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Abstract. We consider uniformly convex, 1-d scalar conservation laws. We show

that a single uniformly convex entropy is sufficient to characterize a Kruzhkov solution.

The proof uses the concept of viscosity solution for the related Hamilton-Jacobi equation.

1. Introduction. We consider a scalar conservation law in one space dimension with

uniformly convex flux / £ C2(R)

Ut + f(u)x = 0 for (t, x) € [0,00) x R (1.1)

and initial data u{0, •) = uq £ L°°(R). It is well known that, even for smooth initial data,

the solution of (1.1) ceases to exist in the classical sense due to the formation of shocks

in finite time (cf. Riemann 1859 [10]). Therefore one has to consider weak solutions,

i.e., functions with suitable integrability, satisfying (1.1) in distributional sense. Since

weak solutions lack uniqueness, additional assumptions must be imposed to select the

(physically) relevant ones.

In 1957, Oleinik [8] proved existence and uniqueness of bounded weak solutions of

(1.1) which satisfy her "condition E": She proved that the one-sided Lipschitz condition

IK"*) 1 (MIIi~(R) < |j for all t > 0, (1.2)
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where c := inf /", singles out one particular among all possible weak solutions. Note that

(1.2) only allows for decreasing jumps. As an immediate consequence of (1.2) we obtain a

smoothing effect: Initial data in L°° are instantaneously regularized to BVioc. Additional

nice properties follow from (1.2), such as regularity of solutions, rates of convergence to

limiting profiles as t —» oo, convergence of approximation schemes, etc. We refer to Sec.

11 of [4],

A more flexible approach to scalar conservation laws, feasible also in higher space

dimensions and for nonconvex fluxes, was given by Kruzhkov [6] in 1970, following earlier

work by Conway and Smoller and Vol'pert. For initial data in L°°, Kruzhkov proved

existence and uniqueness of bounded weak solutions satisfying the following entropy

condition: He considers the family of convex entropy-entropy flux pairs {(%■, 5fr)}fcer-

where

T]k{u) := \u — k\ and qk(u) := sgn(u - k)(f {u) - f (k)).

Then an entropy solution is a bounded function u satisfying (1.1) in distributional

sense and

vMt + q(u)x < 0 in D' (1.3)

for all (?/.<?) G {{Vk,qk)}keR- Equivalently, we may assume (1.3) for all convex functions

(entropies) rj, with corresponding entropy flux q defined by q' = rf f. Kruzhkov's proof is

based on the observation that the solution operator of (1.1) is, in fact, an L1 -contraction.

As a consequence of this, if initial data are in BVioc, then u 6 BVjoc for all later times.

One can show that for convex flux, the two entropy conditions (1.2) and (1.3) are

equivalent. Hence Oleinik's "condition E"- and Kruzhkov's entropy solutions coincide.

It has been an important open question whether a restricted entropy condition, i.e.,

assuming (1.3) only for a subset of convex entropy-entropy flux pairs, would enforce

uniqueness of the solution (and hence provide us with all the nice features of Oleinik's

solutions). This question is also quite interesting in view of the fact that for most

systems of conservation laws, only few convex entropies—or even just one (the physical)

entropy—are known to exist.

The problem has been solved first in a paper by Panov [9], who proves that if / is

uniformly convex, then assumption (1.3) for one single uniformly convex entropy-entropy

flux pair (?/,</) is sufficient to establish Oleinik's "condition and thereby characterize

entropy solutions among all bounded weak solutions of (1.1). Thus it is not necessary

to consider the whole family of convex entropies, or all Kruzhkov entropies. One single

pair (rj,q), with ?/ uniformly convex, gives all the information.

In this paper, we give a new proof of this result; see Corollary 2.5. Like Panov, we

use the theory of Hamilton-Jacobi equations. But our argument is different from his,

and more general for three reasons: First, our approach is not restricted to the Cauchy

problem on the real line. Second, we can allow a right-hand side in the entropy inequality.

Third, our proof also works for unbounded functions.

The last generalization is important since it allows for the derivation of new estimates

for the Kuramoto-Shivashinsky equation; see [5]. We prove that for Burgers' flux f(u) =

\u2, and for the special convex entropy r](u) := \u2 (with corresponding entropy flux

q(u) §«3), it is sufficient to require u G Lfoc only, instead of u £ L°°. Then still
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a restricted entropy information is sufficient to single out entropy solutions of Burgers

equation; see Corollary 2.5 below. We believe that this result can be generalized, allowing

for different strictly convex fluxes and entropies. Then the optimal integrability of u

should depend on the growth rates of / and at infinity.

As mentioned above, our proof is based 011 the relation between scalar conservation

laws in one space dimension and Hamilton-Jacobi equations. Integrating (1.1) in x, we

obtain

lif + /(/'(•) = 0 for (t,x) C [0,oo) x R. (1-4)

where h is the -primitive of u, i.e., hx = u. Therefore, (1.1) and (1.4) are formally

equivalent. There exists a rather complete existence and uniqueness theory for (1-4)

based 011 the concept of viscosity solutions, first introduced by Crandall and Lions in [3]

(see also [7]). It is well known that, when f is strictly convex, h is a viscosity solution of

(f.4) if and only if u = hx is an entropy solution of (1-1). In Theorems 2.3 and 2.4 we

prove that the assumptions 011 u are sufficient to guarantee that h is a viscosity solution

of (f.4).

Our proof has been inspired by a recent result of Ambrosio, Lecumberry, and Riviere

[2]. There the authors proved that, if h £ Wla'^(R2) solves the eikonal equation, then a

certain one-parameter family of entropy conditions 011 V/i is sufficient to ensure that h

is a viscosity solution. As in that paper, our proofs rely 011 commutator estimates, which

are similar in spirit to the arguments used in compensated compactness theory.

2. Main result. We begin by giving the definitions of entropy solutions of scalar

conservation laws and viscosity solutions of Hamilton-Jacobi equations.

Definition 2.1. Let c R2 and / e (Hi. We say that 1],q g W^'^R) is

a convex entropy-entropy flux pair if r/ is convex and q' = f'rf almost everywhere. A

function u £ Ljoc(Q) is called an entropy solution of ut + f(u)x — 0 if

ut + f(u)x = 0 in D'{U), (2.1)

V{u)t + q(u)x < 0 in P'(fl) (2.2)

for every convex entropy-entropy flux pair (rj,q).

Definition 2.2. A function h g C(f2) is called a viscosity solution of ht + f(hx) = 0

if, for any (t,x) £ the following hold:

(1) If is any smooth function such that h — ( has a local maximum at (t,x), then

Ct(t,x) + f((x(t,x)) < 0.

(2) If C is any smooth function such that h — ( has a local minimum at {t, x)7 then

G(t--r) : > 0.

A function h for which (1) (resp. (2)) holds is called a viscosity sub /supers olut.ion.

We are now ready to state our results:
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THEOREM 2.3. Let / G C2(R) be uniformly convex and fix an entropy-entropy flux pair

(i],q) with ?7 uniformly convex. Assume that SI C R2 is an open set and u g L°°(SV)

satisfies

ut + f(u)x = 0 in# (SI), (2.3)

V{u)t + q{u)x < 0 in V'(Sl). (2.4)

If h is a function with ht = —f(u) and hx = u,, then h is a viscosity solution of ht+f(hx) =

0.

For Burgers equation we even have

Theorem 2.4. Let 0 c R2 be open, and assume that the function u £ Lfoc(Sl) satisfies

a, i (%):,■ = 0 in D'iil). (2.5)

(f)t+(f)x < /< inX>'(fi) (2.6)

for some non-negative Radon measure /j with

u(Br(t. x))
lim V V = 0 for every (t,x)eil. (2.7
r|0 r

If h is a function with ht = and hx = u, then h is a viscosity solution of

ht + ("91) = 0.

We observe that condition (2.7) on the measure /i is optimal. It is just enough to rule

out the presence of undercompressive shocks in (t, x), in which case

r|o r

The first theorem is proved in Sec. 4 and the second is proved in Sec. 5. They both

rely on some elementary inequalities on averages of functions, which are proved in Sec.

3. As a consequence of the theorems above we obtain:

Corollary 2.5. The function u of Theorem 2.3 is an entropy solution of (2.3). Similarly,

the function u of Theorem 2.4 is an entropy solution of (2.5).

Proof. As already mentioned in the introduction, it is a well-known fact that h is

a viscosity solution of ht + f(hx) = 0 if and only if u = hx is an entropy solution of

ut + f (u)t = 0. To prove this we can use, for instance, the Hopf-Lax formula, which

gives explicitly the viscosity solution to ht + f{hx) = 0 in terms of h(0, •). We here

give an alternative proof, which uses the properties of viscosity solutions to show that

u = hx £ BVioc, f°r BV functions it can be shown directly that u meets the sliock-

admissibility criterion which distinguishes entropy solutions.

First Step. BV regularity.

In the case of Theorem 2.3, since h is locally Lipschitz and is a viscosity solution of

ht ' /(/!:,;). Corollary 9.2 of [7] gives that for every open U CC SI, there exists a constant

C such that hxx < C in the sense of distributions. Differentiating ht + f(hx) = 0 with
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respect to x, we get that hxt = htx = —{f{hx))x is also a measure. Hence u = hx G

BVloc(TL2).

In the case of Theorem 2.4, a standard comparison argument with supersolutions of

type krp(t)\x — 2q| gives that hx is locally bounded. Thus ht = — is locally bounded

as well and hence h £ . Thus we can apply the argument above to show that

fox £ BVloc.

Second Step. Shock admissibility.

By Vol'pert's chain rule (see [1]), the condition that the entropy dissipation must be

non-positive translates into the following shock admissibility condition:

-s[>1{u+) - r,{u~)} + q{u+) - q{u') < 0 (2.8)

for all convex entropy-entropy flux pairs (rj, q) and for all points in the jump (shock) set

Ju of u. Here u± are the right (resp. left) trace of u on Ju, and s is the shock speed,

i.e., the slope of the tangent to Ju in (t, x). We refer to Sec. 8.5 of [4]. Condition (2.8)

follows from the fact that

u+ < u~ H1-a.e. on Ju (only decreasing jumps), (2-9)

which itself is a consequence of h being a viscosity solution. For simplicity, we check

that (2.9) holds when h is smooth outside a differentiable curve 7 := {(t,x(t))| t > 0}.

Indeed, by a standard blow-up argument, it is sufficient to prove (2.9) when u is a

piecewise constant function that jumps along a line.

Suppose that h is given on the right- (resp. left-) hand side of 7 by smooth functions

h±, satisfying ht +f(hx) = 0. Assume h is continuous along the curve, i.e., h+(t,x(t)) =

h~(t,x{t)) for all t > 0. From ^h+(t, x(t)) — ̂ h~(t,x(t)), after a straightforward

calculation, we obtain

-x'{t)[h+{t,x(t))-h~(t,x(t))]+f(h+{t,x(t)))~ f(h~(t,x{t))) = 0 (2.10)

for all t > 0 (Rankine-Hugoniot). Now fix some point (T,X = x(T)) £ 7. Then we

claim

K(T,X) < h~(T,X).

In fact, assume the opposite and fix some c £ [h~ (T, X), h+(T, X)). Consider the

function

c(t,x) = h~(t,x(t)) + c{x - x(t)).

Then h — ( has a local minimum at (T, X). We compute

ct(T,X) + f(Cx(T,X)) = hi(T,X) + x'(T)h-(T,X)-cx'(T) + f(c)

= -x'(T) [c - h~(T, X)] + /(c) - f(h~(T, X)).

The r.h.s. is a strictly convex function in c which vanishes in hx(T,X) because of

(2.10). Since h~(T, X) < c < hx(T, X) by assumption, we have (i(T. X) + f(£x(T, X)) <

0. But that is a contradiction: h is a viscosity solution. This gives the claim. □
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3. Preliminary lemmas 011 averages of functions. To prove the theorems, we

need a result on averages of functions.

Definition 3.1. Let. // be a probability measure on R. For every vector-valued

map V € L1(R,/x), we set (V) := jQV(u) dfi(u). Let f,rj £ W^'^°(R) and q(v) :=

fo f'(T)v'(T)dT. If/t is compactly supported, then wc define the bilinear form

v\ ( ~f ^\ /fn\\ /f-f
:= X! , V , , X, , , XI\ \ q J \ u J/ \\ 1 J / \ V u

= (uq)-(vf) + (f)(v)^(u)(q). (3.1)

When //. has noncompact support we define B(f. if) whenever all the functions appearing

in (3.1) are //-sun unable.

In the definition above and in what follows, u will always denote the independent real

variable or the identity function on R . For example, (u) and (u2) denote JR udfi(u) and

JR u2 dfi(u).

Proposition 3.2. (a) If u2 is /x-suinmable, then 3B(u2,u2) > {(u- (u))4).

(b) If fj has compact support and f and are both convex, then B(f, //) > 0.

(c) If fj, has compact support and f" ,rj" > 2c, then 3B(f,rj) > c2((u - (u))4).

Proof, (a) Since f(u) = r/(u) = u2 and q(u) = |u3, (3.1) implies

B{u2,u2) = | (u4) - (u4) + (u2)2 - |» (u3)

= g (w'4) + (M'2} ~ g (u) (u3) • (3-2)

Recall that (it) 2 < (ji2) by Jensen and thus

0 < u2 — 2u(u) + (u)2 < u2 — 2u(u) + (u2) .

Hence we obtain

((« - (-«))4) = (("2 - 2a(u) + (w)2)2) < ((ir - 2u(u) + (t/2))")

= (■u4) - 4<M)(U3) + 2(«2)2 + 4(u2)(v)2 - 4(u)2(u2) + (u2)2

= (u4) - 4(u)(w3) + 3(u2)2 (=2) 3B(u2, u2). (3.3)

(b) W.l .o.g. we may assume that // is smooth and rj" has compact support. Then we

have
/•+oc j

>l(u) = / — k\dk + const.
J —OC ^

Hence we may assume that i] is of Kruzhkov's form

;/(«) = |m — A'| and thus q(u) = sign {u - k)(f{u) - f(k)).

We now have

B(,f. V) = ((u - k)q) - (t/(/(«) - /(*))) + </(«) - /(If) ft) - (u - fc)<g)

= </(«) " fW) (\u - k\) - (u - k) (sign (u - k)(f(u) - /(A;)))

= (/("■) ~ f{k) — f'(k)(u — A-)) (|« — A:|>

- (u - A;) (sign (u - k)(f(u) - f(k) - /'(&)(" - A'))) .
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The latter expression is non-negative, since by convexity of f,

/(«)-/(*)-/'(*)(«-*) > o.

(c) Consider the convex functions fi{v) = f(v) - cv2 and ifr{v) = )](v) ~ Cl'2- Thanks

to (b), B(f\.7/1), B(fi.v2), and B(v2,r] 1) are all non-negative. Hence (a) completes the

proof. □

4. Proof of Theorem 2.3. Note that h is a Lipschitz function. The proof of the

Theorem is split into two parts. In the first part, we prove that h is a viscosity subsolution

of ht + f(hx) = 0. In the second part, we prove that h is a viscosity supersoiution.

4.1. Viscosity subsolution. We have by construction of h:

ht = - f(u) = —f{hx) a.e. in i). (4.1)

Let £ e Cc°(R2) be non-negative with fR2 £dtdx = 1. Set £e(t,x) := j?£(f > §)• By

Jensen

0 = (h + f[hx)) > ht*£$ + f (hx*£e) = {h*£s)t + /((/' * &=•)*) ■

Hence h*g£ is a classical subsolution and thus also a viscosity subsolution (see Corollary

1.6 of [3]). Since h is continuous, h * g£ converges locally uniformly to h as e j 0. Thus

also h is a viscosity subsolution. by the stability result in Theorem 1.1 of [3].

4.2. Viscosity supersoiution. To prove that h is a viscosity supersoiution we have to

show the following fact: If £ is a smooth function such that h — ( has a minimum at some

(t, x) e fi, then [Ct + /(Cx)] > 0. For simplicity we assume that (t, x) = (0.0) and

[h — Cj(0,0) = 0. Moreover, we assume that the minimum is strict. Indeed, if we choose

£ > 0 and consider £e(£, x) := Q(t, x) + e(t2 + x2), then [h — Ce] has a strict minimum at

(0,0) and [Cf + /(a)] (0,0) = [Ct + /(Cx)] (0.0).
For any <5 > 0 consider

fls := connected component of {(t, x) : [h — C](t.x) < 5} containing (0,0).

Since h is continuous and the origin is a strict minimum, ils is an open set and diam(fi<s) j

0 as 6 I 0. We introduce the notation

(g)s '■= / g(t,x)dtdx = i^-j- f g{t,x)dtdx.
JQS

By definition of h.

(4.2)

For (5 sufficiently small, we have CC B\. Thus

((h-Qt)s = / (h-Qt = iJH/ (h-C)t = 7777 / (min{/i — ( — S, 0})t. (4.3)
Jn,i \^s\ ifij ls'5l ./Bi

Since the function min{/; — £ — 5, 0} is continuous and identically zero on a neighborhood

of dBi, the right-hand side of (4.3) vanishes. The same argument applies to ((/; — C)x)s-
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Hence, from (4.2) we get

On the other hand, we have

Ct W v(u) \\
Cx ) V q{u) ) / g

f(u) \ ( r]{u) \ \ / ( (h-Qt \ f rj{u)

U J \ q(u) )/* \\ (h~Ox J \ q(u

Note that

(h - C)t \ ( V(u)

1
Thus we obtain from (4.5)

C t \ f v{u) \\ > I ( -/(u) ( v{u)
Cx J \ q{u) J/s \\ u J \ q(u

Therefore, with C = CdjuHoo),

~f(u) \ f v{u) \\ ! ( -f{u) \ \ ! ( Tj(u)

u J V i(u) J/s W u J /s \ \ q(u)

(4<6) / ( & V ( '/(u) / (?/(")

Cx J \ q{u) ) / s \V u J/s \ \ q(u

(li) / ( Ct W '/(") \\ _ // Ct A\ . // ??(«)
C* y v ?(«) y/4 \V Cx //5 \v q{u)

< C sup
Qs l)-U

We can now apply Proposition 3.2 and obtain

-/(") A . / '?(") "\\ _ // -/(") \\ / ( v{u)
u ) v <?(«) //* \v u )L \\ <?(«)

<

< C sup
fid

(4.4)

(4.5)

(h ~0x J \ q(u)

 L f ( (min{/i-C-<5,0})t \ f rj{u)
V (min{/i — ( — S, 0})^ J \ q(u)

1 f (2.4)
= ToTT IB min^ ~ C - 4 0} ([r/(u)]t + [q{u)]x) > 0. (4.6)

(4.7)

(4.8)

Since ( is smooth, we deduce

lim((a-M4)4) = °. (4.9)
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Since / is Lipschitz on [— ||u||ooi fMloo] ■ we have

\{f(u))s - f((u)s)\ < c(\u-{u)$s < c({u- (u)sf)s 1 ,

so that (4.9) yields lim5i0 |(/(w)),5 - /((«)«) | = 0.

In view of (4.4), this translates into

-/«Cx>5)| = 0.

Since £ is smooth, this yields, as desired,

-0(0,0) -/(C*(0,0)) = 0.

5. Proof of Theorem 2.4.

5.1. Continuity. Let h be as in Theorem 2.4. Then h is continuous.

Remark 5.1. The following statement holds: If h e L;1oc(R2), ht € L2oc,(R2), and

hx € Lfod{R2), then

\h{h,xi) - h(t0,x0)\ 2
sup   —jz j -7- < cx) for every bounded A CC R . (5.1)

(to,z0),(ti,*i)eA- \ti ~ t0\L/5 + \xi - x0\1'6

However, in what follows, we give a simpler proof of the continuity of h, based on the

additional information provided by (2.5) and (2.6).

Testing with a cut-off function i] in x, we obtain from (2.6) that f \r/u2 dx is locally

bounded in t, that is,

UeL£c(Rf,L?0c(RJ).

On one hand, because of hx — u, this yields Holder continuity in x, uniformly in t,

i.e.,

h€L%c(Rt,C^(Rx)). (5.2)

On the other hand, because of ht = — |u2, this gives Lipschitz continuity in t w.r.t.

the L'-norm in x:

heC^c(RvLlc(nx)).. (5.3)

We now argue "by interpolation" that (5.2) and (5.3) imply Holder continuity in t,

uniformly in x, i.e.,

h e 1^(11,(5.4)
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Indeed, let £ £ C^tR,.) be noil-negative with supp £ C ( — 1,1) and JR^dx= 1. Set

£s(x) := ~£(f) and let * denote the convolution in the x-variable. We have

\h(h,x) -h(t2,x)\

< |/)(/i-.'-) •• (It *c )('i--'0| + I(fr*6)(*i<a0 - (fr*6r)(*2,ar)

+ \ (h*^)(t-2,3-) - h{t2,x)\

1/2 \h(t!,x)^h(ti,y)\
< s 1 sup J 1 — !■

y,\x-y\<e \X-y\1/2

rx+

+ sup Id ■ - I \h(ti,y) - h{t2,y)\d:y
R f Jx~i

+ gl/2 sup \h(t2,x)-h(t2,y)\

(5.2),(5.3)
<

y,\x-y\<E \x ~ 2/11/2

Choosing e = |fx — t212/'3 yields (5.4).

5.2. Viscosity subsolution. Since h is continuous, the fact that h is a viscosity subso-

lution follows from the argument given in Subsection 4.1 with /(it) = v2/2.

5.3. Viscosity supersolution. The goal is proving the following

Proposition 5.2. Let £ be a smooth function with (0,0) = 0 and such that h — C, has

a minimum in (0.0). Then [0(0,0) + iCx(0, 0)] = 0.

To simplify the notation, we will write g(e, S) < h(e, S) whenever there exist constants

Ci,C2 > 0 such that g{e,S) < C\h(e,5) for |5|, |e| < C'2.

Proof. Without loss of generality we may assume h(0,0) = C(0,0) = 0. For 0 < e < 1,

we set Ce '■= C e\{t,x)\- Then h — (e has a strict minimum at 0. Given <5 > 0, we

introduce the notation

ih,S := {(t.x) : [h - (£}(t,x) < S} .

Since h m- > [h — £\(t, x) + s\(t, x)| > [ft — C](0. 0) + e\(t, ;r)| = e|(f, x)\, we have

C {(t,x) : s\(t,x)\ <6} = Bs/e({0,0)). (5.5)

We introduce the notation

(u) s := [ u(t, x) dt. dx .
I11 Jn,*

First Step. We start by observing:

c
c
Qt \\ /[ -W
Sex

(5.6)
£.6

Indeed
~ 2~\u2 /{ \\ _ !( {h — Ce)t

e,S \ \ ^x / / tl \ V ^ / / e,<5
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Note that

(h~Gst)eS = TFT 7 [ (min{/i - C, - <5, 0})t = 0,
li£e,<5| JR2

and an analogous computation gives ((h — Ge)x)e s = "■ This establishes (5.6). An easy

consequence of (5.6) is

(u2)eS = (Ce4)e,, < 1. (5.7)

Jensen inequality gives (|m|}£ s < 1. Thus we get

ht

This translates into

(h ~ Ge)t

{h ~ Ge)x

ht
h'r

^ 1-
£,S

+

£,<5

Cet

Cex
^ 1 (5.8)

£,6

<

£,d

Second Step. We now prove that

< |ne,«|. (5.9)

Indeed, (5.8) can be reformulated as

(min{/i - Ce ~ S, 0})t

(min{/r - (£ - 6, 0})^■J R2

By (5.10) and Sobolev inequality,

/' ,211/2
/ (min{/i — Q — 6,0})

/ R2

(h ~ Ce)t

(h - Ce)*
< \VE,s\- (5.10)

< |fie,a|. (5.11)

Holder inequality yields

1/2

< \ne,6\3/2. (5.12)— I min{/i—Q£—6,0} < |neaj1//2 / (min{/i — — <5,0})^
J r2 Ur-

Note that

1(6) := - f mm{h - Q - <5,0} = [ |ft£)S|ds.
J R2 JO

Thus we obtain the differential inequality

(5.12)

m < in*,#2 = >-<

3/2

Since 1(6) > 0 for 6 > 0, we get 1 < ^ [(7"(<5))1//3], which yields 63 < 1(6). Note that

IfLal is a non-decreasing function of <5. Hence,

i-S

Jo

which establishes (5.9).

Third Step. We now argue that

-w2/2 \ f «2/2 \\ /( Get \ ( u1 /2 \\ n(Bs/e(0,0))

U J V u /3 ) /e>s \\Gex J V u/3 / /
< " ' ' ■ (5-13)
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Indeed, we have

— It2/2 \ ( U2/2 \\ / ( Cet \ ( U2/2

U J V «3/3 \\Ce,J W3/3//£i4

{h-Q)i \ f u2/2 \\

(/' - y V " /3

1

I f ( (h - Q)t \ I u2/2
(/I - Cr)x ) \ u3/3

j^e,(5

1

<

<

|^£,(5

1

I ne,s

6

|n.£,<5

'nE.«

(min{/) - Ce - <5.0})t "N / u2/2

(min{/i -Q-6,0})x J \ u3/3

+( t)J
J(- inin{/iC ■

„(B(/,((„,0)))<f *11.

This establishes (5.13).

Fourth Step. We now prove

(u4)eS $ £ 1 and {|u|3) 4 < £ 1/2 • (5.14)

Indeed

-u2/2 \ / u2/2

~ \ V u J \ u3/3 £,S

<(t)iZ]) + "|Bi/-((0'0))>

< sup
Cex

s,<5

,2u2/2 \|\ 1

w3/3 ;|/^+; b/z(^((0'0)))

~ (u2)e,S + (lU|3)e,<5 +£_1 ~ 1 + (U2)e,6 .^e,S

By Young's inequality, this yields (w4)_ s < e"1- Holder inequality gives

1/2
+ i

(l«|3)e,< <"4),, <"2)

1/2

' e.<5

1/2
< =-"1/2

Fifth Step. We now argue that

£ + <5-15>
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Cet \ ( U /2 \\ /[ (et \\ ! ( U2/2

£,6

J V «73 \V Cex )/St6 \\ «3/3 7/

< sup Crt "j _ / f Crt
Cex / \ V Cez £,6

u2/2

u3/ 3

<

<

osc \
\ Ce

Cet

osc ( ^ | + 2e
\ C

w2) , + (|wj3) .
/ £,<) \1 1 / £,<)

(5.5),(5.7),(5.14) /X \ Jj

S (; + «)(i + «-1/3)£^ + ^-

Sixth Step. Combining (5.6), (5.13), and (5.15), we get

-«2/2 \ ( «2/2 \\ _ // "«2/2 \\ /( u212

u ;-U8/3 \v " y/ei4'\U3/3,/et4

<- <5 1/2 M(^<5/£ ((Oi Q)))
~ e3/2 ^ £

According to Proposition 3.2 (b), we obtain

e,<S ~ £3/2 (5

On the other hand, we have

Ct(0,0) + ^C2(0,0)
(5.5)

<

<

(5.6)

(Ct)£ts + 2 [^)e,(5

1 T 12

(Cet)e,,5 + 2 (C£x)e,<5
<5

£

J

£

<
1/2 J

W — (14 £,(5
6,5 £

(<?) / ^ . !/2 , Ai(^/e((0,0)))V/2 . _ , *
~ y £^/2 + <5 j £ "

Letting first (5 and then £ go to 0, we get Q(0,0) + ^C2(0,0) = 0. □

(5.16)

» - Mm)') ,£tL + t"2 + ■ (5-17)
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