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Abstract. The representation theorem for isotropic tensor-valued functions of sym-

metric second-order tensors is considered in the context of two parameters based on the

Lode and Fromm parameters. A geometrical representation is established using the con-

cept of a characteristic representation intensity function. It is shown that this geometrical

representation identifies the only admissible form of the representation intensity function

to be piecewise linear and continuous. This conclusion imposes a restriction on how the

representation theorem can be used to formulate constitutive equations. The representa-

tion theorem is used to formulate a generalisation of Hooke's law for finite strain that is

applicable to the initial elastic range of strain-hardening materials, including the elastic

conditions at initial yield.

1. Introduction. For any nonlinear constitutive theory to have engineering rele-

vance, it must predict the properties characteristic of the response of typical materials.

A distinction must be made between general predictions, which any theoretically ad-

missible constitutive theory must yield, and specific predictions, that is, quantitative

predictions that distinguish uniquely between constitutive theories. Prediction of the

Poynting [8,9] effect in the context of simple shear is generally cited as evidence for the

utility of any proposed nonlinear constitutive theory. Simple equibiaxial extension is

effectively a general prediction since any theoretically admissible constitutive equation

for isotropic, perfectly elastic materials would be expected to predict stress equality for

this simple mode of deformation. The constitutive equation

S = A(trE)I + 2GE (1.1)

describes in detail the mechanical response of a class of isotropic perfectly elastic solids

[1]. In (1.1), E is the left bi-configuration finite strain tensor and S is the corresponding

stress tensor. For sufficiently small strains the constitutive equation (1.1) reduces to the
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stress-strain relationship of the classical infinitesimal linearized theory of elasticity, that

is, the generalised Hooke's law. The constitutive equation (1.1) is thus a finite strain

form of the generalised Hooke's law and in this context the A and G given in (1.1) are

referred to as the generalised Lame coefficients. The constitutive equation (1.1) admits

the general prediction regarding the Poynting effect and the general prediction regarding

stress equality for the equibiaxial extension mode of deformation. The quantitative

predictions given by the constitutive equation (1.1) are in good accord with the observed

mechanical behaviour of various test materials.

The present discussion is concerned with a generalised form of the constitutive equa-

tion (1.1) applicable to the initial elastic range of strain-hardening materials, including

the elastic conditions at initial yield. Central to the formulation of a general constitu-

tive equation that has (1.1) as a limiting form, is the use of the representation theorem

for isotropic tensor-valued functions of symmetric second-order tensors to formulate an

appropriate basic constitutive assumption (see for example [2]). The properties of this

representation theorem are characterized by three scalar invariant coefficients which are

here referred to as the representation coefficients. The question of whether the required

basic constitutive assumption can be centred on the use of this representation theorem

can only be resolved by deriving expressions for the representation coefficients. Deriva-

tion of expressions for the representation coefficients is facilitated by the use of two

parameters based on the Lode [5] and Fromm [3] parameters.

2. The Lode and Fromm parameters. Using a prime to denote a deviator, there

is associated with the arbitrary symmetric second-order tensor S and its deviator S' the

parameter

fi = 3s'1/(s'3-s'2) (2.1)

where the s-(i = 1,2,3) are the eigenvalues of S'. The parameter defined in (2.1) was

introduced by Lode [5] in the context of continuum plasticity. However, this parameter

has general application in the theory of symmetric second-order tensors. In this latter

context fj, will be referred to as the Lode parameter for a symmetric second-order tensor,

or simply as the Lode parameter. The ordering of the indices in (2.1) is an arbitrary

choice. Other admissible forms for the Lode parameter follow from cyclic rotation of the

indices in (2.1).

The characteristic equation of S' yields

s[ = 2(S2/3)1/2cos (1/3) arccosw1/2 + (2/3)(3 — i)n (i = 1,2,3) (2.2)

where

27 S32 _ 2 (M2 — 9)2 0 ^ n2 ^ 1 ^ f 1 ^ n2 ^9 \ ( 9 ^ y? < 00 ,

4 Sf? (3 + /X2)3 v 0 ^ w ^ 1

is the Fromm [3] parameter for a symmetric second-order tensor, and

S2 = ^trS'2 = il2 - Us = £(3 + ^2)(4 - 4)2> (2-4)

S3 = |trS'3 = - |lslls + IIIS = ^(m2 - 9)(4 - 4)3 (2-5)
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are the second and third principal moments of S': in (2.4) and (2.5), IsTIs^IIs are the

principal invariants of S.

Substitute in (2.1) the expressions for the s[ given in (2.2) to give the Lode parameter

H = 31/2 tana (2-6)

where

a — (1/6) arccos (1 — 2to) = (l/6)arccos (l — [27S32/(2S23)]) . (2.7)

Equations (2.6) and (2.7) establish the Lode parameter to be solely a function of the

second and third principal moments of S'.

3. Mises geometrical representation. The arbitrary symmetric second-order ten-

sor S and its deviator S' have the spectral representation

3 3

S = srqr <g> qr S'«yVqr®qP (3.1)

r=1 r=l

where the si,s[{i = 1,2,3) are, respectively, the eigenvalues of S and its deviator S'

and the orthonormal triplet qj specifies the principal axes common to both S and its

deviator; hence S and S' are coaxial. Let the principal axes of S and its deviator S' be

orientated so that they are equally inclined to the deviatoric plane through the origin o

of the system (o, q). The equation of the deviatoric plane is

S'j = trS' = + s'2 + S3 = 0 (3.2)

where S'x is the first principal moment of S'. In the deviatoric plane the projected

components give the rectangular system of coordinates

u=(4~4)/21/2 v=(3/2)1/2sl (3.3)

which are common to both S and S'.

Use (3.3) to substitute for the eigenvalues s[(i = 1,2,3) in (2.1) to give for the Lode

parameter the expression

M = 31/2v/u. (3.4)

The symmetric second-order tensor S' can be represented as a surface f(S') = 0 where f

denotes the admissible domain which is a closed convex subset of R containing the origin

o of R as an interior point. This surface can be set in the three-dimensional eigenspace

associated with the eigenvalues s[ of S'. Use (3.3) to substitute for the eigenvalues s\ in

the second principal moment of S' given in (2.4) to give

2 S2 = u2 + v2 = R2 (3.5)

where use has been made of (3.4). Equation (3.5) is compatible with the characteristic

intensity function introduced by Mises [6,7] in the context of plasticity theory: that is

f = - (R2/2) = 0. (3.6)

In the context of (3.6), it follows from (3.5) that the geometrical representation of S',

in the form of the characteristic (u, v) curve in the deviatoric plane, is the Mises circle

of radius R = ^Sj)1^2 which constitutes a geometrical representation of any symmetric

second-order tensor.
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From (3.5), (3.4), and (2.6),

—du/dv = v/u = (3.7)

which identifies ji/S1'2 as the gradient of the normal to the Mises circle of radius R.

4. Representation theorem. Let K be a symmetric tensor-valued isotropic func-

tion of the arbitrary symmetric second-order tensor S. The representation theorem for

isotropic tensor-valued functions of symmetric second-order tensors states that: K is an

isotropic tensor function of S if and only if

K(S) =c0I + c1S + c2S2 (4.1)

where the representation coefficients c0,ci,c2 are solely scalar-valued functions of the

principal invariants Is, Us, His of S (see for example [4]).

Let the deviator K' of K be a symmetric tensor-valued isotropic function of the

symmetric second-order tensor S'. The representation theorem states that: K' is an

isotropic tensor function of S' if and only if

K' (S') = 50I + JiS' + <52S'2 (4.2)

where the representation coefficients 5oi<^i,^2 are solely scalar-valued functions of the

principal moments S2, S3 of S'.

Equation (4.2) also follows from substituting for K and S in (4.1) their deviatoric

form to give for the representation coefficients the expressions

60 = —^S'262, <5i = Ci + |lsC2, $2 = C2- (4.3)

Enter the expression for <$0 given in (4.3) into (4.2) to give the representation

K' = ^S' + 82 (S/2 — gS^l) . (4.4)

Equation (4.4) establishes and 82 as the only independent representation coefficients.

Although (4.2) follows from (4.1) by substituting for K and S their deviatoric form,

the representation theorem for K' has been independently stated in (4.2) to establish

that <5i and 82 are solely functions of the principal moments S2, S3 of S'.

Enter the spectral representations of S and S' from (3.1) into (4.1) and (4.4), respec-

tively, to give for K and K' the spectral representations

K = krqr ® qr, K' = ^ kr'qr ® qr. (4.5)

In (4.5) the

r—1 r=1

h = c0 + ciSi + c2st, fc-= <5js-+ J2(s- - 3S2) (i = 1,2,3) (4.6)

are, respectively, the eigenvalues of K and K'. It is seen from the first equation in (3.1)

and the first equation in (4.5) that S and K have the orthonormal triplet q; in common,

and hence K is an isotropic coaxial function of S. Similarly, it follows from the second

equation in (3.1) and the second equation in (4.5) that K' is an isotropic coaxial function

of S'.
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The characteristic equation of K' yields

k\ = (2/3)^2 r cos (l/3)arccos(d))1^2 + (2/3)(3 — i)7r (i = 1,2,3) (4.7)

where r = (2K2) is the radius of the Mises circle characteristic of the geometrical

representation of K,

27KI 2 (X2~9)2 / 0^2<1\ f \ / 9 < x2 < 00 \ ,
.,..1 X , o\3 \ n 1 J ' I 1 ^ 1 \ /'I n ^ i ] ( • /

4 K'23 (3 + x2)3 V05?^1 / \ / ' V 0 s? w sC 1

is the Fromm [3] representation parameter associated with K and K', and

K = T2^ + X2){k',-k'2)\ K^ = ^x(x2-9)(^-^)3 (4.9)

are the second and third principal moments of K'. In (4.8)

X = 3fci/(k£-A£) (4.10)

is the Lode [5] representation parameter associated with K and K'.

Substitute successively in (4.10) for the k[ from the second equation in (4.6) and from

(4.7) to give with use of (3.2), together with (2.1), (2.4), and (4.8), the expressions

3(m2 - 1) 1
X = M

where

1 -
2/x2 1-(VM)J

= 31/2 tan <fi (4.11)

<t> = (1/6) arccos (1 — 2u) = (1/6) arccos (l — [27Kg2/(2K23)]). (4-12)

Equations (4.11) and (4.12) establish the Lode representation parameter to be solely a

function of the second and third principal moments of K'.

5. Representation coefficients. Expressions for the representation coefficients fol-

low directly from the representation theorem. However, these expressions have in com-

mon a factor which cannot be evaluated from the theorem and recourse must be made

to the characteristic representation intensity function for K'.

(i) Directly from representation theorem: from the second equation in (4.6)

1/2

m(m -9)(x-m)

where

H =

<5! =

So =

K2

H(3 + xm)2

(3 + x2)(3 + /-i2)

H(3 + xm)2

(3 + x2)(3 + m2)

1 -
3(m2 - 1)(3 + XM).

1/2

Mm2 - 9)(x - m) / ^§2

3(m2 ~~ 1)(3 + X^) V3S3

(5.1)

(5.2)

r 3S3 r '

+ 2st5=

2 (4S23 - 27Sg2)

+ 27Sf

3SL
k; 2

2

(K2 = HS'2) (5.3)

and use has been made of (2.3), (2.4), (2.5), (4.6), (4.9), and (4.11).

(ii) From characteristic representation intensity function: the counterpart for K to

the intensity function defined for S in (3.6) is

h = K'2 - k2 = S'2 H(Sa, S'3) - k2 = 0, (k = const.) (5.4)
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where use has been made of the second equation in (5.3). The characteristic representa-

tion intensity function defined on the right-hand side of (5.4) was introduced by Prager

[10] in the context of plasticity theory. Since H finds application in the context of the

representation theorem it will here be referred to as the Prager representation parameter.

Use the relations

ds'2/ds = s' ds'3/ds = s'2 - §s;i

to rearrange (4.4) to give

K' = ^(SS^/aS) + <52(<9S!j/dS). (5.5)

Since the representation coefficients are each solely a function of the principal moments

S2, S'3 of S' in accord with the defining statement accompanying the formulation of the

theorem given in (4.2), it follows from (5.3) that H is solely a function of S^S^. This

conclusion implies that the characteristic representation intensity function defined in

(5.4) is a function of the principal moments of S': that is, h = 11(82,83) alK' hence

dh/dS = (dh/dS'2) (dS'2/dS) + {dh/dS'3) (dS'3/dS). (5.6)

From (5.5) and (5.6)

K' = dh/dS. (5i=3h/(?S^, S2 = dh/dS'3. (5.7)

Enter the relation for h given on the right-hand side in (5.4) into the second and third

equations in (5.7) and use (2.3) to give for the representation coefficients the expressions

<9H O/i s 0 dEd/i f'2S'2
61 H ^ d/i duj 62 3w d/j du V 3S3 J ' (5'8)

The equality between the expressions + (3S3/2S2) formed from (5.1) and (5.2). and

independently from (5.8), gives the Prager representation parameter

H = (3 + xm)2/[(3 + X'2)(3 + Z-'2)]' (5-9)

= cos2 [(1/6) arccos (1 — 2u>) — (1/6) arccos (1 — 2w)], H : [0.1]

where ft and x have been replaced in the first expression for H in (5.9) from (2.6), (2.7),

(4.11), and (4.12) to yield the second expression for H given in (5.9).

From the first expression for the Prager representation parameter given in (5.9)

= (3 + X2)
dfi (3 + /J2)

1 (3 + M2) 3H (5.10)
2 [3H(1 - H)]1/2 dn

Substitute on the left-hand side of the second equation in (5.8) the expression for S2

given in (5.2) to yield

dH/dn = 2 [3H(1 - H)]1/2/(3 + m2) (5.11)

where use has been made of (2.3) and the first equation in (5.9). Enter the expression

for <9H/ctyt given in (5.11) into (5.10) to give

dx/d/i = 0. (5.12)

Equation (5.12) establishes that the Lode representation parameter is not a function of

the continuously variable Lode parameter. This conclusion, together with the condition



GENERALISATION OF HOOKE'S LAW 787

that the representation coefficients are each solely a function of the principal moments of

S' in accord with the defining statement accompanying the formulation of the theorem

given in (4.2), requires the Lode representation parameter to be a constant. This implies,

with use of (4.8), that

X = const. = x0- Xi > X2> xl ■ [0.1], x\ : [1,9], xl : [9, oo]. (5.13)

Expressions for the representation coefficients are obtained by entering into (5.1) and

(5.2) the expression for the Prager representation parameter given in the first equation

in (5.9): thus

5!
(3 + XM)

2

(3 + X2)(3 + fj,2)
1 M/' - 9)(x -

3(/<2 - 1)(3 + xv)
(X = const.), (5-14)

//.(/.i2-9)(x-m)(3 + xm) f1S'2\ f ^
S2 = ^T~2 1 \/o , ..2n/o , ..2\ VoT ) U = const.) (5.15)

3(m2-1)(3 + X2)(3 + m2) \3S'3,

which also follow from (5.8) with use of (2.3) and the first equation in (5.9).

The condition /j = x reduces (5.14) and (5.15) to

PiWx = l, Nm=x = 0. (5.16)

Enter the conditions given in (5.16) into (4.4) and (4.1) to give, with use of (4.3), the

conditions

[K']M=X = S', [K]/t=x = c()I + S. (5.17)

6. Geometrical representation in the deviatoric plane. There are two geomet-

rical representations in the deviatoric plane. These are the Mises geometrical representa-

tion, which centres on the use of the eigenvalues fc, of K, and the alternative geometrical

representation which, since K is an isotropic coaxial function of S, centres on the use

of the eigenvalues Sj of S. The latter geometrical representation of an isotropic tensor-

valued function of a symmetric second-order tensor follows from (5.4) with H identified

as the Prager representation parameter defined in (5.9) and hence it will be referred to

as the Prager geometrical representation.

(i) Mises geometrical representation: a geometrical representation of the symmetric

second-order tensor K parallels that for S given in Section 3. This representation in the

deviatoric plane centres on the use of the eigenvalues of K and is characterised by the

Mises representation circle of radius r = (2K'2)1//2. The gradient of the normal to the

Mises representation circle of radius r is x/31//2. In the context of the Mises representation

circle of radius r, the Lode representation parameter x is continuously variable.

(ii) The Prager geometrical representation: let the principal axes of S be orientated

so that they are equally inclined to the deviatoric plane introduced in Section 3. In (2.1)

set

(4 - 4) = 21/2 U |K s'i = (2/3)1/2 v |K (6.1)

to give with use of (2.6)

fi — 31//2(v/u) = 31/2tana . (6.2)
K K
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To distinguish between (6.1), (6.2) and equations (2.6), (3.3), and (3.7), the subscript K

is used to identify (6.1) and (6.2) with the representation theorem.

Substitute the expression for the Prager representation parameter given in the first

equation in (5.9) into (5.4) and in the resulting expression enter the relation for S'2 given

in (3.5) and use (3.4) to give the characteristic representation intensity function

, (31/2u + xv)2 , 2 n /e. 0,

2(3 + \2) "" "° <0)

Equation (6.3) gives the expression

v = 31/2(u0 - u)/x, u0 = k [2(3 + x2)/3]1/2 = const. (6.4)

The condition given in (5.13) establishes that the characteristic geometrical represen-

tation, in the form of the (u, v) relation given in the first equation in (6.4), is linear

in the deviatoric plane. It also follows from (2.3) to (2.7) and (4.8) to (4.12), together

with (5.13), that this (u, v) relation is linear in each of the twelve n/6 segments in the

deviatoric plane. Equations (4.11), (5.13), and the first equation in (6.4) give

X = — 31/<2 (du/dv)]K = 31//2 tan^|K = const. (6.5)

In (6.5), x/31' 2 is the gradient of any arbitrary straight line perpendicular to the linear

(u, v) relation given in the first equation in (6.4).

0 11 (//=(),&>= 0)

' H o ~~ X o. ® o

V

Fig. 1. Variation of u with v for x = 0.333 and fi : [-00, 0].
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The geometrical representation of S in the deviatoric plane is the Mises circle of radius

R = (2S2)1//2- For n = x, the first equation in (5.9), together with (5.3), (3.5), (6.5), and

(2.6), yield the conditions

= 1, [K'2]m=x = % = R2/2, [</>\k = a|K ]M=X (6.6)

from which it follows that for /z = x> the line defined by the linear (u, v) relation given in

the first equation in (6.4) is a tangent to the Mises circle of radius R. This condition also

holds in all twelve 7r/6 segments in the deviatoric plane. Equation (5.13) identifies two

adjacent 7r/6 sections for /x = —1 characterised by x0 f°r A4: [ ~ 1,0] and by xt f°r H :[~35

-1], The conditions Si = 0,S2 = 0 for all S3 ^ 0 when entered into (2.1) give /x = —1.

Set s3 = Y and substitute /x = — 1, Si = 0, s2 = 0, S3 = Y into (6.3) to give

2 [3(3 + Xo)]1/2, 2 [3(3 + X'i)]1/2.
Y=-lt, —k.w—L— ^—k, // = --1). 6.7)

(3-Xo) (3-Xi)

Equation (6.7) yields

(3 + Xo + Xi -X0Xi)(Xi -Xo) = 0 (6-8)

and since Xi r- Xo> (6-8) gives the condition

Xi = (3 + Xo)/(Xo " !)• (6-9)

For the two adjacent 7r/6 sections there are values of the Lode parameter /x0 = x0>

Hl = Xi at which each linear section is tangent to the Mises circle of radius R = ^S^)1^2

(see Fig. 1). Hence, for the two points of contact for which Ho = xo and Mi = Xi> it

follows from (6.9) that

Hi = (3 + Ho)/(fM> ~ !)• (6-10)

Denote by u>o and loi the values of the Fromm parameter for ^0 = Xo and Hi = Xi

respectively. The result of substituting the expression for /j,i given in (6.10) into the

expression for oj given in (2.3) establishes that

wo|M=Xo = ^|Ml=Xl. (6.11)

From (2.6), /iq = — 31/2 tana0 for /xo = Xo- Substitute this expression for /x0 into (6.10)

to give Hi = — 31/2 tan (n/3 — «o) f°r Hi = Xi - These expressions for ho and hi, together

with the condition given in (6.11) establish that the segments of the Mises circle of radius

R = {2S'2)1^'2 and the associated tangents in the form of the linear sections given in (6.4)

for each of the two adjacent 7r/6 sections are mirror images of each other (see Fig. 1).

Hence the two linear sections meet in a vertex for which /x = — 1. The same conclusion

holds for all the linear sections. From this it follows that the twelve linear segments form

a twelve-sided regular polygon, the vertices being identified from (2.3) by the values of

the Lode parameter /x = 0, ±1, ±3, ±00, and hence the locus in the deviatoric plane is

symmetric with respect to each of the three projected axes. These conclusions are in

accord with the condition that K is a symmetric, tensor-valued isotropic function of the

symmetric second-order tensor S. This class of intensity function h is piecewise linear

and continuous and is not continuously differentiable.

The Prager geometrical representation implies that the characteristic representation

intensity function is a surface h(S2, S3) = 0 in the three-dimensional eigenspace associated
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with the eigenvalues s- of S', where h denotes the admissible representation domain which

is a closed convex polyhedron containing again the origin o of R as an interior point. This

conclusion identifies the characteristic representation intensity function as a criterion for

determining admissible systems of representation: this interpretation of h is central to

the formulation of constitutive equations.

7. Basic constitutive assumption. Let M be a symmetric tensor-valued isotropic

function of the symmetric second-order tensor E. The properties of M and E are formally

identical to those of K and S respectively. Hence, from (4.1)

M(E) = a0I + aiE + a2E2 (7.1)

where a0,ai,a2 are solely scalar-valued functions of the principal invariants Ie,He,IHe

of E. Equation (7.1) can be expressed in deviatoric form:

M'(E') = ipiE' + (y?2 (E/2 — §E'2l) . (7.2)

In (7.2) the response coefficients

Pi — al + §Ie£12 ~ ^
^2 _ 9)(k _ v)

3(v2 — 1)(3 + ku)
,P2 = *2 = ^-Pl)^) (7.3)

where the Prager response parameter

(3 + nv)
—   

(3

and

2

* = (3 + *')(3 + ■/>)■ <" = »»'■) I7'4)

3m! 3 e\
k = — T = const., v =   r, 7.5)

m3 ~ m2 4 - £2

are the Lode parameters associated with M' and with E' respectively. In (7.5), the

m'i, e\(i = 1,2,3) are, respectively, the eigenvalues of M' and E'. The second principal

moments of M' and E' are

M2 = T2(3 + K2)(m'3-m'2f E2 = jj(3 + v2)(e'3 - e'2f. (7.6)

Equations (7.3) to (7.6) are the counterpart to those for K' and S' given in (5.14), (5.15),

(5.9), (4.10), (2.4), (4.9), and (2.1).

The constitutive assumption takes the form

K=2GP(M) (7.7)

where the nonlinear response of M to changes in the loading of K is described by the

coefficient G through its dependence upon the principal invariants Im,HmTIIm of M.

In (7.7), P is a symmetric tensor-valued isotropic function of the symmetric second-order

tensor M. The present discussion is concerned with that class of constitutive equations

for which P is an isotropic linear function of M. It follows from Sections 2 to 5 and in

particular the second equation in (5.17) that for this class of constitutive equation

P = bo I + M (7.8)
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where bo is a scalar-valued function of the principal invariants Im. 11M. 11IM of M. Sub-

stitute the expression for P given in (7.8) into (7.7) to give the constitutive relation

K = /3(trM)I + 2GM (7.9)

where

P = 2G b0/(trM) (7.10)

is a scalar-valued function of the principal invariants Im'IIm.IUm of M and the initial

conditions have been taken to be M = O when K = O.

8. The Lode relations. Equation (7.9) can be expressed in deviatoric form:

K' - JxS' + 52 (S/2 - §S'2I) = 2G [<^E' + (E'2 - §E^l)] = 2GM'(E') (8.1)

where use has been made of (4.4) and (7.2). From (8.1), K'2 = 4Gr2M'2, and hence,

with use of (5.3)

I<2 = HS2 = 4G2'I'E2 = 4G2M'2, (M2 = ^E2). (8.2)

The connection between the second principal moments of M' and E', given in the second

equation in (8.2), is the counterpart to that for K'2 given in (5.3).

(i) First Lode relation: enter the spectral representation of K' from (4.5) into (8.1) to

yield
3 3

M*m y m'r qr <S> qr, E' = ^ s'r q,. g q,. (8.3)

r=l r=1

where

mi = K/(2G) = ~ |E2)(i = 1,2,3), k't = 2Gm[. (8.4)

It follows from the second equation in (3.1), (4.5), and (8.3) that K', S\ M', and E' have

the orthonormal triplet qj in common and hence K^S'.M', and E' are coaxial.

Since K' and M' are coaxial, it follows that the Mises circle of radius r = (2K2)1/2

characteristic of K' is concentric with the Mises circle of radius r* = (2M'2)^2 charac-

teristic of M'. From (8.2)

r= (2K'2)1/2 = 2G (2M^)1/2 = 2Gr*. (8.5)

Equation (8.5) establishes that 2G scales the Mises circle characteristic of M' into coin-

cidence with the Mises circle characteristic of K'.

Substitute the expression for the k\ given in (8.4) into (4.10) and use the first equation

in (7.5) to give

X = k = const. (8.6)

The equality given in (8.6) is the first Lode relation.

(ii) Second Lode relation: an alternative geometrical representation of M' is the Prager

representation in the form of a regular twelve-sided polygon for which each of the twelve

linear sections is of the form given in (6.4); thus

v* = - 31/2(u* - Uq)/k, Uq = k* [2(3+k2)/3] 1/2 = const. (8.7)
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In (8.7)

v* = (3/2)1/'2£'1 , u* = (£3 — e'2)/bigg/21^2 , k = —31//2du*/dv* = 31^2tan<f>
M M M

where <fi* is the counterpart for M to 0 defined in the context of (4.11) and (6.5). Since

K' and M' are coaxial, it follows that the twelve-sided regular polygon characteristic

of M' is concentric with the twelve-sided regular polygon characteristic of K'. In (8.8),

k/31'2 is the gradient of any arbitrary straight line perpendicular to the linear (u*,v*)

relation given in the first equation in (8.7).

The first Lode relation, together with (6.5) and the third equation in (8.8) give

X = —31^2du/dv = 31/2 tan0|K = —31^2du*/dv* = 31/2 tan0*|M = k = const. (8.9)

From (8.9) it is seen for fi : [0, 00] '■ [0,oo] that the first Lode relation gives <j>\K = 0*|M-

This condition establishes that these two twelve-sided regular polygons are geometrically

identical: that is, within each of the twelve tt/6 sections, the two corresponding linear

sections of the regular twelve-sided polygons form a pair of parallel lines.

In the context of the discussion given in Section 6, in particular (6.6) and (6.1), it

follows that for v = k, the line defined by the linear (u*,v*) relation given in the first

equation in (8.7) is a tangent to the Mises circle of radius R* = characteristic

of the geometrical representation of E' in the deviatoric plane.

For the particular condition /x0 = Xo' ^ a linear section of the regular twelve-sided

polygon characteristic of K' be a tangent at the point P(u, v) to the Mises circle of radius

R. Similarly, for the particular condition v0 = k0, let the corresponding linear section

of the regular twelve-sided polygon characteristic of M' be a tangent at the point Q(u*,

v*) to the Mises circle of radius R*. The first Lode relation, that is \ = identifies for

the particular conditions /iq = \o at P(u, v) and vq — kq at Q(u*, v*) that

[xo = 31/2 tan 4>\ = Uo = 31/2 tan ao — no = 31/2 tan <j>* I = uo = 31/2 tan ao 1
L Ik Im Jp,q

(8.10)
where use has been made of (2.6), (6.5) and the third equation in (8.8). In (8.10), the

expression Uq = 31/<2 tan Qq is the counterpart for M' to the expression for /U given in

(2.6). Equation (8.10) establishes (i) that the points P and Q must both be on the same

straight line in the deviatoric plane through the origin o of the system (o, q), and (ii)

that the line oPQ is characterised by the condition n0 = xo = Ko = and hence (5.9)

and (7.4) give

tHU=x0=1' [^0=^0 = 1' [Mo = Xo = «o = ^o]P:Q ■ (8-11)

Equation (8.2) can be used, together with (2.1), (2.4), (7.5), (7.6), (8.2), (8.10), and

(8.11), to give for the corresponding points P and Q

(s3 — ̂ 2)Ik = 2G(&3 — £2)Im ' siIk = 2G £iIm > [Mo ~ Xo = Ko — ̂ o]p,Q • (8-12)

Equations (6.1), (8.8), and (8.12) yield

uIk = 2Gu |M , v|K = 2Gv |M , [^0 = Xo = Ko = ^oJp^q ■ (8.13)

The conditions established in the context of (8.7)-(8.13) apply in all twelve 7r/6 sections.
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Equation (8.13) establishes that 2G scales the twelve-sided regular polygon character-

istic of M' into coincidence with the twelve-sided regular polygon characteristic of K'.

From this it follows that 2G scales the Mises circle characteristic of E' into coincidence

with the Mises circle characteristic of S' and hence

R = (2S^)1/2 = 2G (2Ef,)1/2 = 2G R*. (8.14)

From (3.5), (8.2), and (8.14)

H(2S2) = HR2 = <I'4G2(2E'2) = 4-4G2R*2. (8.15)

Substitute the expression for R given in (8.14) into (8.15) to give the condition

H = *5 (8.16)

for all /j, and all v. Equation (8.16) together with the use of the first Lode relation and

equations (5.9) and (7.4) gives

[(M + ")X2 + 2(3 - nv)x - 3(/j+i/)] = 0. (8.17)

The only solution of (8.17) valid for all /i and all v is

\i = v. (8.18)

The equality given in (8.18) is the second Lode relation.

Changes in the magnitude of S, that is, variation of (S2)1,/2, leads either to expansion

or contraction of the area of the twelve-sided regular polygon characteristic of K'. Any

variation in the loading of S2 leads to a constitutive variation in M2 in the form of

either an expansion or a contraction of the area of the twelve-sided regular polygon

characteristic of M'. Central to the formulation of a constitutive equation is the concept

that 2G scales the two polygons into coincidence, which is only possible if /i = v for all

fj, and all v. It is in this latter context that the second Lode relation, given in (8.18), is

central to nonlinear constitutive theory.

9. Constitutive equation. In the context of constitutive theory, the characteristic

representation intensity function, in the form defined on the right-hand side in (5.4) is

effectively a criterion for determining admissible systems of loading, and as such must be

retained in any general form of constitutive equation. Substitute in (8.2) the expression

for S2 given in (2.4) and the expression for E2 given in (7.6) to give, with use of the

second Lode relation,

H1/2(4 - 4) = 2G1'1/2(4 - 4). (9.1)

From (9.1), (2.1), and the second equation in (7.5), together with the use of (3.2) and

the second Lode relation, it follows that

H1/2 si = -H1/2(4 + 4) = 2G^1/2e[ = -2 G^1/2(e'2 + e'3). (9.2)

Equations (9.1) and (9.2), together with use of the second Lode relation, yield

H1/2 s2 = 2G^1/2£2, Hx/24 = 2G3'1/24. (9.3)
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Enter the expressions given in (9.2) and (9.3) for the (i = 1,2,3) into the second

equation in (3.1) and use (8.3) to establish

hi/2S' =hi/2[S_ i(trS)I] = 2G^1'/2E' = 2G'^1/2[E-±(trE)l]. (9.4)

It has been shown in Section 8.(ii) that H = ^ for all fi and for all v.

Equation (9.4) can be rearranged to give the constitutive equation

© = A(tr$)I+2G$, (9.5)

where the initial conditions have been taken to be E = O when S = O, and

0 = H1/2S, $=3^1/2E (9.6)

are generalized constitutive state variables. The retention of the Prager loading and

response parameters in (9.4) and (9.5) ensures an implicit dependence of the constitutive

equation upon the characteristic representation intensity function.

The nonlinear response of $ to changes in the loading of 0 is described by the coeffi-

cient G through its dependence upon the principal invariants Ie, He- HIe of E. There are

as many observable characteristic constitutive relations as there are individual admissible

systems of loading.

For those elastic materials for which \ ~ K " v f°r A4 ( ==■ f), it follows from (5.9)

that H = 1 and from (7.4) that ^ = 1; these conditions reduce (9.5) to the constitutive

equation given in (1.1).

10. Concluding remarks. The properties characteristic of the representation the-

orem for isotropic tensor-valued functions of symmetric second-order tensors are deter-

mined by two parameters referred to as the Lode parameter, which is continuously vari-

able, and the Lode representation number. The range of application of the representation

theorem is determined by the values of the Lode representation number.

A geometrical representation has been established by way of the concept of a charac-

teristic representation intensity function. The geometrical representation identifies the

only admissible form of the representation intensity function to be piecewise linear and

continuous.

These properties of the representation theorem limit the way in which this theorem

can be used in the formulation of constitutive equations.

The representation theorem has been used to formulate a generalisation of Hooke's

law for finite strain applicable to the initial elastic range of strain-hardening materials,

including the elastic conditions at initial yield.
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