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Abstract. In this paper, we study the large time behavior and the existence of glob-

ally defined smooth solutions to the Cauchy problem for the bipolar defocusing nonlinear

Schrodinger-Poisson system in the space K3.

1. Introduction. In the present paper, we study the global existence and large time

behavior for the bipolar defocusing nonlinear Schrodinger-Poisson (BDNLSP) system

.2
£~2

- A2AV = IV'iI2 - IV2I2, (1.2)

with the initial data

V'j(O) •) = <Pj, J = 1,2, (1.3)

where the wave function ipj = ipj(t,x) : M1+d —> C, j = 1, 2, ipj — dipj/dt, A is the

Laplace operator on Rd, and the electrostatic potential V = V(t,x). The nonlinear

self-interacting potential hj(s) is assumed to be given by

2
hj(s) = ajslj, for s ^ 0 and some a,j >0, — < 7j < a(d),

where a(d) = ^5 if d ^ 3 and a(d) = 00 if d = 1,2. The charges of the particles

described by the wave functions ipj are defined by qi = 1, <72 = — 1, respectively, e is the

scaled Planck constant and A is the scaled Debye length.
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i£i>i = + i^jV + hjdtpjl ))tpj, j = 1,2, (1.1)
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We assume that the initial value

tpj(x) e E(Kd) :={ue H\Rd) : \x\u e L2{Kd)}, j = 1,2, (1.4)

with the norm

Is = \Hl + |||x|^j||L2.

This system appears in quantum mechanics as well as semi-conductor and plasma

physics. A large amount of interesting work has been devoted to the study of the

Schrodinger-Poisson systems (see [2], [3], [4], [6], [7] and references therein). In [4],

by applying the estimates of a modulated energy functional and the Wigner measure

method, Jiingel and Wang discussed the combined semi-classical and quasineutral limit

of the (BDNLSP) system with the initial data (1.3) in the whole space where ai = a-i and

7i = 72: provided the solution of (1.1)—(1.3) exists. But they only declared the existence

and uniqueness of global small smooth solution under the assumption that the initial

data were sufficiently small in Hs where s > d/2 + 2. And in [3], Castella proved the

global existence and the asymptotic behavior of solutions in the function space L2 for the

mixed-state unipolar Schrodinger-Poisson systems without the defocusing nonlinearity.

In [6], with the help of madelung transform and WKB expansion, Li and Lin discussed

the following unipolar nonlinear Schrodinger-Poisson system:

iE^t + ~ (Vs(x,t) + f'(\^e\2)W - (argijjE)ip£ = 0,

— &VE = \ipe\2 — C(x), V —> 0 as \x\ —> oo,

subject to the rapidly oscillating (WKB) initial condition

ipe(x, 0) = ipQ — A£0(x)eis°(x\ (1.5)

where / € C°°(M+;K), So € Hs(M.d), d ^ 1, for s ^ d/2 + 2, Af, was a function,

polynomial in e, with coefficients of Sobolev regularity in x, and the function C(x) > 0

denoted the background ions. They obtained the existence of smooth solution where the

wave function was of the form ipe(x,t) = Ae(x,t)e^s'('x't\ with A£ and VS£ bounded

in L°°([0,T]; Hs(Rd)) and the initial data being sufficiently small in Hs(Rd). However,

to our knowledge, there is no previous result on the global existence and the asymptotic

behavior of solutions for the (BDNLSP) system with arbitrary initial data in £(R3). In

this paper, by using the pseudo-conformal conservation law of the (BDNLSP) system and

applying the time-space Lv - Lv estimate method, we shall establish the global existence

and uniqueness of the solution to the (BDNLSP) system with initial data in £(R3). As a

byproduct, the large time behavior to the solution is also obtained. Although the above

results are established for the single bipolar defocusing nonlinear Schrodinger-Poisson

system, the results can be extended to the mixed-state bipolar defocusing nonlinear

Schrodinger-Poisson system within the same framework.

For convenience, we first introduce some notation. For any p 6 [2,oo), we denote

= |(| — i). S(t) denotes the unitary group generated by |iA in L2(R3). For

p £ [1, oo], we denote by p' the conjugate exponent of p, defined by 1/p + l/p' = 1. z

denotes the conjugate of the complex number z.
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Now we state the main result of this paper.

Theorem 1.1 (Existence and uniqueness). Let ipj £ E(1R3). Assume that p £ [2,6).

Then, there exists a unique solution

tpj £ C(R; £(K3)) n L°°(E; H\E3)) n L^(R: ^(K3)), for j = 1,2

to the (BDNLSP) system with the initial data (1.3).

Moreover, the solution (tpi^ip2,V) satisfies the L~-norni, the energy, and the pseudo-

conformal conservation laws (for details, one can see Proposition 2.1 in the case d = 3).

Theorem 1.2 (Large time behavior). Let fa, V) and p be as in Theorem 1.1. Then,

there exist constants C depending only on ||<pj||#i and |||a:|<£j||2 such that

Vp £ [2,6), V|f| ^ 1, (1.6)

\\vv(t)\\p^c\t\-^-^\ vP£(|,oo), y\t\>i, (i.7)

||V(^||p<C|<r5(i-f), V/9£ (3,®), V|i| > 1. (1.8)

In the next section we shall derive three conservation identities including the L2-norm,

the energy, and the pseudo-conformal conservation laws in the whole space for any

d £ N. In Sec. 3, we will give some basic estimates used in our proofs for d = 3. Section

4 is devoted to the proof of the existence and uniqueness of the solutions for the initial

data in £(M3). Finally, the large time behavior of the solution is obtained in Sec. 5.

2. Derivation of the conservation laws.

Proposition 2.1. Let d £ N, {i^j} be a solution of the (BDNLSP) system with the

initial value £ E(Rrf). Then, we have the following conservation laws for all t £ M:

(i) L2-norm law:

Hj(t)h = \\<Pjh f°r j — 1,2; (2.1)

(ii) Energy conservation law:

2 2 2

£2 £ ||V^(f)||§ + A21|VV|j| + 2 ̂  -^-^.(t)||^+i) = const. (2-2)
j l j=i 'J

(iii) Pseudo-conformal conservation law (cf. [9]):

IIxipj + ietVv/j + A2f2|| W||; + 212

j=i i=i 3

(2-3)
, = 1 V -r 1 J°

r>
£||M^||l + (4-d)A2 / r|| Vl/(r) ||2 dr.
3 = 1 J°
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Proof. Denote eq(ipj) =: ieipj + yAipj - (q3V + hj(\ipj\2))ipj.

(i) It is well known that (2.1) holds for j = 1,2. We omit its proof.

(ii) We consider

^(eqi^j), i>j) = 0

where (•,•) denotes the L2-inner product. From the above, we can get

[ {jdt\Vipj\2 + UqjV + hjd^dt^jdx - 0.
./rod 4 Z

Hence,

f {^t(|Wl|2 + | V02 I'2) + -WlV'll2 - |'02|2)
JUd 4 -

+ ^•i(I^i|2)^|V'i|2 + ^h2{\ip2\2)dt\i/j2\2} dx = 0. (2.4)

Integrating (2.4) over [0, f], we obtain the desired identity.

(iii) Considering

= o,

we have

-eSdtWj + • (VMj) - j|V0,|2 - (qjV + ^(|^|2))l^|2 = 0. (2.5)

Noticing

$t(eq(i/>j)ijjjrr) = 0 with r := |x|,

we obtain

-eSdtMjrr + j«V • (V^^>r-||V^|2) + j(d - 2)|V^|2

+ hj(\^:\2))rdr\ipj\2 = 0- (2.6)

Due to

dt{i>jipjrr) + V • (xrpjdt^j) = 2dt^^rr + 2$tipjX ■ Vdt%pj + ddtipj4'j,

we have, by taking the imaginary part, that

(Sdt{il>j'4)jrr) + QV • (x4'jdtipj) = dSsdt'ipj'ipj + 2$S(dtipj'4)jrr).

From (2.5) and (2.6), we have

-sWtiipjtpjrr) - SV ■ (xtpjdfipj) - ^—d?RV • (Vf/y</>j) - d(qjV + Ml^jl2))!^!2

+523?V • (V^jrr - ||V^|2) - (qjV + hj(\i)j\2))rdr\i>j\2 = 0.

We also have

dt\xi/jj + istVipj j2 = dt(\ipjr\2 + e2t2\Vxl'j\2 + 2EfSipjm ■ Vi/>j).
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Since

0 ' 1 l~ — ill ■ ill - — Q-i* <?r). 1/1 ■ j/i .-dt\ipjr\ = £^t(dti>j^j)r = ^siedtijjjipjr

£2

= 3[- + h3^j\2))^Mjr2

e2
„2= -—3 Aipjiyr ,

yjry ) - ~ 23>v v V}

we have

9V ■ (V^r2) = ^M-jCjr2 - 29f(W,- • x)il>j,

dt xvj + ietS/ipj|2 = 2t2t|V^J|2 + e2f29t|VV'jti ~~ ' (V^'jV'j7'2)

+ 2 et^sdt^jX-Vipj). (2.7)

Integrating (2.7) over Kd, we obtain that for 7 — 1,2

0t||^ +^V^||2 = e:2t2at||V^||2-2t [ {diqjV + hjilty |2))|^-|2 (2.8)

+ (<7j^ + Ml^|2))rft#j|2} dx.

From the above, we obtain

ft 2 ll^j +irtV^j||l + 4i29t(|j-||VVr||^ + Xj 2(7"+

r 2

+ 2f / {dy(-A2AV) + K9r(-A2AVr)r + dVa2|Vj|2(7j+1)
^ ,=i

2

+ X] = 0. (2.9)
3=1

Noticing that

«2

hj(s)rdrs = a?* '-1 rdrs = —j-[V ■ (xs^+1) - ds^ + 1] (2.10)

and

[ Vrdr(—AV) dx = / VFr ■ V(Vr) dx = / (Wr ■ VF)r + (Wr ■ Vr)V dx
•/Rrf JRt! ./Rd

= I srft|VV|2 dx + I VAV'dx (2.11)
./Rrf 2

= [ ^[V-(x|W|2)-d|W|2]dx- [ W-Wdx

= -(| + l)l|VV||l,
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we can obtain, in view of (2.4) and (2.8)—(2.11), that

2
_2ai+2||„,,.||2(%+l)l

dt[J2 IW>j + 111 + A2f2||W||! + ̂  n2(7i+i)j
j=i j=i

2 „2/

+ 2£"j^+i2)/II^^iiSS! - (4 - rf)A2?iiv^)n2 = o.
j —1

which yields the pseudo-conformal conservation law. □

3. Basic estimates.

Lemma 3.1 (Estimate I). Let y = | ^ | — 1, u.v £ L7(n)(0,r; H\) and w £

L7(p)(0, T: Hp). Then we have the estimate

||(— * uv)w\\L~,(py ,Q T fji ) ^ CT I ||w||^7(<j)(0 T; HI) (3-1)
V P 1

•|M|z,-v(<0(0,T; //1)IMIl"><p>(0,T; ) *

Proof. By the known estimate as in [8], we have the following:

||(- * uv)w\\Hi sc C||- *Mw||LP||w||m + C||- *u?;||hi|N|lp
j• p' r q v q

^ cWuWh\ IMIffaJwIltf;

where ^ = I + I, ± = -L + I - l. Let 2m = a, q = p, i.e., ± \ + ± + \ - 1. By the

Sobolev embedding theorem (cf. [1]), we obtain

||(- *uv)w\\ffi ^ C||'u||Hi||u||m||w||Hi.
T P an p

Since

1 3,1112 1

lip)' 1 2 V 2) 2 + 7(a)+7(p)'

we have the desired result. □

Lemma 3.2 (Estimate II). Let p £ [2.6); we have

III'u|PuIIl-i(c)'(0,T;//1/) ^ 'Y<'') IMIl°=(0.T; H1) II"IIlt(<'>(0,T; H '*) •

Proof. From the identity

V(|m|pw) = V(|u|p)u + |«|*Vu = ^|«|p_2(Vu?l + uVa)u + |u|pVu

= (| + 1)| w|pVu+|Hp-2«2Vit,

we have, in view of A = 2 + that' p i p'

||V(MV)||l,' < C|||u|pVu||i(/ + C|||m|p_2u2V'h||Lp'

By the Sobolev embedding theorem, it yields

lluMltfi, CCIHI^IIuIIhi,
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which implies the desired result in view of the Holder inequality with respect to the time

variable. □

Now we introduce the Galilei-type operator

J(t) = x + ieiV. (3.3)

Let M(t) = e 2and wj = we easily see that

J(t) = S{t)xS(-t) = M(t)(istV)M(-t), (3.4)

KCOI = iV'jWI, \J(t)il)j(t)\ =£\t\\ywj(t)\. (3.5)

Lemma 3.3 (Estimate III). It holds

II^GV'j IIlt(>Bo,T; Lp') ̂  CT 7(p' || Ipj IIl°°(o,T; H1) II LiM (0,T; LP)- (3-6)

Proof. We have, in view of (3.5), that

\\JmP^)\\Lp' =s\t\\\V(\w^wJ)\\L^ (3.7)

Since

V(|f/'j pWj) = V(\wj\p)wj + \wj\pVwjf

we obtain from Holder's inequality

l|V(KI^)||^ ^CK-II^IIV^IIlp. (3.8)

Then, by (3.5), (3.7), and (3.8), we see that

Pm**i)\\is ^cii^ii^iij^iUp,
which implies the desired result (3.6) in view of the Holder inequality with respect to the

time variable t. □

Lemma 3.4 (Estimate IV). We have the estimate

|| J(Vlpj)\\L^(py Lf>') ̂  C^1^2 11(^1) V;2)||l7(<')(o.T;L°) (3-9)

•||( Jlpi, Jlp2} ||^7(p) (0,T; LP)

where ||(u,v)||x := \\u\\x + |MU-

Proof. Noticing that

V(Vwj) = WVwj + Wwj,

W = CV(- * (|Wl|2 - \w212)) = - * V(|wi|2 - K|2)
r r

C
— — * (w{Villi + S7W\WI — W2VW2 — V^2^2)i

r

we have for ^7 = - + - + ^ — 1
p' p a 3

l|V(V^)||L,' ^ C(|K||2„ + |M!.)(||V«;i||l, + ||Vw2||lp)-

Thus, we can get

\\J(.V^)WLP, = e|t|||V(^)||^ < C£|f (!!»•, |!2„ + IKIlDdlV^II^ + ||V«*||L,)

<c(||Vi||l. + |f^||i.)(||^illLP + |I^IUp),
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which implies the desired result. □

Lemma 3.5 (Estimate V). We have the following estimate

\\{Vk4>lk - Vl'$ll,Vk4>2k ~ T- H1 )
V ■ » » p! /

m CT1/2\\('4'lk,4>2k,tplhfp2l)\\2L-,(a){OT:Hl) (3.10)

' II (*01 k - '^lhi>2k - 02()llLT<p)(O,r; Jfi}-

Proof. Since

C(V(i/->ik,i'2k)tpjk ~ V(i>u,il>2i)ipji)

=C| * (IV'u-l2 - \^2k\2))4'jk - (i * (IV'iH2 - ]iM3))#i

=(| * (lV'u-12 - H'2k\2))(4'jk - ipji) + ^ji[~r * ((l^u-l2 - \4>u\2) ~ (f#efc|2 - I'fel2))]

=(i * (l^u-l2 - \ip2k\2)){il'jk - 4ji) + [^ * {(ipu- - iPiiH'ik) + ^ * {{ipik - 4'iiH'u)

+ -* {{4'2k - tp2l)4'2k) + ^ * {(v-2k - 4'2l)lp2l)]lpjl,

we have the desired result by the Holder inequality. □

4. The proof of the existence. In this section, we will prove the local existence of

the Cauchy problem (BDNLSP) with the initial data (1.3) first. Let S(t) := gileAt and

consider the integral equation

fj(t) := S{t)ipj - if I S(t - T)(qjV{T) + hj(|^%(r)|2J)$>)(r) dr. (4.1)
£ Jo

Define the workspace (V,d) as

T> :={(tpj)j=1,2 : ||^|lLoo(0,T;tf')ni,-»(«>(o.r;ffi) ^ for any a € [2.6)}. (4.2)

with the distance

= IIftfc - i>iw$2k -afeOlli^fo(4-3)

where M ^ 2 max 11t/Pj 11//1 and p £ [2,6). It is clear that (V,d) is a Banach space. Let
j=1^2

us consider the mapping T = T{ ®T'2 : (V. d) —> (V, d) defined by

Tj : 2pj(t) i— S{t)tpj - -i f S(t ~*){qjV(T) + Ml$i(r)f))#j(r)dr, j ~ 1-2. (4.4)
e Jo



LARGE TIME BEHAVIOR AND GLOBAL EXISTENCE FOR THE BDNLSP SYSTEM 709

By Lemmas 3.1-3.5 and the Strichartz estimates (cf. [5]), we have

^ ll^jll//1 + \\Vlpj ||z,t(»>)'(o,T; H^,) + llfydlM )V^IIi,7((»)'(o,T;H^)

2

^ IIVj'IIh1 + CT I ( IIIpj IIL^(")fQ.T: H\'l) ll^j II-Lt^HO.T; IIf,)
3 = 1

+ CTl~2h(p) ||^ :;^(()7.: ffl) ||^. „L,((,,(0.,, h}) (4.5)

M/2 + (CT1/2M2 + CTl-2h(p)M2l')M

^ M,

where we have taken T so small that CTl/2M2 + CT1"2/7^M2lj < Similar to the

above, a straightforward computation shows that it holds

\\T(tpik, 4'2k) - Tfyll, ^2l)\\L-v(p)(0,T;ffi)

.1
: 2 IKV'ifc ~^u,ip2k -i>2i)h-<W(0,T-,my (4-6)

Hence, T is a contracted mapping from the Banach space (V. d) to itself. By the Banach

contraction mapping principle, we know that there exists a unique solution ('i/>i,V'2) G

£t(p)(o, T\ Hp) x L7(p^(0,T; Hp) to the (BDNLSP) system with the initial data (1.3).

From (4.1), (3.4) and (3.5), we may easily obtain Jipi, Jtp2 € L7'p'(0, T: Lp) with the

help of Lemmas 3.3-3.4. Thus, we can use the standard argument (cf. [3]) to extend it

to a global one satisfying for any T > 0

ipi(t,x), ip2(t,x) eC(R; S(R3))nL°°(R; H\R3)) D Ll(p\-T. T: Hlp(K3)),

and prove the uniqueness of the global solution. We omit the details.

5. Large time behavior of the solution. By the pseudo-conformal conservation

law, we get for d = 3

A2i2||W||2 ^ I + X2 j\\\VV(T)\\2dr, (5.1)

where I := ]T2=1 \\\x\ipj\\l + A2 /„ r||VV(r)|||dT.

From the Gronwall inequality, we have

i|W||2 < ^|i|"1/2- (5-2)
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By the energy conservation law and the Sobolev embedding theorem, we obtain

2 2 ?n2

A2||W||2 < 52 £ IIv^-III + ||W(0)||2 + —frll^-ll2(?S)
3 = 1 3 = 1 '3

<C(e,7i,||^||ffi) + ||VV(0)||i, (5.3)

l|VV(0)||2 = C||V(^ * (l^ll2 - |^2|2))||2 < c\\r^ * (M2 - |^2|2)||2
\X\ \x\z

2 2

^ ll^j||212/5 ^ C\\V3\W (5-4)
3 = 1 3 = I

< C(£'7j, ll^jllffO-

Therefore, we have the estimate

iiwii2 ̂  x'^r4- (5-5)

By the Sobolev embedding theorem and the pseudo-conformal conservation law, we

have

m\P = \\M(-t)^\\p < ciiv^(-t)^ii2/7(p)ii^w^ii2_7W

^ (s-e)

c\t\~lh(p).

From the above and the Hardy-Littlewood-Sobolev inequality, we obtain

IIW^II^CIC0^, Vp 6(|,00), V|t|>l, (5.7)

||^llp<C|t|-i(1-?), Vp e (3,oo), V|i| > 1. (5.8)
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