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Abstract. The present article addresses the existence by construction of random

velocity fields produced by prescribed flow singularities which are consistent with the

equations governing the motion of a two-dimensional viscous incompressible liquid. By

showing first that the vorticity can be arbitrary and consistent with the flow equations

it is then possible to determine the velocity field explicitly in terms of the vorticity and

its derivatives.

The methods described here are also applicable to axisymmetric motion and also fully

three-dimensional flow.

Introduction. In their relatively early review of the fluid dynamic literature, Dry-

den, Murnaghan, and Bateman [1] describe in one section the manner in which a two-

dimensional viscous fluid behaves when the vorticity distribution is prescribed as a func-

tion of the independent variables. The analysis is not pursued to the point where the

velocity field components are explicitly derived in terms of the vorticity distribution, and

it is not shown the extent to which the vorticity can be prescribed. In order to cir-

cumvent this problem it is required that a certain determinant should vanish, and from

this analysis it is possible to predict various classes of Navier-Stokes solutions which are

viscosity dependent. Some of these solutions for the stream function ip were previously

derived by Jeffrey [2] in a different way. In general, these solutions relate to the situation

in which lines of constant vorticity coincide with one family of coordinate curves. For

example, in polar coordinates (r, 9), there is a solution for the stream function ip where

the lines of constant vorticity coincide with the family of circles r = positive constant,

and is expressed by

V> = -bu6 + A0rb+2 + B0r2 + Co In r, 6^—2

with Aq, Bq, Cq, b arbitrary constants. There is also a solution for the special case 6^—2.

The flow represents a viscosity dependent solution of the Navier-Stokes equations where

the lines of constant vorticity coincide with the family of concentric circles r = constant.
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672 K. B. RANGER

The stream function is of some interest since the arbitrary constants can be chosen in

order to describe the steady motion of a circular cylinder rotating with constant angular

velocity wo, in an infinite fluid at rest at infinity. In addition there is uniform suction

at the boundary with constant normal velocity. If the suction velocity is — Qr, where

qr = —^ipe — ~ — ~~ Q, the boundary r = a, then the appropriate stream function

satisfying qg = ipr — woa at r = a, and |q| —> 0, r —> oo is expressed by

ifj — Qa0 ~t~ A0t2 v +
2 A I r, aQ \ 2-^2

wa — Ar, 2 a » hi r

where Ao is an arbitrary constant. The constant B0 vanishes in order to maintain a

single valued pressure field. The fluid velocity vanishes at large distances provided that

^ > 2, and the stream function ip represents one of the simpler straightforward examples

of non-uniqueness for two-dimensional viscous flow when v < since the constant Aq

is arbitrary. The condition 2v < aQ is consistent with the general results concerning

uniqueness of viscous flow described by Leray [3] and Serrin [4], It is also noted that

the example cited is sufficiently elementary to be included as an exercise in the book by

Acheson [5].

It is observed that the boundary conditions

/»27T

/ qrrd6 = —2vtt,
Jo

n2ir

/ qordO = I at r = a,
Jo

d1r n n
w=0, asr^O.

{qr,qe)-^ 0, r —> oo

where

1 dip dip
qr = ~r~d0' qe=lb

are sufficient to determine a unique solution of the Stokes flow equation

i 2 d2 Id 1 02
V ib = 0 V" = 1 1 ,

' dr2 rdr r2 892'

and the solution is given by

xf> = 2 v6 + In r,
2n

which incidentally also satisfies V2^ = 0. In the case of the Navier-Stokes equations,

there is a solution satisfying the same boundary conditions and is given by

I
ijj — 2 vO + + bir - 2A0 In a

Z7T

and the constant A$ is arbitrary, indicating a lack of uniqueness which is not viscosity

dependent. In the case of singularities as forcing flow it follows that the non-uniqueness

does not depend necessarily on an inequality involving the kinematic viscosity. The

resulting motion is not random as the normal component of velocity is prescribed.



FLUID VELOCITY FIELDS DERIVED FROM VORTICITY SINGULARITIES 673

Before stating the objective in the present article it is of interest to discuss a method-

ological analogue in the theory of elementary differential equations. Consider the ex-

tended Clairaut equation defined by

a / . dy
y = px + f(p), P=~^

where f(p) is an arbitrary differentiable function. By differentiation it follows that

p=p+ix+f(p)]£,

in which case

X~ — f'(p) or p = c, a constant.

The singular solution is described in parametric form by

x=~f\p), y = f(p)-pf'{p),

and the second solution is represented by

y = cx + f(c).

It is known from the literature that the solutions for arbitrary c constitute the family

of tangent lines to the envelope curve defined by the singular solution. However, in the

present context there is a point of interest which is obvious but not directly pointed out,

and this is that the singular solution, albeit in parametric form, is determined entirely

by differentiation of the basic non-linear equation and requires no integration procedure.

In any event for a given f(p) the solution can be graphed in the (x, y) plane.

The fact that solutions can be constructed entirely by differentiation from certain

differential equations forms the basis of generalization to partial differential equations,

and in particular the Navier-Stokes equations for the motion of a viscous incompressible

liquid. In the ensuing analysis, which is straightforward, it is shown that by iterated dif-

ferentiation of the momentum equation maintaining the vorticity as an arbitrary function

then by applications of consistency conditions leads to the conclusion that the vorticity

is undetermined and arbitrary. This in turn implies that the fluid velocity can be con-

structed in terms of an arbitrary vorticity distribution subject to certain provisions. The

analysis involved in this procedure is unavoidably cumbersome but the final results for

the velocity field in terms of the arbitrary vorticity distribution are reasonably compact

especially in the case of inviscid flow (v —> 0). The analysis is simplified considerably by

the use of complex variable notation for two-dimensional flow. These results are appli-

cable to the motion produced by forced singularities in the vorticity distribution which

represents a substantial generalization of the results depicted by the Jeffrey solution.

The application of the results to boundary value and initial value problems is out of

reach because there is no guarantee that the velocity field is sufficiently general to satisfy

initial or boundary conditions.

These results can be generalized to the situation of axial symmetry, and can be ex-

tended further to fully three-dimensional motion. In general for this situation the vortic-

ity possesses two arbitrary components and flow produced by singularities is of a more

general nature.
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1. The equations of motion. The descriptive equations for the motion of a viscous

incompressible liquid can be written as

qt + [curl q x q] = - VH + uV2q (1)

H =p/po+^\q\2, div q = 0 (2)

where q is the fluid velocity, H the Bernoulli function, p the pressure, po the constant

density, and v the kinematic viscosity.

For two-dimensional motion the velocity field can be described in terms of a stream

function 'ij> = ip{x, y, t) and

q = curl( ti-k) = ~4>yi + ipxj. (3)

In this case the component equations of (I) are expressed by

~1Pyt - 1pXV21p = - Hx - l^~V21p (4)

dx

In complex variable notation z = x + iy, z = x — iy, it follows that

ndd.ddd.d

d~z = di~%- ~&z ̂frr,+1dy' ^

and the complex flow equation is expressed by (4) + i(5), which simplifies to

iipzt - ±Vz-Vzz 7/- - 4vilpzzz. (7)

If w = 4ipzz, then by elimination of H it is found that

tpz'Wz — ipzWz = 2 ivwzz — -wt. (8)

Also by differentiation of (7) with respect to 2 and taking the real part it is found that

2HZ~ = 4-^(ipzi>zz) + 4-^z(ipz4>zz) (9)

Ipxt - 1pyV2'lp = -Hy + V — VV (5)

and by formal integration H is expressed by

H = 2 — {■^zipzz) + (.uzl!:zz) dzdz. (10)

In the next section an application of the vorticity transport equation will be discussed

in connection with the random motion of a viscous fluid.

2. Construction of the fluid velocity field. To construct the fluid velocity field

it is initially appropriate to consider the system of steady state equations

ipzwz - 1pzWz = 2ivwzz (11)

n = 4ipzz (12)

where w, are for the present independent arbitrary real functions of (x, y). The results

of this section are also applicable to time dependent motion where wZz is replaced by

Wzz ~ jWf
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The objective in this analysis is to show by repeated application of consistency con-

ditions to the basic flow equations (11), (12) that the vorticity tt is essentially undeter-

mined. As a consequence of this result it is possible to prescribe the fluid velocity in

a general manner in terms of the vorticity and its derivatives. In turn the vorticity is

essentially arbitrary. This result arises from the fact that the consistency conditions lead

to four identities in the derivatives of w. These identities are a feature of the structure of

the basic vorticity equation and the definition of the vorticity distribution. The analysis

predicting this conclusion is unavoidably cumbersome, but the results for the velocity

distribution are reasonably compact in terms of complex variable notation.

In the first instance it is necessary to demonstrate existence of solutions for ^ by

formal construction from the real variable form of equation (11) provided by

4>xwy - %/jywx = uV2w. (13)

If x is a real function of (x,y) such that (w,x) is a one-one mapping into (x,y) then

yx -xx
Wx — 5 UJy —

%wVx XwVx XxVw

and

(14)

uUx %xyw — 7^ 0. (15)
WxXy - WyXx

In this case equation (15) can be written as

and integration shows that

and

~^x =  (16)
WxXy ~ WyXx

" = { f . VV'WdX (18)
dzdz IJ [WyXx-WxXy) J

It follows by this formal integration that solutions for the velocity q = 2ixpz can be

constructed in which w is arbitrary.

Returning to the complex variable form given by (11) it is found that il>z is expressed

by

wz 2 wwzz
V>z=Vz  (19)

Wz wz

and by differentiation with respect to z it is found that

1 wz , d (u>z\ d fwzz\ .
lfas = + <Pz-kz — - 2w^=   > 20)

4 wz oz \wz J oz \wz J

for which the complex conjugate equation is

= + /M+ 3 Y (21)
4 Wz oz \Wz ) oz \ Wz J
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A further differentiation of (20) with respect to 5 produces the equation

1 1 3 /'wz\ d2 (Wzz\ d'2 ( % ,

4 r= lal ( sr) " alai (~) + ,fea5i W,'

+ J=(-
dz V «;2\WZJ 4 U)z OZ \Wz J oz \wz /

with the aid of (21). Equation (22) can be expressed in the form

- a0fi = b0ipz + coi>z + d0. (23)

where the coefficient functions uq, bo, co, do are defined by

a° = i — f \ + ̂ 1— (-1
LL" dz \ wz ) w-dz I wz

w'iwzz ~ w%wzz

wz(b0 + c0) + Wz(b0 +c 0) = w

+ w

d2 ( wz \ d f wz\ 8 (w

dzdz \wzJ ~ dz \wzJ Oz \wy

Wz J OZ \ WZ J OZ \ Wz

(24)

d2 (w~\ d (wz\ d (wz

do = lu/ir. (—") ̂  f —) ~ 2'>U,;^= f " 1 '
OZ V W~ / OZ V Wz ) OZOZ V W'z

The real and imaginary parts of equation (22) are expressed by

(bQ + co)ipz + (bo + co)ipz + do + do — 0, (27)

and

^{iv:Qz - wzQz) - (do - a0)Q = (b0 - c0)il>z - (b0 - c0)tpz + d0 - do. (28)

With the use of the equation

ipzwz — ipYWz = 2 ivwzz (29)

equation (27) can be written as

[(ho + cQ)wz + (bo + co)wz\ij)z + 2 iv(b0 + co)wzz + (d0 + do)wz = 0. (30)

It is readily verified without providing the straightforward details that

(31)

= 0
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and

2iv(b0 + c0-b0 - c0)wzz

+ (do + do)(wz + Wz) (32)

= 2 iv
d2 fwz\ d2 (wz\ d (wz\ d /%

dzdz \ wz ) ~ dzdz \wz ) ~ dz \ wz ) dz \ w

+ [wz + Wz)
8 (wz\ d (wzz\ d2 I wzz

2ivwz -— I — I — I   I ~ 2ivw
dz \wz ) dz V wz J dzdz V w

Wz

' dz \wz J dz V wz ) ~ dzdn V wz

= 0

are both identities in the derivatives of w, and therefore independent of w. These identi-

ties result from the basic structure of the basic equations (11), (12). It also follows that

equation (23) can be written with contracted notation in the form

A4'z i(/>, I B = 0. (33)

where

A*-K5i (2)-"*;l(S)I(2) (34)
1 [w2zwzz-w\wzz\ 1 , n n.

b = -n— -(vjjh - wznz)
2 wzwz 2

so that B + B = 0. Again utilizing the equation

4>zWz - i>zWz = 2ivwzz (36)

tpz can then be expressed as

[2 ivAwzs + Bwz] , .

[to*-A*,] (3?)

and the complex fluid velocity q = u + iv = 2iip~, can be expressed in terms of a formula

containing fl and its derivatives, together with the derivatives of w.
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The explicit expression for q is given below:

  /;
„2 92 (wJL\_nn2 d2 |

1 o o , 1

q \w2 d2 tw±\_w2 a2 fa|i '
lU'zdzdz Wzdzdz\w, >\

d2 / Wz \ d (w,\ d (w-

lL~ dzdz \Wz ) Wz dz \% J dz \w.

+ ^-fl(w2Wzz - w%wzz) - ^{wzQ.z - Uij0:) (38)

+ 2iv
d_ (wz-g\ d_ f w£\ d_ (Wz£\ d_ (Wz_

Uz dz \ wz J dz \wz J ,L~ dz \ wz J dz \Wz

d2 f wzz\ d2

' dzdz \wz J >L" dz&z \ wz

This formula for q represents an initial first step for the determination of the fluid velocity.

To make further progress in this regard it is appropriate to write equation (23) in the

form

S + dipz + dipz = 0 (39)

where S is real and

S = afL + a&lz + + c. (40)

The coefficients a, b, c, d can be identified as

1 ?
a = ~iwz, b = ——\w\wzz - w2zwzz\ (41)

2 2wzwz

d (Wz \ d (Wzz \ d2
c = i{dQ - d0) = 2uwz-— I — I — I   I - 2vwz~—  

dz \wz J dz \ wz J dzdz \ wz

Wzz

+ 2ra4(5)lfe)-2,"°-aSi(?l (42)
d = i(c0 -b0) =i

d (Wz\ d (Wz\ d2
Wz

dz \Wz J dz \wz J dzdz V w

wz

(43)

Once again with the use of the equation (11) and elimination of ipz from (28) it is found

that

Sa' + b' + ipz= 0 (44)

where

/ = Wz =  iWY 

0 dw, + du* &(£)]

2viwzz[wz-Qfgf (^7) - wz-§^{^t)-§j{^r)}
L * OZOZ ^Wz' * OZ V Wy ' OZ ^Wz ' J (46)

K2aSi(S)-^5Si(S)l

Differentiation of (44) with respect to 2 provides the equation

s»+4+l+ifi-°- (47)
As a matter of interest equation (47) is of significance because 0 is real and satisfies a

complex partial differential equation for which the real and imaginary parts are expressed
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by the equations

—I- ^ + afl-~ + bil + c} + ^+ atl-z + 60 + c}

+ ̂  + h + \(^-^)n = 0 (48)
a' a' 4 \a' a' J

and

(Jjz - £:) {ail, + a<h + bil - c) ~ (J-J ) WU + + c}

+(l-i)+K?-?)n-°-(49)

These equations are independent and basically result from the non-linear convection

acceleration term in the equations of motion. At this point the procedure for generating

consistency equations by partial differentiation can be continued to the point where the

^-derivatives can be eliminated from the system to determine a single real equation

containing Q. A further differentiation of (47) with respect to z produces the equation

n n a'z r, 3 ( a'z\ 8 f b',\ 1 Q 8 ( 1 \ . ,

Sz' + S^+S^WJ + dZz ) + 4a/ + 4 82 {* ) = °' (50)

Since Szz is real then by forming the complex conjugate equation of (50) and elimination

of SZT it is found that

s^-sz% + s
a' a

8 fa'z\ 8 (a4

8z\a'J 8z

8 (b'\ 8 (iC
8z V a' / 8z \ a'

1 1 r. n
~A—7 A / - - ~ -t- T
4a' 4 a 4

8_ fl \ _d_(l
dz \ a') dz \ a'

= 0. (51)

Sz, Sz, S can be eliminated from (51) utilizing (47) (44) and this results in the single

equation

aL f b', Q\ a', f b- £7 \ 8 fb'z\ 8 (b^

+

a! V a' + 4a') a' [a' + 4ci'J + 8z { z' ) 8z '

d_ /a/A _ 8_ (a?z

8z \ a' J dz \ a'
ail-g -I- b^l c]

1 o 1 o n 8_ /1\ _ 8_

8z V a' ) dz
= 0. (52)

Again for the sake of symbolic brevity it is convenient to write this equation as

A'QZ + A'ttz + B'Cl + C' = 0 (53)



680 K. B. RANGER

where A' is complex, and B'. C are real. These in turn are defined by

iA'-°sMln(l)}-;sr' (54>

is'=^+6«Si {"•(?)}+i (I(55)

*V.^ + s(IK(l)+°4M?)}- (56)
Differentiation of (53) with respect to 2 derives the equation

A'nzz + A'znz + a'n^s + a'jiz + B'nz + b'm + c'z = o. (57)

Now from equations (44) (47) it follows that by elimination of S that

ailzz + ^2 (a,z + b -f + £lz (az + a—7 ) (58)

„ ,'b'z ba'z 1 \ cjg b'z n
+ n£lzz + H r + ~r~, I + ('z H r "I 7—0-

Equations (57), (58) represent two independent complex differential equations for the

derivatives of fI. By elimination of fL, it is found that

^22 ( a — a — j + ilz

+ n~

, aa' A'_ B'
a2 + b H — — a—I — a ——

a' A' A'

_ aa' A, 61 6< 1 aB'z

a7 + "a7 + 4^ ~

+ C2 + ^f + ^-^f = 0. (59)a' a' A'

Bv eliminating fLj which is real from this complex equation then the resulting equation

in terms of contracted symbolic notation is expressed by

A"QZ + ~A!\\ + B"il + C" = 0 (60)

where A" is complex and B", C" are both real. The coefficients A", B", C" are expressed

by

■M" = A'(az+b + - aA'z - aB' + A' (az + - aA'z (61)

iB" — — + 6a^ + — aB'z — — ^bz + ba~ + —^ + aB- (62)

iC" = A'
a' b',

+ C~T + "7
a' a'

cat 6-=-
 £ _|_ _2
a' a'

+ ac^. (63)acz - >1

It is clear that the coefficients A". B", C" are different functions from A', B\ C, because

A" etc. contain derivatives of a', b' and Also if this were not the case

then (48) (49) would not be independent. In this case equations (53) (60) are independent
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even though they arc basically derived from the same equation (11) with the aid of (12).

By elimination of from (53) (60) it is found that

ttz = En+ F (64)

where

A"B' - a'b" A"C' - C"A'
E=  =7 =77 . F=  =7 =77 ' (65)

A"A - A A' A"A - A A'
Bv differentiation with respect to z

i2zz = EQ^ -j- E-~£l + /*'z

= Eilz + EZQ + F. (66)

and eliminating Cl, Qz it is found that

nzz = EEQ + EF + Ezn + Fz

= EEQ + EF + Ez n + FZ. (67)

The real and imaginary parts of this equation, noting that is real, produce the real

equations

n(Ez - Ez) = EF-EF + F~-FZ (68)

and

nzz = EEQ + ~{EF + FE + FZ+FZ}. (69)

Now if

Ez-Ez+ 0, EF - FE + Fz - Fz ^ 0 (70)

then for consistency equation (64) can be written as

d ( EF - FE + Fz-Fz) lEF - FE + Fz-F z\ „

Yz{ Ez-Ez J (E--E?) + ' (71)

By formal integration of this complex equation it is found that

EF - FE + Fz- Fz = (Ez - Ez) { eJ hdz / Fe~ 1 hdzdz + f(zLjEdz J,
(72)

0J Edz
(73)

also E, F are defined in terms of ^-derivatives and this complex equation in general

places restrictions on w which in turn is arbitrary. To avoid this contradiction the only

consistent possibility is that equation (72) is an identity. Since the expression

I pe~1 Edzdz + f{z)

is complex and does not vanish it follows that

EF - FE + Fz - Fz = 0, Ez - Ez = 0 (74)

and for consistency are identities and not differential equations, without placing con-

straints on w. It follows that the equations represented by (74) are identities in the

u>derivatives. This result can also be verified directly by working through the exces-

sively cumbersome calculation. In this case il is undetermined by the analysis and is

essentially arbitrary. It is noted that these results emanate from the basic equations (11)

and (12). In order to be consistent with the Navier-Stokes equations it is permissible
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to choose il = w and w is arbitrary. It then follows that there exist by construction a

class of fluid velocity fields which are defined in terms of an essentially arbitrary vortic-

ity distribution. This result appears to be new for a non-linear dynamical system such

as the Navier-Stokes equations. The analysis described here concerns two-dimensional

motion, but this can be extended to axisymmetric, fully three-dimensional flow and time

dependent motion. Utilizing the result that

the formula q for the complex fluid velocity is given by

q =    <! 2 iv
2 WzWzQ^iH^t)}

d2 (w- \ 8 (w, \ d

dzdz I w, ) " 2 dz 1% J dz

UJ / 9 2 \ r*
+ 7,— {wzWzz - wzwzz) + 2IV

2 w.

wzd fwzz\ d (wz\ d

~ dz V wz J dz \ w~ J 2 dz V w.

d (wz ^ d2 (iuzz \ d2
— Wz ———;   — Wz

W,

dz \ wz J dzdz \wz J ~ dzdz \ w-2

where w is arbitrary to the extent that

0]} (76)

d2

dzdz

w■

w-.
wz ^ 0, — hi ^ 0. (77)

In the case of inviscid flow where v = 0, there is a simplification and

w[w2zwzz - wlwzz\

q 4u;^aSiOn(^)}'

The main application of the formula for the fluid velocity field in terms of the vorticity is

to the motion produced by prescribed singularities. For example if there is a prescribed

singularity for the vorticity at the origin then there is in general a singularity in the

velocity field at the same point, and the only other requirements are that the motion

should be finite and the fluid velocity decay to zero at infinity. Since the formula for the

velocity field represents a class of solutions of the Navier-Stokes equations and not the

totality of solutions there is no guarantee that the solution is sufficiently general to be

adapted to either a boundary value or initial value problem.

Now if the vorticity is prescribed by

w — ^, F(6) = An cos(n9 + an) (79)
rk z—'

71 = 0

where n is an integer and A* > 2, then this distribution produces a singularity in the

velocity field which is partially determined by the equation

1 f An cos(n9 + an)
Iprr + -A + ^1p9e = ^   (80)

r r n=0 T

from which it is readily inferred that the singularitjr in the velocity field is 0(r1_fc) as

r —» 0. The precise nature of this singularity is determined by the formula (76) and is
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subject to the constraints

d2 w.
^\lnU;JrOforr>a ,81)

This result can be generalized by writing w as

w = ® + w' (82)
rk

where w' is of 0(1) as r —> 0, w' = 0(r~m), m > k — 1 as r ^ oo and w' is single

valued in the region 0 < 0 < 2tt. In addition it is supposed that the generalized form

of w is subject to the restrictions imposed by the constraints (81). It follows that these

relatively mild restrictions result in degrees of latitude for the choice of w', and the

motion produced by the prescribed singularity is basically arbitrary.

It also appears that there are global velocity fields which are finite everywhere but

basically arbitrary and only subject to the requirements

Wz^°' ^{ln(^)}^° (83)

everywhere. It is also assumed that w decays at infinity sufficiently rapidly to ensure the

velocity field is finite at large distances.

These results appear to be new for the two-dimensional Navier-Stokes equations.

3. Steady motion with axial symmetry. Let (x, p. 9) be cylindrical polar coordi-

nates; then the fluid velocity q for axisymmetric steady viscous incompressible flow can

be prescribed in terms of a stream function ij) = tp(x, p) and

q = -
ib ■

Vx^( = -~ippk + -ipxp. (84)
P P

With standard notation the vector momentum equation governing the flow is expressed

by

[curl q x q\ = —V_H + jA72£, (85)

where H is the Bernoulli function or total head of pressure defined by

H=^ + \\q\\ (86)
Po 2 -

The component equations of (84) are given by

=-Hz ---L-i(V) (87)^V^-i(V') = -Hz - -
pz p op

1 /-)

2^PL-iW = ~HP +p2 pdx

where L_i is the Stokes operator defined by

L — — V'xx ~t~ if^pp VV' (^9)
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There is only one component of vorticity and this is orthogonal to the meridinal plane

in which case w = curlg = w9 = If // js eliminated from (87) (88) then the

vorticity transport equation is provided by

1 d(4>, w ) = ^ =p(Wxx + Wpp + - Wp) (90)
P o(x,p) \ P J

and W = . W is sometimes referred to as the ring vorticity, or vorticity density

from the axis.

If z — x + ip, z = x — ip, then in complex variable notation

d d d d . d d

dx dz dz' dp 1 dz % dz

and

x=^(z + z), p=t-(z-z) (92)

in which case ifi M7 satisfies the equations

ipzWj - Wz = v{z -1)WZ-Z + ~(WZ - Wz) (93)

~ ~ i>z) = (94)
2 (z — z) 16

where li", W' are independent and arbitrary. By a process of differentiation with respect

to z, z, it is found that W' satisfies a complex differential equation. The analysis is

similar to the procedure described in the previous section but with the added feature

caused by the presence of the space variable 2ip = z — z. The net result shows that W is

essentially undetermined and can be chosen freely such that W = W with IT arbitrary.

In this case the complex fluid velocity

4
q = u + iv = — xjhi, (95)
- 2 — Z

can be constructed in terms of W and its derivatives with W arbitrary, and represents a

class of velocity fields satisfying the Navier-Stokes equations. As in the two-dimensional

case the velocity field is sufficiently general to predict the motion produced by forced

singularities, but not sufficiently general to describe the flow arising from boundary

value or initial value problems.

In respect of the choice of basic singularity to choose for the vorticity distribution

there is a preferential solution of the Navier-Stokes equations provided by the round jet

or point source of momentum [6]. In this solution the stream function ip is expressed by

2^(1 — P2)
lb =

E + 0

(96)
E(x2 + p2)1/2 + x

-v(z - z)2

2 E\jm + z + z



FLUID VELOCITY FIELDS DERIVED FROM VORTICITY SINGULARITIES 685

where E is a constant with \E\ > 1, and (r,8),/3 = cos 6, are spherical polar coordinates.

The ring vorticity is given by

4 v Av
W =   =  . 97)

[E(x2 + p2)1/2 + x}3 [E\/m + + z)]3

It follows from the analysis that there is a more general fluid velocity field for which the

ring vorticity is given by

W =  =—  + W" (98)
\E\[ZZ +2 (z + z)]3

where W" is basically arbitrary to the extent that the motion is finite and W" behaves

in a suitable manner near the origin and decaying at large distances.

The explicit formula for the velocity field is not given here as it is excessively cum-

bersome with the complication of the independent variable. However it appears to be

sufficient to infer its explicit existence and represents a generalization of two-dimensional

motion.

3-dimensional motion. For three-dimensional motion the vorticity has three com-

ponents w = curl q, q = qjXj, but only two components are independent since divw; = 0.

The analysis described in the previous sections is applicable but again excessively cumber-

some. The final expressions for the fluid velocity field contain two arbitrary components

of the vorticity distribution.

Conclusions. It has been shown in the previous sections that arbitrary velocity fields

can be generated from the momentum equations for the motion of a viscous incompress-

ible liquid. This is achieved by the somewhat unusual method of partial differentiation

only and is applicable essentially to a nonlinear system and not to linear equations. The

solution represents a class of solutions that are suitable for the description of flow pro-

duced by a prescribed singularity and are not sufficiently general to cope with a boundary

value or initial value problem. These results appear to be new for a dynamical system

such as the Navier-Stokes equations and provide some quantitative information concern-

ing the random motion of a viscous incompressible liquid. The pressure field can be

found once the velocity field is known. This article discusses a generalization of some

previously known non-unique flows to random motion produced by singularities.
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