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Abstract. We extend the linear "stick-slip" models of Doi-Edwards and Johnson-

Stacer to nonlinear tube reptation models. We then show that such models, when com-

bined with probabilistic formulations allowing distributions of relaxation times, provide

a good description of dynamic experiments with highly filled rubber in tensile deforma-

tions. A connection to other applications including dielectric polarization and reptation

in other viscoelastic materials (e.g., living tissue) is noted.

1. Introduction. This note is prompted by several thrusts in our research efforts.

The first is to extend linear reptation models for polymeric materials to models incor-

porating nonlinearities and to use the resulting systems to explain molecular based hys-

teresis (e.g., via internal variable formulations). A second direction involves exploration

of multiscale aspects of polymeric structural modeling with uncertainty at the molecular

(micro) level. We do this in the context of a probabilistic formulation of the models

to produce a suitable overall system (macro) response to deformations. The ideas are

illustrated in a specific application to highly filled rubber exhibiting significant hysteresis

as well as nonlinearity in tensile and shear deformations as depicted in Figure 1.

Indeed, the ideas reported here were motivated by earlier efforts (summarized in [7]

and the references therein) using a phenomenological approach to filled rubber modeling

where we encountered significant hysteresis. The phenomenological approach entailed

the use of Boltzmann hysteresis operators with nonlinearities that were necessary to

describe experimental data. Our desire to understand the models at a more mechanistic
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Fig. 1. Experimental stress-strain curves for (1) unfilled, (2) lightly

filled and (3) highly filled rubber in tensile deformations

level led to the linear molecular models of Doi and Edwards [15] and Johnson and Stacer

[20]. Linear versions of those formulations did not lead (see [6]) to the types of nonlinear

hysteresis formulations sought after.

The focus here is on viscoelastic polymers, but the underlying ideas are much more

widely applicable to problems in biology (living tissue, disease pathogenesis [5]), dielec-

tric materials (polarization effects), industrial fluids (polymeric melts), and ecological

migrations (hidden or internal episodic behaviors). For example, treating shear waves in

living tissue requires nonlinear constitutive laws that are hysteretic in nature ([3, 8, 17]).

Molecular level (internal strain) formulations also utilize multiple relaxation time con-

stants precisely such as those in the models developed below. Multiple relaxation times

play an important role in molecular based (tube reptation) nonlinear constitutive models

for the flow of polyethylene melts ([11, 12, 13, 18, 22]). For dielectric materials, it has

been known for some time ([14, 25, 26]) that one needs distributed relaxation times in

polarization models for heterogeneous materials. For example, it is desirable to repre-

sent the complex dielectric permittivity ([14]) in terms of a probability density cf> over

relaxation times as in

[ °° </
£(&) = £"oo ~b (£"s £oc) I T

Jo 1

(j){T)d,T

0 1 + JUT

This can be written in a more familiar form as

a;r0(r)dr^ r <i>(T)dr ^ [°°
E(uj) — Sqc + (£s £ oo) / i I 2 2 J\^s ^°o) /

J0 1 +UJZTZ JQ 1 + LO^T
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The latter formulations are analogous to proposed forms of the "elastic" moduli based

on experimental observations in the works of Ferry, Andrews, Ter Haar and others [2,

16, 23, 24, 27]. We describe in detail the incorporation of multiple relaxation times in

our models in Sec. 4.

In Sec. 2 we give a brief review of the linear reptation models developed by Johnson

and Stacer and then in the next section provide the details on our extension to nonlinear

versions of these models. In Sees. 4 and 5 we explain how these models have led to a

molecular based fit of dynamic models to experimental data for highly filled rubber in

tensile and shear deformations.

2. Linear reptation models. Tube reptation models for deformations of viscoelas-

tic polymers were introduced by Doi and Edwards [15] and were further developed by

Johnson, et.al., in several papers [19, 20]. In this section we give a brief overview of their

models and assumptions in the case of tensile deformations since they serve as a starting

point for the derivation of our nonlinear reptation model in Sec. 3.

The Doi-Edwards "stick-slip" model assumes that the polymer is composed of chemi-

cally cross-linked (CC) tubes that contain physically constrained (PC) molecules. At the

time an instantaneous tensile step-strain is applied, the entrapped PC molecules stick to

the tube and elongate with it, but then they contract and slip back close to their orig-

inal length. This provides the viscoelastic character of the material. In particular, the

relaxation is modelled in the following way. Let L(t) denote the length of the chemically

cross-linked molecule, while i(t) stands for the length of the physically constrained one.

Assume that the PC molecule elongates to length i* due to the applied step-strain. Then

l{t) = £(0) + (f - ^(0))e"t/T 0 = *0<*<ti, (2-1)

where r is the relaxation time for the "slip" motion and t\ denotes the time the next

step-strain is applied. It is assumed in [15] and in the continuum realization of this model

in [20] that the "stick" phase of the motion at the time of the step-strain deforms the

PC molecule proportionally with the CC tube deformation, i.e.,

A£i 1% , ^
AL~ = L? l = (2-2)

Here Li and denote the length of the CC and PC molecules at time ti, respectively,

while A Li and Ati stand for the instantaneous stretches, i.e., Lj = Li-\ + ALj_i, li =

li-i + A£j_i. Using this assumption we can write (2.1) as

£(t) = H—— ALqR 4/t, 0 = to < t < t\. (2.3)
L o

Continuous motion is approximated by a series of step-strain deformations applied in At

intervals, where At —> 0. This leads to the relaxation equation

rt

i(t) = t„+ f 1^,
Jo L(s) ds

or, in differential form,

r2 = io_ )t (2.4)
dt t \t L dt J

1 1 dL\
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When this model is assembled into a 3-D continuum model of a solid, one defines a unit

box or cell at each material point oriented by the principal stretches (Aic, \ic, X^c) of

the CC system with an inside box with parallel sides (Aip, A2P, A3P) for the PC system.

Stresses are calculated by determining how the strain energy function W, which has

contribution Wcc from the CC box and Wpc from the PC system, changes with respect

to the applied stretches or displacements of the CC system. In turn, the stretches of the

PC box are treated as internal variables depending on the stretches of the CC system.

We note that as an analogy to (2.2) we have

dAJP = ^2Lx.. (o tn

dXlc Xtc Jl' { '

where 5ji is the Kronecker delta function. Thus we have that the strain energy density

function is

W = Wpc + Wcc = Wpc(Xlp, X2p, X3p) + Wcc(Xlc, A2c, A3c), (2.6)

and the internal dynamics (2.4) (with £q = 1) yields

dXip   1 /I 1 dXiC ̂ ^ /o

~df ~ t~ \ t~ \~~dt~ J p' (~ >

since the principal directions of the PC and CC system are aligned. The Cauchy stress

in the principal direction ej (where is a unit vector in the Xj direction) is given by

dW
r, = y - p, (2.8)

where P is the hydrostatic stress. We combine (2.6) and (2.8) with the assumption that

Aip depend on AiC as internal variables and obtain

x dwcc , A ^ dwpcaxip r>

Tj jc dXjC jc dxip dXjc

A 5L P
- Ajc dXjc + A>p dXjp

by applying (2.5). If we choose j = 1 for the direction of loading, we have

n A dVFcc , N dWpc n
t2 — t3 — 0 — X2c~K\ b A2p ~"7TT P (2-9)

OA2c OA2p

because stresses are zero on the sides of a tensile sample. Since P can be determined

from (2.9), we obtain that the tensile Cauchy stress is

dWcc x dWcc \ t x (dWpc x dWpc
T1 " Alc 1^7 " hcdX^J + hp I 9V " A2p 5A2p

while the engineering stress is given by

n (dWcc , cWcc\ , Alp (dWpc N dWpc
°"i = = it;  x2p

Aic V 9Xic dX2C J Aic V dXip dX2P

This model was analyzed in [6] for incompressible rubber materials undergoing large

dynamic tensile strains with a particular strain energy function provided in [21].
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Let upiuc denote the deformation of the PC and CC boxes, respectively. With =

1 + dxup and Aic = 1 + dxuc, (2.7) implies that

— (1 + dxup) = - - j- - (1 + dxuc) 17^-1 (1 + dxup).

This in turn yields the internal dynamics

ii H—81 — e(l + £i)/(l + e)
T

in terms of the infinitesimal strains ei = dxup for the PC system and e = dxuc for the

CC system. It is shown in [6] that the above derivation leads to an approximation of the

engineering stress in the form

cri(e,£i) « (1248 - 1014^)^ + 1014^ = (1248 - 1014 £l)£ + 1014ei.
ox ox ox

This can be combined with the basic model for the longitudinal vibrations of a rubber

rod as given, for example in [10], by

4 92uc . „ d3uc d

P ~ dtd^ - die = <2'10)

where F is the applied external force, Ac is the cross-sectional area and p is the mass

density of the material.

3. Nonlinear reptation model. In this section we present a nonlinear extension of

the "stick-slip" model of Doi and Edwards for tensile deformations. A crucial assumption

throughout the derivation in the previous section was that the elongation of the PC

molecules is proportional to that of the CC molecules during the "stick" phase of the

motion, i.e., = f, or = ^Sji as in (2.2) and (2.5). It might be expected that

for certain materials and large strains this relationship is not strictly linear, but rather,

it is described by a general nonlinear function / that may also depend on time, i.e.,

£z = " ifc-"*>&»■ <31>
Thus we have that the relaxation equation after an instantaneous step-strain, in contrast

with (2.3), is given by

m = ^0 + fit0, ^)ALoe-^/T, 0 = to < t < t,.

Similarly, for t e (tm-i,tm), m > 1 we have

m-l p

m = to + E
Lii=0 !

In the limit, as At = tm — tm-i tends to zero we obtain

rt

Thus

'(«)=*o+ f f(s^)^e~^Tds.
Jo L(s) ds

dt l(t)dL 1 , ,
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describes the continuous motion of the CC-PC system in differential form. Now we take

^o = l, t = 1 + £i, L = l+ e and we obtain the internal dynamics

ii 4—£i=if(t,-——)• (3-2)
r 1 + s

As in the previous case we can add this equation to the general model for the longitudinal

vibrations of a rubber rod (2.10).

Before turning to the engineering stress u\ and describing how it is affected by the

nonlinear assumption (3.1), we consider approximations of (3.2). Assuming that / is

time invariant and expanding it in a Taylor series, we obtain

/O -

= To + 5e\ + *)\E + ~f" h.o.t.{£k, k > 3) + h.o.t.[£k, k > 2)

+ h.o.t.(£ke{, k, j > 1).

If £i << e, we find the approximate equation for (3.2) given by

£i + ~£\ = e(7o + 7i£ + 72£2)- (3-3)
r

We note that this approximation corresponds to our earlier phenomenological internal

variable formulation in [10]

1 d
El H £1 — "77<M£)>

r at

where is a cubic polynomial.

Now we turn to the derivation of an approximation to the engineering stress (J\ in

presence of the nonlinear assumption (3.1). Let us make similar assumptions to those

that we made for the linear model in Sec. 2. Namely, we have that the strain energy

function W is given as

W = Wpc + Wcc = Wpc(Xip, X2p, A3p) + Wcc(Xic, A2c, A3C), (3-4)

so that

t._a
J~ JcdXjc '

where the AiP and AiC are the principal stretches of the PC and CC systems, respectively.

Additionally, we assume that / in (3.1) is independent of time, i.e., f(t,9) = f(0). Since

the Aip depend on the AjC as internal variables, the Cauchy stress can again be given in

the form

dWcc dWpc dXip , .

Tj - x^^x- + x^lt^x-ox--R (3-5)

At this point our derivation differs from the one in the previous section. By (3.1)

dKp _ Ajp. .

dxjc XjC 10'



NONLINEAR REPTATION IN MOLECULAR BASED HYSTERESIS MODELS 773

so (3.5) yields

x dWcc , x ^0Wpc n
Tj — ̂ jc + Ajc /(> )^lj P- (3-6)

(JAjc i~\ W jc

li j — 1 denotes the direction of loading, then we have

n , dWcc , x dWVC[, \2p, n
t2 = t3 = 0 = A2c7—+ A2c—^/(—^)-P. (3.7)

OA2c OA2p A2c

We can express P from (3.7) and substitute into (3.6) with j = 1 to find

x dwcc , x owVCt, a2pn

<^7 ~^2~c
n"Alt3A^ + AlcaA^''<^;'-

Now the engineering stress <Ti is given by

dWcc \2cdWcc dWp Alp A2c9^pc A2

ai 5Alc Alc <9A2c <9Alp Alc Alc <9A2p A2c 1 ' J

The first two terms on the right side above constitute the contribution of Wcc to the

engineering stress ai, while the last two terms provide the contribution of Wpc. We

assume that the energy density function W is given as in (3.4) with

Wcc = Cx(I\ — 3) + C2(/2 — 3),

Wpc = C3(h - 3) + C4(h - 3)2 + C5(I2 - 3)3,

where specific values of the coefficients C\,..., C5 can be chosen as in [6] given the strain

energy function suggested by Johnson and Stacer based on experimental data [21]. Here

the strain invariants are

h = A\c + A2c + A3c, /2 = AicA2c + AfcA\c + A^A^,

while

A = -^ip + A2p + A§p, /2 = A^pAjp + A^pA^p + AjpA^p.

We also impose the incompressibility condition in the principle stretches for the PC

and CC systems, respectively, i.e., AipA2pA3p = AicA2eA3C = 1. We can compute the

contribution of Wcc to the engineering stress exactly the same way as in [6]:

dWcc X2c dWcc A B

d\u Alc <9A2c " /1Alc + * A?c A?c

= A(l+e) + B- (3.9)

where A and B are appropriate constants depending on the values of Ci,..., C5. Note

that in this calculation we use the relationship A2c = A3c = i— in the incompressible
V ^1 c

CC system under tensile deformation in the Xi direction. A Taylor expansion of the

negative powers of (1 + e) in (3.9) yields

9WCC A IcdWcc _ , 2l k,
—   ——— a\E 4- a2s + • • • + dk£ +.... (3.10)
dXic Aic o\2c
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Next we turn to the contribution of Wpc to the engineering stress, where the nonlinear

assumption (3.1) modifies the results of the linear case. We find that

d\Vpc ^2C n / ^2p \ dWpc

Aic dXip Aic A2c 6X2p

/(£*) 2C"3A]p + 4C4Aip(Ajp + — 3) + 12Cs(2Aip +  3)~
ip ^iP

._!_/( /*i£) 2 C3—^== + 4C*4 —(A]p +   3)
lp y -Mp ^lp

+3C5(2Alp +-J 3)2(2A^2 H—.Aip K .

We assume that £1 << e and use the following approximations:

/<&> = /0 = /d) + m
/(I) + /'(!) « A1) + - £ + £2 - £3 +

a0 + aie + die2 + ...,

) « /(vl+7) — /(!) + /'(!)(%/! + e - 1)

(VT+7 — l)2 + • • • — fio + + /?2^2 + 03£3 +

where we expanded \/l 4- £ in powers of e. With similar expansions for -4-, i—,
AlP Alp y Aip

^ip2' ^1 p3^2' ^ic3^2' we obtain that

j./ Aip A2c A2p. cilVpc 1 x 2 1 , 2 1
^ \ ~ T-^ \ )"a\ = ^l£l + + •'" + 7ie + 72^ + ...

Ale CAlp Ale A2c CA2p

+ /l.0.t.(£fc£-j, k,j > 1). (3-11)

Combining (3.10) and (3.11) with (3.8), we have the following approximation for the

engineering stress:

ex 1 (£, £1) = c\£ + C2£2 + C3£3 + h.o.t.{ek, k > 4) + <5i£i + h.o.t.{e\, k > 2)

+/l.0.i.(£fe£j, k,j > 1) ~ Ci£ + C2£2 + c3£3 + Ji£i- (3-12)

We remark that the constitutive equation 0\ — ge(s) + Cx>£ + ^i£i, where ge is a cubic

polynomial of the form

ge(e) = ci£ + c2£2 + c3£3, (3.13)

was assumed based on phenomenological arguments in [10] and, as we shall note below

in Sec. 5, it has been successfully used in reproducing experimental data for shear

deformations of rubber samples as well as for large tensile deformations of a rubber rod.

We also point out that the presence of the e term in this formulation for a\ represents
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an approximation to a damping mechanism (certainly present in the case of highly filled

rubber) and does not result from the nonlinear reptation formulation.

4. General tensile models with multiple relaxation times. The above model

with (2.10), (3.2) (with / independent of t) and (3.12) forms the basis of a general class

of nonlinear deformation models for polymers in tension. More generally, the system

written in distributional or generalized sense (see [7, 10]) has the form

Q2U r)

pAc^ -—(AcY,i{e,£,£])) = F (4.1)

where

Si (£, £, £l) (Jelasti^-t ^viscoi^l) (4.2)

and

£l -t*-£l = £/(y-j-^), (4.3)

However, such models are based on the tacit assumption that all molecules relax with

the same relaxation time r. There is substantial experimental evidence [2, 16, 23, 24, 27]

to suggest that the assumption of a uniform relaxation time is not valid. Indeed, when

fitting "elastic" moduli

E(lo) = E'{ui) + jE"(u) = f ^ T <j>(T)dT +jf _^T 2<f>(r)dT
J 0 1 + bJZT2 JQ 1 + U>2T2

to response data in the frequency domain, it is often necessary to use a probability density

4> for the distribution of relaxation times.

In the context of the reptation models developed here, this implies that one should

replace the engineering stress Ei in (4.2) by a probability measure or probability distri-

bution dependent stress-strain law of the form

rOC

El {£,£,$) = crelastic, e) + £i (t)cM>(t), (4.4)
J To

where t —> £i(t;r) is the solution of (4.3) for a given r, $ is a probability distribution

for the relaxation times r, and r0 > 0 is a lower bound on possible relaxation times. For

the special case of an absolutely continuous distribution this, of course, reduces to

/•OO

Ei(e,e, $) = creZaSt(M) + / £i(r)^(r)dr,
J T0

where 4> = <t>'. For a distribution consisting of a finite number of Dirac measures with

atoms at Ti, 72,..., tm, respectively, we have

M

El(s. £,<(>) = crelastic} £) + ^Pjgl(Tj), (4.5)

i=1

where ^i=1 Pi = 1 and t —> £1 (t; r,) satisfies (4.3) with r = Tj, i = 1,2,..., M.

A general theory of existence and uniqueness that applies to systems (4.1) with various

approximations of (4.3), and (4.5), i.e., the discrete measure case, can be found in [1].

A theory for continuous dependence of solutions with respect to parameters (specifically
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with respect to the discrete measure in (4.5)) can be pursued in the context of the

Prohorov metric topology on the space of probability distributions. In this situation this

is equivalent to the weak-star topology on the distributions if they are viewed as a subset

of the dual space of C[tq, f], the space of bounded continuous functions on a finite interval

[to, f] of relaxation times (see [4, 5] for a discussion of the Prohorov metric and its use in

inverse problems for systems containing uncertainty in the "parameters" in the setting of

measure or probability distribution dependent systems). Efforts are currently underway

to develop a rigorous theory for well-posedness (including continuous dependence with

respect to the measures <J>) of systems with (4.4) as the general measure dependent

engineering stress law.

5. Application to experimental data. Systems such as (4.1), (4.3) with (4.4)

certainly pose conceptual, theoretical and computational challenges even when treating

forward or simulation problems. Even more difficulties are presented by estimation or

inverse problems wherein one attempts to use experimental data to determine the distri-

bution <J>, parameters in creiost, or / in (4.4) and (4.3), respectively. However, significant

progress on such problems has been achieved. In a recent summary [7], results are re-

ported on using Si of the form (4.5) in experimental, computational and theoretical

investigations for filled rubber rods in tensile and shear deformations. In the following

we describe the use of models with approximations such as in (3.3) and (3.12), that is,

dropping the h.o.t. terms, to fit data from dynamic experiments for rubber samples in

tension.

We summarize here some of the results obtained using dynamic experiments with a

rubber rod with a tip mass at one end in uniaxial tensile deformation. Similar exper-

imental efforts to validate models for filled rubber samples in shear were successfully

carried out as well (see [7]). The experimental device constructed specifically for these

tensile validation tests at the Thomas Lord Research Center of the Lord Corporation is

depicted schematically in Figure 2.

This experiment produced data {zi} consisting of time measurements of force (at the

tip of the rod, x = 0) collected by a load cell. The data corresponds to the engineering

stress Si at times £, at the top of the rod, x = 0, multiplied by the cross sectional area

Ac. Thus a least squares formulation for estimation of parameters q has the form

J{<l) = ^Z\zi~ -4cSi(e(ii,0),£(^,0),$)|2, (5.1)
i

with s(t,x) = x), where Si is given by (4.5). Here £i satisfies (4.3) with / approx-

imated as in (3.3) for each r^, and <Jeiast is given by

Veiast{£,s) = ge{e) + CDi,

where ge is a cubic polynomial as in (3.13). To be more precise, experimental data

suggested that the nonlinearity / was not the same when tensile deformation was in-

creasing as when decreasing. Hence the approximation in (3.3) was employed with two

sets of 7i's, one set {7|nc} for increasing deformations and one set {^ffec} for decreasing

deformations. The parameter q to be estimated from the data using (5.1) thus consisted

of p, Cd, {liec}, ci,c2,C3 and the r,'s in (4.5). For the results described here we
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Fig. 2. Schematic of the experimental device for tensile validation tests

fixed M — 2 in (4.5) with Pi = P2 = 1/2. For highly filled rubber we found estimation

with one uniform relaxation time (M = 1) would not adequately describe the data. The

details for the case M = 2 are given in [7, 10] and a typical comparison of the optimized

fit model (i.e., model with estimated parameters) to data is depicted in Figure 3.

Partial theoretical foundations for such inverse problems are available [9] with a com-

plete theory currently being pursued by the authors of this paper. As we noted above, in

[1], well-posedness results (existence, uniqueness) for forward systems of the form (4.1),

with various approximations of (4.3), and (4.5) are given under quite general assump-

tions on the nonlinearities. A careful formulation of the associated inverse problem for

estimation of $ in a class of probability measures V is given in [5] in the context of the

Prohorov metric topology on V. Computational approaches for problems similar to these

are discussed in [4]. Our efforts to develop a complete theoretical as well as computational

framework for inverse problems entailing (4.1), (4.3), (4.4) are underway.
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highly filled rubber sample

Fig. 3. Approximation with two internal variables (dashed line) and

experimental data (solid line)
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