, @T X ﬁl(p)

2 o+ (0 — ) ((I;n(bl) — I7(a))brbabs + M)

123
(05 — 02) ((I;n(bl) I (ar))bibabs + %) i
+ bbb 3Qim®§(m®rXH1(p)
o+ (00 — 00) ((I{”(bl) I (a1))bibobs + m)
3
=3Q- Y K@%y @rx Hi(p) =3Q -T@rx Hi(p) =3Q@r x Hi(p) (3.47)
m=1

where I stands for the identity dyadic. Combining this result with (3.45]) we see that the
dipole contribution to B vanishes. This result is in accord with the physical fact that
no magnetic monopole exists in nature. Consequently, the leading multipole of B is of
quadrupolic character.

Analyzing each one of the five types of quadrupoles appearing in the part of B that
is due to the conductive current we obtain

[UaIa (r) + (Ub - Uoz)Ib(r)]%

_ (Aa - al?o)((//\;;_oﬁj)(/\a - Ol3)Q ®rp A ® A X F(r)’ (348)

[0ala(r) + (03 — 0a)L(r)]5

A — a2 (A — a2 (AN — a2 ~ - ~
:( a al)g((A“ _Oj\%))( @ a3)Q®ro:A’®A’>§F(r), (3.49)
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and for ¢, = {1,2,3} with i # j,

[oala(r) + (0 — 70)Ts(r)]5"
(X Q% +%, %) @ (bIR; ®%; —l—b?)A(i@f(j) -
b2 + b2 XE)
i T
0,Q®ro: (X ®%X; +%X; ®%;) (3.50)
. - 5,72 ;
T+ (o0 = 7a) (57 (00) = L7 (@) (8 + ) + (e )

1,2
i+aj)041a2a3

=Q®rp:

_|_

041-25(]' (9 )A(z + Oé?f(z X f(j b?f(] ® )A(z + b?f(z ® f(j ~
@ a? +a? b2 + b2 X F(x).
i j 4 J

Substituting [B48))-B50) in (3406) and using the identities

(Ao — a%)( - 0‘2) Ao — 0‘3)

( Aoi
3(Aa —AL)
A, —a2) (N, — —a?) - ~
N %)((A B —ad g 5 .
1 = f e a s
:§I®I—in®xi®xi®xi,
i=1
02102 (3.52)
i T Y5

=X 0% Q% ®X;

(07%; @ % — DI, © %) @ (X @ R — &; © %)

+X XX @K + bg—l—b? . LF
Xi=i3®§(2—5(2®f(3
xI=% Q%3 — K3 0%, p, (3.53)
23 xI=% Q% — % © %o
z?’: (% @ %, +%; ® %) © (b3%; ® %; + b2%; ® %;)
b2 + b2
(4,5)={(1,2) it
(1,3)
(2,3)}
3
Z XJ®§(Z®)A(J
j=1
75J
(bi%1 @ Rz — b3R2 @ R1) ® Ry + (—b3%1 @ X3 + b33 @ %1) @ Ro (3.54)
b7 + 03 b + 3 '

I

)

2% @ %3 — biR; Q0 R2) @ Ky «
b2 + b2
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3 3
Qory: [ Y %o%0kok+ Y 20X 0% 0% | xF(r)
i=1 i,j=1
i#j

:Q®r0:I>_<F(r):Q®r0xﬁ(r):ero-F(r)

and

IxF(r)=0

where i is the identity tetradic defined by

3
X ®X; QK @K
=1

el 12

i,J

we arrive at the compact expression

B(r) = %(d —dy+d,)

Fi(r) « F(r) : e
Aa—AgA* Y A 152_;1@%12 Hp)%i @ % | + O(els)
“i#j
where
d =(Q - M(by) x rg) - N(by),
dy, =(Q - M(by) x 1) - Ne(by),
do =(Q - M(ay) x ro) - Ne(a),
3
M(by) => bi%; @%;,
=1
B 3
M(ay) :Za?xl ® X,
=1
. 3 % @ %
N(b:) = év
00 =2 e
3 ~ ~
< ; X @ X
N.(b) = cohi
; b3 + b3 + b3 — b?
3 % @ %

Ne(ap) =Y €

=1

2
%

al+ai+al—a

613

(3.55)

(3.56)

(3.57)

(3.58)

(3.59)
(3.60)
(3.61)

(3.62)

(3.63)

(3.64)

(3.65)

(3.66)
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and
CG—i:
Oa
Got (00— 0a) (157 (01) = I8 () (0} + 0 + B3 — 2) + Cyiegtiogtintate )

a1+a2+a3—a )aiasas

(3.67)

Oa
= 0677,
2
with CS™% defined in (221)).
Obviously, the coincidence of the conductivities, which geometrically is reflected upon
the absorption of the shell into the conductive core, i.e.,

O —opSa; —b;,, 1=1,2,3 (3.68)
implies that
c =1, i=1,2,3, (3.69)
Nc(bi) - Nc(ai) - N(bz) (3.70)
and finally,
dy, —d, — d. (3.71)

Then ([B358) is reduced to the corresponding expression for the magnetic induction field
for the single homogeneous model [3]

_ Ho 4 F3(r) < _ F3(r) r_ I VR @ R
B(r) = d Ab—Ag,A v A,A 15 glxzle (p)%;i ®@%; | +O0(el3). (3.72)
71#

4. Reduction to spherical geometry. It is hard, at a first glance, to accept that
results on the ellipsoidal system do not reduce trivially to the corresponding results for
the spherical system. Nevertheless, a more careful consideration helps to realize that
this is an intrinsic difficulty which is due to the way the two systems are constructed.
In particular, while the spherical system reduces down to a point, i.e. the center, the
ellipsoidal system reduces to a two-dimensional manifold; that of the focal ellipse. As a
consequence, the reduction from the ellipsoidal expressions to the spherical ones leads to
complicated indeterminate forms which are not easy to handle. An appropriate, but not
always obvious, grouping of terms is necessary to overcome these difficulties. This is a
cumbersome process which will not be explained further here. As an example, we give
the limit [3]

: Fi(r) « F3(r)
L oy vty w—

(03

3
7 11/ — 15 Z xlleé—’_](p)f(z ® 5{]
S (41)

I reor I-3t®¢f
:737—295 X Q Xyp, — 15<5r5 57“5Z$ xm@)xm)r3

m=1
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where the notation e — s denotes the reduction of the ellipsoidal to the spherical system.
More limits of this kind can be found in [3].

If we denote by a and b the radii of the exterior and the interior reduced spheres
respectively, then it is not hard to show that

and finally that

lim A, = lim A, = a?,

e—S e—Ss

limh; =0, +=1,2,3,
e—8

lim p = limv =0,

e—s e—Ss

limp =1,

e—S

1
llj}l"ls.lgn(p) = %7 m=1,2,3,4,5.

Furthermore, the limits

imply that

3
lim M(by) = b* > %; ® &; = 0°I,

e—s

1=1
lim M(ay) = o1,
lg}sN(bl) = 2—1721,
lim C%~¢ = L
N € I O]
. - Cs T
Jim Ne(br) = 2551,
. . Cs T
- 1-

limd = (Q-T xro) -T = XXF0
e—Ss 2 2
limd, = (Q-ixro)-ii:CSQ;rO,

- C,~
limd, = (Q T x o) 22F = 0, 22T,
e—S 2 2

which they recover finally the known [3] result for the sphere

lim B(r) = g—OQ X T -
s

e—S

I-3t®f
7§®r+o<
"

:Osa

(4.10)

(4.11)

(4.12)

(4.13)

(4.14)

(4.15)

(4.16)

Note that the spherical quadrupolic term on the right-hand side of (4.18]) coincides with
the corresponding result for a single homogeneous sphere and this is in accord with
common knowledge that shells are not “readable” by MEG recordings. We remark here
that this property of spherical geometry is due to the non-dependence of the radial



616 GEORGE DASSIOS anp FOTINI KARIOTOU

component of the magnetic field on the electric potential [I5]. Our results though show
that this is not true for the more realistic ellipsoidal model of the brain.

Appendix A. Ellipsoidal Harmonics. The reader can find the basic theory of
ellipsoidal harmonics in the monumental work of Hobson [9]. Here, we provide only the
expressions that will make the present work self-readable.

The interior Lamé functions E™(z) and the exterior Lamé functions F"*(z), where n =
1,2, ... denotes the degree and m = 1,2, ...,2n+ 1 denotes the order of the corresponding
function, solve the Lamé equation,

(x% — h2)(z? — ) E" () + x(22% — h3 — h2)E'(x) + (Az? + B)E(x) = 0. (A1)

The constants A and B are appropriately associated with the degree n and the order
m. We only use the Lamé functions of degree less or equal to 2, and these are

Ei(z) =1, (A2)
Ef'(z) = |2 — o} + 0l |2, m=1,23, (A.3)
Ei(z) = 2% — a2 + A, (A4)
Ei(x) =2 -l + N (A.5)
_ El(z)E}(z)E3 ()
ES™™(g) = = L L m=1,2,3, A.6)
2 Iy (x) (

where the constants

are the roots of

=0. (A.8)

As Lamé showed, the harmonic eigensolutions in ellipsoidal form are given by the
Lamé products

Ex (o psv) = E (p) EX (1) B (v) (A.9)
which are regular at the origin, and the Lamé products
F (o, pyv) = F(p) By (0 ERY (v) (A.10)

which are regular at infinity.
The Lamé functions E™(p) and F™(p) are connected via the formula

E(p) = 2n+ 1) ET (0L (p) (A.11)
where .
m(p) = / dt . (A.12)
' DR N
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Note that the only difference of the factors E in (A9) is attributed to the interval of

variation of the ellipsoidal coordinates (p,u,v) which vary in the successive intervals
—h3§1/§h3§,u§h2§p<+oo. (AIS)

The surface ellipsoidal harmonics E™(p)ER*(v) are orthogonal with respect to the
weighting function

(A.14)

1
lp(ﬂa v ) =
\/pQ _ MZ\/pQ — 2
over the surface of any ellipsoid specified by a fixed p > hs. The corresponding normal-
ization constants, defined by (2.24]) assume the values

V8 = 4, (A.15)

"= %ﬂ]ﬁ:—g% m=1,2,3, (A.16)

7= A= (A~ ad) (A - ad)(A - o), (A1)

= (A~ M)~ ad)(N — ad)( ~ o), (A18)
and

A5 = %h%hghgh;, m=1,2,3. (A.19)

Usefull expressions for the gradients of the ellipsoidal harmonics, connection formulae
between ellipsoidal harmonics and their Cartesian forms, as well as some basic relations
among the elliptic integrals can be found in the appendices in [3].
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