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Abstract. The physical process of coagulation or coalescence of particles is often

modelled by Smoluchowski's coagulation equation, an infinite system of nonlinear differ-

ential equations governing the binary interactions of particles of different sizes. One of

the physical assumptions underlying the coagulation equation is spatial homogeneity, in

particular, the assumption that coagulation of particles is governed only by particle type

or size. The physical shape of the cloud of particles, as well as the relative position of

particles of various type, are ignored.

One way to model spatial inhomogeneities is to consider several localized clusters of

particles distributed within the cloud, with each cluster being a microcosm of coagulat-

ing particles. That is to say that coagulation occurs among particles within a cluster

but not among particles from different clusters. Interaction between clusters is then

accommodated by allowing for a migration, or drift, of particles between clusters.

In this article, we model this cloud of localized clusters by a directed graph, with a

vertex located at each cluster of particles and a directed edge between vertices represent-

ing the migration of particles between clusters, and investigate the effect of the shape of

the graph on the properties of the solutions and their evolution.

For the case of a constant coagulation kernel, we prove the existence, uniqueness,

and global stability of the solutions, as well as mass conservation, in this more general

setting. We also give examples of some of the novel features arising from the structure

of the graph, such as the possibility of oscillatory behavior, and the much greater degree

of control over the creation of large particles, a problem of some importance in practical

applications.
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1. Introduction. In a previous paper [7] we proved the existence and the uniqueness

of the solutions to the coagulation system

1
4 = 2 E xixj - x-k }2xi + sk, (1)

i+j=k i=1

for all t, 0 under the assumptions that, for all A1. we have s/,> ^ () for all t with

S(t) = J2Zi locally integrable, 3-^(0) > 0, and xi(0) < 00• It was also shown

that if the limits (as t —> oc) of 5 and the s^. exist, then so do all the limits x^foo), and

we provided a recursive formula for the latter limits. We also looked at the practical

problem of controlling the number of particles of various sizes.

One of the physical assumptions underlying the derivation of (1) is spatial homogene-

ity, requiring, in particular, the assumption that every particle of type i has an equal

probability of interacting with every particle of type j. The physical shape of the cloud

of particles, as well as factors such as spatial drift, are ignored. (For numerical work and

discussion of some of the relevant features, see for example [2], [4], and [5].)

In this article, we model drift and spatial factors (such as the shape of the vessel

containing the particles) by using a finite directed graph T as an approximation to the

shape of the particle cloud. Each vertex 7 of the graph represents a (small) region of the

cloud, where a system of coagulating particles resides. Particles from different vertices

do not coagulate with each other. Instead, particles drift, from site to site: If a/3 is a

directed edge in I . then particles at site a drift into site (3 at a rate proportional to their

number. The classical case may be regarded as that of a graph with a single vertex and

no edges.

This model exhibits a number of interesting new features such as possible oscillatory

behaviour (with oscillations passing from vertex to vertex) and much greater control over

the number of particles created. It may be conjectured that many practical problems

have graphs over which they evolve in a maximal fashion (we give examples of this in

Sec. 2).

The obvious generalization is the following:

1 30  ^

xa.k = 7) /* ^ k-ijxa,ixa,j xa,k ^ ^ i,kxa.i ~t~ ̂  ' 9f3a.kxfi.k ^ ^ 9af3,kxa,k ~t~ Sa,k<

i-\-j=k i=1 (3 /3

for all k and all a e V, the set of vertices of F. where > 0 are input terms and

Ki j — Kj i are the coagulation kernels. A term ga0,kxa,k indicates that ap is an edge

from a to (3, and that ga/3,k is the positive constant of proportionality of the rate of drift

of particles of type k from site a to site [3. With this interpretation, we must assume

that Yja 9a0 < 1 for all /3.

In order to observe the influence of the structure of the graph on the evolution of

the system, we confine ourselves to the case where the systems at each vertex coagulate

according to (1), this being a case where one has a thorough understanding of the single-

vertex system. To make calculations more manageable, assume further that ga0tk = gag

is independent of k for all a,/3 6 V, the vertex set of F. The system considered in this
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paper is, therefore,

oc

E
i+j=k J = 1

subject to the conditions that for all a € V, k ^ 1, and t ^ 0, wc have sa^(t) ^ 0,

Za,k(0) > 0, a:a(0) = a',,.*•(()) < oc, with the sa,k and sa = Efcli sa.k locally

integrable.

The paper is organized as follows: A number of examples of the novel features of

the model are presented in Sec. 2. Some graph-theoretical and matrix preliminaries and

definitions are collected in Sec. 3. The next two sections deal with the existence and

the uniqueness of the solutions to (2). Not unexpectedly, (2) has a unique non-negative

solution for all time, although the multi-dimensional nature of the problem makes the

proofs considerably more intricate than the familiar single-vertex system. The global

stability of the solutions is investigated in Sec. 6. Under the assumption that the sa^

and sa all have limits as t —> oo, we show that (2) has either no equilibrium points or a

global attractor in the positive octant. We also provide recursive formulae for the limits,

when they exist. Conservation of mass is investigated in Sec. 7. It is shown that, if all

the sQifc = 0, then the total mass ^ k kxnj,: of the system is conserved for all time,

although the total mass kxa,k at each vertex does vary with time, and can indeed

have a damped oscillatory evolution.

We proceed as follows. Write xa = •''<».•>:• and sa — sa,i- Formal summation

of (2) over all k yields the system of ODEs

%a = — O xct ~t~ ̂  ] 90ax0 ~ ^ ^ 9a0xa sa (3)

0 0

for all a £V, subject to the initial conditions xQ(0) = < 00• Corresponding

to (2) we have the system

Va,k — ^ ^ ' ya.iUa.j ^cv^/a.fc ~~t~" ^ \ 9 dot U fi. k ^ ^ Ocy.JVc*. k "1" Sa,k (4)

i-\-j=k (3 0

obtained by replacing the infinite sum xa,i i11 (2) by the solution xa of (3). The

point, as usual, is that the presence of the infinite sum in (2) means that there is no a

priori reason why (2) would be well-defined, whereas (3) and (4) always are. We begin

by proving that the solutions to (4) satisfy Va.i = xQ. Thus, the yaj represent a

set of solutions to (2).

We use the following convention for naming objects: Suppose we have scalars fak for

all a £ V and all k = 1,2,.... We then write fa for i fa,k, and fk for the vector

(fa,k)aev whose components are indexed by the vertices a of T. As lower-case greek

letters arc used exclusively for the vertices of graphs, this should cause no confusion.

2. Examples. A first noteworthy feature of the new set-up is the possibility of

(damped) oscillatory behaviour at each vertex (even with constant input functions).

Let kxa,ic(t) for all a, set = (^tQ), and assume that all the source terms
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sa,k = 0- From Sec. 7, we know that

a(t) = eHtp(0) (5)

for all t, where H is the matrix with entries labelled by the vertices of F such that

Haa = — 9af3 and Hn^ = gga for all a ^ f3. Moreover, the total mass of the

system is conserved for all time, as in the single-vertex case. On the other hand, if H

has non-real eigenvalues, then (5) shows that the individual components of fi(t) can have

damped oscillatory behaviour. The simplest example is the graph V3/, in Fig. 1, with

.91,2 = 02,3 = .93,1 = .9 > 0. The eigenvalues are easily seen to be the three cube roots of

g, two of which are, of course, complex.

Fig. 1. Graphs V'sb and V§a-

One practical application of the new model is to the problem of controlling the number

of large and small particles created by the coagulation process. It will be shown below

(Sec. 6) that the limiting values la = xQ(oo) and P.a i; = .tqj,,(oo) exist if the input

functions sa and sa,k have limits as t —> oo. Specifically, let us write A = xQ(oo) for

the limiting total number of particles in the system, pn = (%2a ^2k.>n xQ,fc(oo))/A for the

limiting percentage of the total number of particles of types k ^ n, and p* = pn/v for

the average percentage of large particles per vertex (here v is the number of vertices of

T). For the single-vertex case, the formulae in Theorem 4.4 of [7] allow us to calculate

the pn — p*n recursively.

To take a concrete example, assume that the entire input into the system consists

of particles of type 1, and consider p4 (the qualitative conclusions remain the same for

larger values of n). In the single-vertex case, we have p\ = p^ = 0.3125, regardless of the

total input into the system (as long as the input is greater than zero).

In the multi-vertex case, the corresponding numbers of course depend on both the

shape of the graph and the value of the drift coefficients ga0, so we only give a few

examples to indicate the range of phenomena encountered. In all cases the total input

was 1 unit, consisting entirely of particles of type 1, and divided equally between the

initial vertices of the graph (those with only outgoing edges) if there were any in the

graph. The values of the gag were either set at the moderately small value of 0.2, or at

their maximum, so gag was constant at each a and added up to 1 (experiments show

that this is a particularly efficient choice).

For the graphs depicted in Figs. 1, 2, and 3, the extreme values for p4 and p\ are listed

in Table 2 (the complete set of data can be found in Sec. 8):
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9 = 9n

mm P4

0.156 for 2

max pi

0.324 for V3b

2 = 0.2 0.286 for V5a 0.417 for A6 0.030 for H4,2 0.169 for A2

mm pi

0.017 for W4,2

max p4

0.126 for A2

Table 2: Extreme values of p4 and p\.

©-
->

Fig. 2. Graphs 7^2,2, 7^3,2, and 7^4,2-

CD > O Q > © > ©

Fig. 3. Graphs A2, A3, and Aq.

However, pi does not decrease simply because the graph has more vertices. The graph

As has a higher average number of large particles per vertex than several graphs on five

vertices, including 7^2,2- The graph H4,2 is particularly efficient for reducing the number

of large particles.

The above examples suggest the following problem. Consider a fixed graph T and fixed

input vectors Sfc(t) = TOfc. The la and the Ik are continuous functions of the parameters

9a0 £ [0,1] and hence so are the pn. But the gap range over the unit cube, which

is compact, so pn has an absolute maximum and an absolute minimum. These values

(and the corresponding values of the parameters) are, therefore, absolute invariants of

the graph F for the given input vectors, and measure its efficiency in producing large

particles. They are, however, almost impossible to obtain analytically in a useful form.

What can be said in general is that, as all the gap —> 0, the graph approximates more

and more to a collection of disconnected vertices, each of which will produce the same

values of pn and p* as in the single-vertex case.

For example, consider F = A2- Figure 4, which is a plot of p4 as a function of g = gap,

indicates an absolute maximum of about 0.352 at g = 0.065 and an absolute minimum

of 0.252 at g = 1 (for an input of one unit at the vertex marked with a +):

For r = ^3, things are more interesting. Numerical calculations indicate an absolute

maximum of around 0.378 when (<?i,2>52.3) = (0.085,0.061), and an absolute minimum

of around 0.229 when (<71,2,52,3) = (1,0.384).

As our final example, we consider the connection between the standard single-vertex

model and the more general models of this paper. As an n-vertex analogue, let F = be
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0.36
0.34-
0.32-
0.3

0.28J

0.26-

0.24 0 0.2 0.4 0.6 0.8 1

Fig. 4. Plot of m(g) for the graph A'j■

the complete directed graph on n vertices, so we have an edge aft for every pair of distinct

vertices a and (3. Fix j e (0.1) and define <jag = g for all a and (3. Brief experimentation

shows that the various xa and xQ,k are not scaled versions of the corresponding functions

in the single-vertex case, 110 matter how the source terms and initial values are defined.

The situation, however, is quite different for the limiting distributions. Assume that

the single-vertex input is distributed equally among the vertices of F. If sk and s —

Sk are source functions in the single-vertex case, then clearly sQ(oo) = s(oo)/n

and fik = »(»,*• (°o) = «t(oo)/» for all a. The various quantities being identical at every

vertex, it is clear that every automorphism a >->• a* of the graph F maps xa.k into a:a*.k

and xQ into xa«. Thus, the values of (a = xa(oo) and = xQ,fe(oo) are independent

of a. Equation (21) therefore leads to

tr

is oo

n

for all a. As for the gQ_k. symmetry implies that = Xkl. The matrix P of (30)

has entries Pa.a = \f 2s(oo)/n + (?) — 1 )g and Pa_p = —g for all a and p. Therefore,

Pl= y/2 s(oo)/nL Equation (29) readily reduces to

i+j—k

The generating functions F„(C) = i a,K' G{Q = MfcCfc then satisfy

= \Fl + f G.n 2 2 n

Now Fi is the generating function of the single-vertex case, and clearly the above equation

has the solution Fn = This shows that the limiting distribution of the single-

vertex case is a scalar multiple of the limiting distribution of the particular n-vertex

problem defined above, even though the evolution functions are not related in any simple

way. (The reader may verify that the same conclusion holds if. instead of the complete

graph on n vertices, we had taken the graph on n vertices where for some r between 1

and n — 1, each vertex has r edges going in and r edges going out.)

3. Notation and Preliminary Results. We consider finite directed graphs without

loops (= edges beginning and ending at the same vertex), although double edges (a(3

and (3a) are allowed. A (directed) path p in T is a sequence (qi an) of n > 2 vertices
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such that aiOti+i is an edge in T for i = 1,..., n — 1. For p as above, write o(p) = ai,

t(p) = an, and £(p) = n — 1. In the context of (2), set gp = Yide where the product

is taken over all the edges e = a,n, ^ i of p. A path p is a cycle if t(p) = o(p), and p is

simple if no vertex is repeated in p (except possibly t(p) = o(p)). Of course, F only has

a finite number of simple paths.

Any path p may be regarded as consisting of a number of simple cycles attached to

a simple path at various vertices (usually in a non-unique fashion): If t{p) = 1, then

p = pa is an edge and (3 ^ a, so p is simple. When £(p) > 1 and p is not simple, let

p = ... a... a ... be an occurrence of a repeated vertex, chosen so that no other vertex

of p is repeated between the indicated as. Then the part of p between these occurrences

of a is a simple cycle C, and the segments of p preceding and following the two as can

be attached at a to form a shorter path q. By induction on the length of the path, q is

formed by attaching simple cycles to a simple path, and p is obtained by attaching C to

q at a.

The above argument shows that for any path p, we have gp = gcS^, where the

first factor is a possibly empty product over certain simple cycles, Pj is a non-cyclic

simple path, and £ = 0,1. Similarly, £(p) = + e£(pj).

The structure of the system (2) depends greatly on the subgraph structure of F. A

subgraph A of F is said to be legitimate if, for every a £ V"(A), every path p in F that

ends in a lies entirely in A. Every vertex a of V lies in a smallest legitimate subgraph

qF of F, namely, the union of all the paths in T that terminate in a. If A is a legitimate

subgraph of T, then by definition no edge of T leads into A, and the subsystem of (2)

indexed by the vertices in A essentially decouples from the rest of (2). Clearly, T has

no proper legitimate subgraphs if and only if T = for all vertices a, which happens if

and only if there is a path between any two vertices of T.

There are two matrices associated to Eq. (2). The first is G = (gap), which has

the property that cQ = (Gi)a = J2f3 9a0 ^ F where 1 indicates the (row or column)

vector consisting of Is. The second matrix (yielding the linear term in (2)) is H =

—diag(cQ) + GT, so HatCt = —ca and ffa,/3 = gpa for all a ^ (3. Plainly, therefore,

1H = 0.

Recall that a matrix H (relative to a fixed basis) is said to be reducible if the basis

can be re-ordered into {m,..., um, Vi v„ : m, n ^ 1} such that every HUi is a linear

combination of the ui,..., um only, i.e., a permutation of the basis relative to which the

matrix of H has block upper triangular form. If no such permutation exists, then H is

said to be irreducible.

We also need to use a particular partial order on the set of vectors indexed by V.

Given vectors a = (aa) and b = (ba), write a < b if and only if aa ^ ba for every a. This

is only a partial order (e.g., (1,-1) and ( — 1,1) are incomparable). We also write a < b

if and only if aa < ba for every a.

Lemma 3.1. Let H be the matrix defined above for (2).

(i) 0 is an eigenvalue of H with at least one eigenvector u ^ 0, and every eigenvalue of

H has non-positive real part.
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(ii) If H is irreducible, then 0 is a simple eigenvalue, u > 0, and every other eigenvalue

of H has negative real part.

(iii) H is irreducible if and only if there is a directed path between any two vertices of

r.

Proof. The matrix I + H is a stochastic matrix because it has non-negative entries and

all of its column sums are equal to 1. As is well known, its spectral radius is then 1,

and it has 1 as an eigenvalue with an eigenvector 0 (see [1], XIII. Sec. 6). Next, it

is obvious that I + H is irreducible if and only if H is. An irreducible stochastic matrix

is known to have 1 as an eigenvalue of multiplicity 1 with an eigenvector u > 0. This

proves (i) and (ii).

We turn to the proof of (iii). Suppose H is reducible, and let Vi and Vo denote the

disjoint index sets corresponding to the permuted basis which puts H into block triangular

form. If a € V\ and /? G V2, then by definition Hja = 0; i.e., gap = 0, whence a/3 is

not an edge in I . Let F, be the subgraph of 1' consisting of the vertices in Vj and those

edges e of r such that o(e),t(e) G V.. The above argument shows that there is no edge

from I 1 to IV In particular, if /3 G F2, then ^F C V2. which means that T2 is a proper

legitimate subgraph of 1. Conversely, if A is a proper legitimate subgraph of I", then

V(A) and V \ V(A) yield a partition of the basis relative to which H is seen to be block

triangular. The upshot is that H is irreducible if and only if F has no proper legitimate

subgraphs, which proves (iii). □

We also need the following theorem 011 Minkowski matrices (see, e.g., [8], Theorem 1.

Sec. 11):

Theorem 3.2. Let T = (Xij) be a real n x n matrix such that Ti,j < 0 for all i ± j.

Then the following are equivalent:

(1) T_1 exists and has 11011-negative entries.

(2) There exists a vector v > 0 such that Tv > 0.

(3) Every eigenvalue of T has positive real part.

4. Existence. The first step is to prove that the solutions to (3) are non-negative for

all time, provided that all the xQ(0) > 0 and sa ^ 0. For this, we need an approximation

to the xa valid over a sufficiently short interval of time. Fix £ > 0. let I — [0, e], and

rewrite (3) as an integral system

ft ^
Xa{t)= J {--X% + Y^90c,x0-Caxa)+Ua{t), (6)

for all a G V t G I, where ua(t) = xQ(0) + fg sai and ca — 9a0- Define the sequence

uj,11' recursively by u— ua and = Jq «q"' for n ^ 0. Finally, set

= *40) + X! 9PUo(p) '
p,t(p)=a
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Za will be shown to be the most significant term in xa as t —* 0+. We begin by proving

that the above series is uniformly and absolutely convergent, so in particular Za is well-

defined. In our problem, u^ > 0 for all a, so the same is true of all the «[,"1. In addition,

we have

«Ln+r) (8)

for all r, n > 0. For n = 0, apply induction on r, the case r = 0 being trivial. If (8) is

true for some r ^ 1 and n = 0, then uir+1) = fg u^ ^ uL°'(r)^-dr. The definition of

Ua ^ as the integral of a non-negative function implies that it is a non-decreasing function

on [0,t], so the last integral can be majorized by replacing Uq (t) by Ua\t), whence

the inequality for r + 1 follows by integration. Now (8) may be established by induction

on n + r, using nin+r+1' = f* uiyl+r-> ^ J* u^\t)^d,T, and replacing u^n\r) by its

maximum value u& (t).

Suppose a path p can be obtained by attaching a simple cycle C to a path q. Then,

9P = 9cgq and £(p) = £(C) + £(q), so gpu= gc9qu(^+e(C)\ and (8) implies that

a u(t(p)) < a u{e{q))—C~9puo(p) ^9iuo(q) ^Cy_-

Now every path can be obtained by attaching a number of simple cycles to a simple path

(see Sec. 3), so the series (7) for Za is obviously majorized by

where {pj : j £ J} is the set of simple paths in F that are not cycles, and the product is

over all the distinct simple cycles of T (if any). The M-test may clearly be applied with

the choice of a sufficiently small value of t in the last formula.

Absolute convergence implies that the series for Za may be re-written in the form

E = E ®«[ E 9,»S>+"+"fl1>
p,t(p)=a 0aEE q,t(q)=0,((q)^l

because any path p of length at least 2 terminating in a consists of an initial part q

followed by an edge [3a. By uniform convergence, the inner sum is simply

£ [9m,»S)+"+«!,"] = /'[ E +»?>] =/V
0 qJ(q)=0Aq)^i 0

In other words,

Za Ua -f- I ^ ^ 93 a ̂ 3 ■
Jo p

Subtracting this from (6), we find that

xa-Za = / y2g0a(x0 - Z0) + I {--x2a - caxa). (9)
Jo 0a Jo *
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Let Ra = \xa — ZQ\. Taking absolute values in (9), we obtain

ft  ^ ft i

>Jfl/3n-R/3+ / \(-~xl-CaXa)\ (10)
Jo ga Jo *

on I. For a function / = (fa{t))aev, define Wf(t) = max{|/0(i)| : a G V"}. Our aim

is to prove that there exists a constant B such that, for all sufficiently small t > 0, the

function R = (Ra(t)) satisfies

wR(t) ^ B [ wz. (11)
Jo

To this end, let d — maxl^^ : a G V} and c ^ sup{ea + ^\xa(t)\ : a G V:t G I}.

Then fo ~ C«Xa)\ < Cjl |XQ| < Jo Wx , so (10) immediately leads to Ra ^

d fQ wR + c f* w_x, whence

wn(t) < g(t) + d [ wr, (12)
Jo

where g(t) — cj*wx■ By Gronwall's Lemma, (12) implies that Wji(t) <

g(t) + d f* ed^-s)g{s)ds. Now g is a positive increasing function, and so attains its

maximum value on [0, i] at I itself, so wR(t.) < g(t) + df* ed^"^g(t). That is,

wR(t) ^ c(l 4- dt) [ wx (13)
Jo

on I. Write A — c(l + de), so (13) implies that \xa — ZaI < Af*wx, whence |xQ| <

| Za | T A fo wx < wz + A J'o wx, so wx < wz + Af*wx■ A second application of

Gronwall's Lemma shows that wx ^ wz + f0 eA^~s)wz(s)ds. Integrate both sides and

argue as before to estimate the second integral to obtain f* wx ^ (1 + At) f0 wr, which

on substitution into (13) yields (11), with B = ^4(1 + As).

Lemma 4.1. If xQ(0) ^ 0 and sa(t) ^ 0 for all t ^ 0 and all a, then xa(t) > 0 for all

t > 0.

Proof. Let to = sup{r : r ^ 0 and every xa ^ 0on[0, r]}. Suppose to is finite. Then

every xa(to) ^ 0 by continuity. Shift the origin of time to to- By assumption, all the

ua > 0, so all the Za ^ 0. and then (11) implies that all the xa 0 for some distance to

the right of to = 0. This contradicts the definition of to, as required. □

Next, we need to prove the analogues of 2.4-2.7 of [7] in this more general context.

Some proofs consist of no more than a judicious addition of subscripts to the proofs in

that paper, while others require a different approach.

The assumption that the sa,k be non-negative, and hence locally integrable, implies

that the system (4) has a unique solution on any interval [to, to + e\, such that for all

k ^ 1 we have

ya.k{t) =e"''"(t) ya,k{to)
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+ f e^(r)(^ ya,i{T)ya,j(T) + sa,k{r) + J2g0ayi3,k(T)) dr , (14)
Jto •i+j=k

where

:= / a-'a(-r) dr.
Jto

Lemma 4.2. In the situation of (2), assume that ya,k{to) > 0 and Y1T=i Va,k(to) < oo

for all k and a. Then there exists t\ > to such that Va,k(t) converges uniformly on

[io5 ii]-

Proof. Let £ > 0 be fixed. Define the following:

OO /■ s

2/a(*o) := ^2/a,fc(*o), ma(t) := sup e"M<>(s) / eM°(r)dr,
; i J tok=l

sa(t) := y"sa>fc(i), da,k(t) := sup yQ,fe(s),
to<S<tk=1

Pa,k{t) ■■= sup (yQ.fc(fo)e M°(s)+e Mq(s) [ eMa(T)sQiA.(r) dr).
t0<s<t^ Jt0 '

As fjta is a non-negative, non-decreasing function (by Lemma 4.1) and ya,k{to) and sa,fc

are non-negative, we obtain an upper bound on by replacing e_Ma(-5) by 1 and

by eMc,0 in the above formula. This yields

Pa.fcW < ya,k{to) + ef sQ,fc(r) dr.
J t„

Summing from 1 to n, we obtain

n n ot n r>t

V.P*At) ^ y^2/q,fc(^o) + e/i°(t) / ^sa,fc(T)dr < yQ(^o) + eMa(t) / Sa(r) dr.

k= 1 fc=l fc = l "''o

Let n —> oo to obtain

oo

•Pa(i) = 5^Pa,fc(i) < ya(^o) + eM°(t) / Sa(r) dr < oo.
k=1 ^to

As the mQ are continuous functions of t > to and tend to zero as f —* we maY choose

e small enough to ensure that certain inequalities are satisfied. First of all, we require

that

m«(<)^5,3Q<1 (15)

0

for all a and alH € I = [to, to + £]. We also require the existence of a constant R such

that

R > max{Pa(£) : a e V, t £ /}, (16)
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and

Pa(t) + \-ma(t)R2 + ma(t) ggaR R, (17)

0

for all a £ V, t £ /. Clearly (15) and (16) are satisfied for all sufficiently small e, if

we choose R > K = sup{.PQ(£) : a € V, t £ [to, to + £"i]}, where £\ is fixed. As for

(17), it is equivalent to R2 — 2(m~1 — Yl i9Pa)R + 2Pam~1 ^ 0, with discriminant

s(t) = (TOaX - Ylft90a)2 - ZPam'1 and largest root ra(t) = m~l - J2p90a + \/W)- As

t —> to, every ma(t) —> 0, whence S(t) and min{rQ(i)} both tend to +oo. Choose e < £\

such that every ra(t) > K, and then choose R such that K < R < inf{rQ(t) : a 6 V, t £

[<o, to + £i]}-

On right-hand side of (14), replace the first term by pa,k{t), each of the y* by the

corresponding d*, and then take the supremum over [0, t] to obtain

da^k{t) ^ Pa,k(t) + ~ ~~ ^ ' dati(t)daj(t) + ma(t) ^2gpad0,k(t),

i+j=k 0

for all a,k and t £ I. Define a new sequence ea^ by eQji(t) = da>i(t) and

ea,k(t)- Pa,k(t) + eoAt)ea.j{t)+ ma{t)^g0ae0)k{t),

i+j=k 0

for k ^ 2. Our first task is to prove that da^(t) ^ eQ,fc(0 for a,k,t. To this end, fix

t and write ua^ = ea,k(t) — da^{t). Suppose that ua l ^ 0 for all a and all i < k.

Then dajc X^/3 9ftoidft^k ̂ Pa,k "b da,ida,j ^ Pa.k "b = ^oc,i&a,j &a,k

fnaJ20 90ae0,k- That is,

^a,k ^ 90a^ft,k ^

0

for all a. In matrix form, this may be written as

A(^c*,fc) (^0,^)5

where Aa^a = 1 and Aa^ = —ma ^Z ft 90a f°r a 7^ P- Now the a-th component of A1

is 1 — ma Eft 90a > 0 by (15). By Theorem 3.2, this means that the inverse of A has

non-negative entries, whence ('ua,k) = A~1{va,k) ^ 0, which establishes the inductive

step in the proof of

dcY,k{t) ^ ^a,A:(t)-

Our next task is to prove that Yl'kLi ea,k{t) is convergent for every t £ I. The explicit

proof given in [7] no longer works, so we proceed as follows: Fix t. Define ej^l = ej?l(t)

by eL°l = 0 and

ea,k1] = Pa>k + J2 eSeS +m«E9ftae%l (18)
i+j=k 0

for all n ^ 0, k ^ 1, and a. Clearly, e^\ > and it is clear from (18) that (i^'k ^

e<ak 11 f°r ^ implies that > e^jj. for all k. In other words, for every a and k, the

sequence {e'n^} is non-decreasing. Claim that Ylh=i ea"i ^ ^ ^01 n'a' where R is the
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constant satisfying (16) and (17). This is done by induction by n, the case n = 1 being

(16). Supposing the inequality to be true for n, we have JZaLi = Y^k=iPa,k +

Ek=i Et+j=k + ma Y.B93CC J2k=i eip,l < pc + \maR2 + ma J2^90aR < R

by induction and (17). Now let N —> oo to obtain Yl'kLi^at^ ^ particular,

every e^\ ^ R, so, being non-decreasing, fa)k — limn_>oo e^j. exists. Letting n —> oo in

Zk=! e-(a,l ̂ R yields J2k'=i fa,k < R- so Y,kLi fat,k < R for all a. But letting n -> oo in

(18) shows that fa^ = ea^, so finally J2kLi ea,k{t) ^ R for all a. and all t £ I. Also, it is

obvious from the definitions of eQ;fc,?nQ, and pa,k, that ea^(t) is an increasing function

of t. Let t\ < t0 + s, and let ra^ = eQ,fe(^o + £)■ Then

ya,k(t) ^ da^(t) &a,k(t) ^ ^a,kj

ancl ra,k ^ R- By the M-test, the series ya(t) = Y^kLi Va,k{t) is uniformly conver-

gent on [io,ii], as required. □

Lemma 4.3. In the situation of (2), there exists £ > 0 such that yQ = xa on [0,e].

Proof. The proof of Lemma 2.6 in [7] goes through verbatim, if a subscript a is added

to everything in sight. At the very end of that proof, one encounters the following system

of ODEs satisfied by za = ya — xa:

za = za "f" EM ~~ y 19a0za.

0 0

on [0, e], subject to the initial conditions zQ(0) = 0 for all a. The uniqueness of the

solution of this system shows that za is identically zero on [0, £■], as claimed. □

The next result is the analogue of Lemma 2.7 of [7]. The proof in that paper works with

no change but the addition of a subscript a.

Lemma 4.4. In the situation of (2), we have ya(t) = xa(t) for all t ^ 0.

The existence of a solution now follows easily. Lemma 4.4 implies that xa = Va,k

for all £ ^ 0. Therefore, (4) is identical to (2), which is another way of saying that the

{ya,k} are a solution to (2).

5. Uniqueness. The proof of uniqueness given in [7] also generalizes to the present
OO

case. Suppose {xQ.fc} is a solution to (2) on [0, T). Then the sum Pa(t) := xa^{t)
k= 1

converges for almost all t £ [0, T) and (2) becomes

*^a,k = 7) ^ , %a,i%a,j Pa%a,k ^ ^ 90ct%0,k ^ ^ 9cx0^tx,k "t~ $a,k-

i+j—k 0 0

Lemma 5.1. In the situation of (2), if {xa,fc} is any non-negative solution to Eq. (2) on

[0, oo), then the Pa are bounded on an interval [0, a] for some a > 0.
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n

Proof. Let Pa,n(t) = xa,k(t). Then x'ak ^ \ ^2i+j=k xa>ixaj + Y,09j$aXff,k + sa,k

yields

•Ea,k{t) ̂  *^q,/c(0) ~t~ ~ I ^ ^ 93a f x3,k ~i~ j ^a.k- (^)
,'0 i+j = k 9 ,'0

Choose constants Aa ^ .P«(0), to € (0,T), and ^ |f'° SQ. Summing (19) from 1 to ?i

yields

Pct,n(t) ^ + t [ ^a.n-l + 3/3q I P/3,n + Ba.
1 Jo p Jo

We want to find constants 6„ such that P„.n ^ ba for all t E [0, a]. The above inequality

suggests that we should arrange to have

I [a ra

Aa + ~z / b^dr + 2_^90a / badr + Ba ^ &Q,
2

which simplifies to

/ 0 J .70

ba Aa Ba i'n,\\
a ^ ,2 /o , ; V- ' (20)

^a/2 + 2^ ,3 5/3a

This is trivial to satisfy: choose ba > Aa + Ba for all a, and then choose any positive a

satisfying the finite number of inequalities in (20). □

The proofs of the next two results are identical to those of Lemmas 3.2 and 3.3 of [7].

The second lemma establishes the uniqueness of the non-negative solutions to (2).

Lemma 5.2. Assume that {.x^} is any non-negative solution to (2). Then Pa = xa 011

[0, a] for some a > 0.

Lemma 5.3. I11 the situation of (2), we have Pa = xa for all t ^ 0.

Finally, we prove that the xa are globally bounded.

Lemma 5.4. If all the sa are bounded above 011 [0,T), then the xa are also bounded

above on [0, T).

Proof. For any t ^ 0, let fa{t) = sup{.xa(r) : 0 ^ r ^ £}. Also, fix constants

Ka > supt sa(t), and let k(t)2/2 = msvta{Ka+c2a/2+X^ 9,3a fpit)}, where ca = J2g 9a3-

If ra = xa + cQ, then it is readily seen that r'a < — ̂ r2 + k2 /2, throughout [0, f] so by

the proof of Lemma 4.2 of [7], we have r„(r) ^ max{ra(0). k) for all t E [0, f]. Thus

%u(t) ^ max{xQ(0),fc — cQ}, whence

fa{t) < max{xQ(0), k(t) -ca}.

Let w = Wf(t) = maxQ{/Q}. Then k2/2 ^ Ka + c2a/2 + daw, where da — ^3gf}a- Then

ca + fait) < max{a;Q(0) + ca,k(t)} < xa(0) + ca + k(t). Using the definition of k, this

leads to

fa(t) ^ £a(0) + \JKa + c^/2 + d,aw,
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whence

w < :rQ(0) 4- y/Ka + c2J2 + daw.

But w(t) - yjK,y + c2a/2 + da w(t) ^ a;Q(0) clearly implies that w(t) cannot become

arbitrarily large. The result follows because xa ^ fa ^ w. □

6. Global Stability. Let ma = sQ(oo). If the xa(oo) also exist, then (3) implies

that Tq = xa(oo) ^ 0 is a solution of

\Tl + Yl 9<*0T<x ~ X] 90<*T0 ~ = °- (21)
0 0

Now suppose that (21) has a non-negative solution (i.e., a solution with all components

lion-negative). For technical reasons, it is important to be able to concentrate on the

positive components of the solution. We begin by showing that this can be achieved by

reducing the graph T, if necessary, as follows.

Let (£a) be a non-negative solution of (21). If £a = 0 for some vertex a, then (21)

shows that 90a@0 + fna = 0, and everything being non-negative, it follows that

ma = 0 and £g = 0 for every edge 0a. But this obviously implies that £0(p) = M0(p) = 0

for every path p terminating in a. In other words, Ms = 0 for every vertex 6 in the

legitimate subgraph Qr of T.

Conversely, suppose that ma = 0 for every vertex a in a legitimate subgraph A of

F. We show that £a = 0 for every vertex of A as well. To this end, note that for such

vertices (21) reads

+ 'Y^dupV-a ~ ^2gpa£(3 - 0, (22)
0 0

where all the [3 occurring in the second sum also belong to A. Summing (22) over all

a G V(A) yields

2 H ^+X! 12 ga^a = °-
q£A a 0a<EE(T)\E(A)

As all the £a > 0, we must indeed have £a = 0 for all a £ A, as claimed. The upshot is

the following.

Lemma 6.1. Let [£a) be a non-negative solution to (21), and let a € V. Then £a = 0 if

and only if a belongs to a legitimate subgraph A of T such that Ms = 0 for every <5 e A.

In this case, £s = 0 for every vertex of A.

Say a subgraph A is null if A is legitimate and Ms = 0 for every 5 G A. The previous

lemma implies that every £a > 0 if T has no null subgraphs. On the other hand, suppose

that at least one null subgraph is present in T. Clearly every null subgraph is contained

in a subgraph of T that is maximal with respect to being null, so let Ai,..., Am be the

distinct maximal null subgraphs of F. If U'^L1V(Ai) = V(r), then £a = 0 for every vertex

a of F, and there is nothing further to be said. In the contrary case, define a subgraph

r0 of F as follows: Let V(Fo) = V(r) \ U^1V(A,), and let £'(ro) consist of those edges

(if any) of T that are not incident with any of the A,.
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Suppose a is a vertex in To. Then £a ^ 0, for otherwise a would belong to a null

subgraph, and hence to one of the maximal null subgraphs A,-. Consider (21) for such a

vertex. In the first sum in (21) , none of the [3 can belong to U™-^(Aj), for the existence

of an edge a —> f3 £ A, implies that a £ A; because Aj is legitimate. In the second sum,

any term involving some (3 £ Aj can be ignored because lp = 0. In other words, (21)

reduces to

2 ^n ^ ^ {Ja/3^a ' 9f3a^(3 0'

apeE(r0) paEE(T0)

and ta > 0 for all a £ Fq. This shows that, in discussing the stability of the solutions of

(2), we may confine ourselves to the case where T has no null subgraphs, in which case

(21) has at least one strictly positive solution.

We show below (Theorem 6.3) that the system (21) has at most one non-negative

solution, and if it does have such a solution, then the xa(oo) exist for all a. Moreover,

all the xQifc(oo) also exist if the sa k{oo) exist, and can be computed quite easily. The

next result is the main tool used in the proofs.

Theorem 6.2. Let e > 0 be a scalar and u > 0 a constant vector. Assume that the vector

function y - (yQ(i)) satisfies the differential inequality y' ^ Ny + eu for all sufficiently

large t, where the matrix N is such that

Nq/3 ̂  0 Ma ̂  /?, IN < 0.

If y is bounded for all sufficiently large t, then y(oo) exists and y(oo) ^ —eN_1u.

Proof. We may clearly shift the time origin so that the above properties hold for all

t ^ 0 (this is for ease of notation only). We begin by proving that

y(t) < eNt(j/(0) +eN_1u) — eN_1u, (23)

for all t ^ 0. To do this, let z(t) = eNt(?/(0) + eN-1^) — eN_1w and w = z — y, so we

want to show that w ^ 0 for all t. Of course z(0) = y(0) and z' = Nz + su, so w(0) = 0,

and w satisfies the differential inequality

w' > Nw. (24)

Let va(t) = e~Naiatwa(t) and Gap(t) = Nape^N<3l3~Nao,^t > 0 for all a, j3. Then (24) may

be written as w'a — Naawa = ^p NapWp, which is equivalent to v'a ^ ~^2pGapvp. As

u(0) = w(0) = 0, this yields

M0 ^ X] / G«p{s)vp(s)ds (25)
0

/o

for all a. Define the linear operator T by T(f)a = J* Gapfp for all / = (/«)• Then

T is an order-preserving operator (i.e., if / Js g, then T(f) > T(g)\ clear because all the

Gap > 0). Also, having fixed a finite t, all high enough powers of T are contractions

(c.f. [3], p. 14 or [1], Volume I, pp. 125-128). Moreover, (25) is simply v > T(v). By

Theorem 1.6.3 of [3], v is greater than or equal (in the partial order on vectors) to the
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unique fixed point of T, which is obviously 0. The definition of v implies that w ^ 0 as

well, so (23) is established. Next, we show that for all a,

limsupj/a < — e(IM-1u)a. (26)
t—>oo

Indeed, Theorem 3.2 applies to the transpose of —N, since —NTX > 0 by assumption.

Therefore, every eigenvalue of N has negative real part, so eNt —> 0 as t —> oo. This and

(23) imply that for every <5 > 0, there exists tg such that ya(t) < S — £l\l_1w for all t > t$

and all a. Thus limsup ya ^ 5 — eN_1w, and (26) follows by letting 6 —► 0.

By Theorem 3.2 again, there exists a vector d > 0 such that Nd < 0. Let a > 0 be a

constant such that

a > maxj— e(N~1u)a/da, —euQ/(Nd)Q|.

In vector form, we have arranged to have aNd + su < 0 and —ad, — £N_1u < 0. Let

y = / + ad. Substitution into the inequality for y leads to /' ^ N/ + aNd + eu < N/,

which in component form reads:

f'a < (Naa)fa + J2N*0fp, (27)

for all a. Now limsup/a = limsup2/a — ava ^ — ̂(N^u)^ — ava < 0 by the choice of a

again, so fa(t) < 0 for all a and all sufficiently large t. Equation (27) then yields

fa ~~ (Naa)fa < ^2 Nafffff < 0.
P

In other words, the function ga(t) = e~Naatfa(t) satisfies g'a < 0, so ga is non-increasing,

and hence so is fa{t) = eNaaiga(t)) since Naa <0. As / = y — av is bounded by

assumption, /(oo) exists, and hence so does y(oo). The inequality for y(oo) is then

simply (26). ~ ~ □

The next result indicates the alternatives for system (2): The system either has no local

equilibrium points in the positive octant, or it has a global attractor there.

Theorem 6.3. Assume that the sQ(oo) = ma exist for all a. Then (21) has at most one

non-negative solution. If a solution exists, then xa(oo) exists for all a, and is equal to

the solution.

Proof. In view of the earlier comments, we may assume that the system (21) has

solutions > 0. Let I = (£a) > 0 be any such solution of (21). It is then trivial to verify

that ya = xa — £a satisfies

y' ^ Ny + (sQ - ma)a,

where Nag — gpa if a ^ /?, and Naa = —£a — F'x £ > 0. Now sa(t) —> ma as

t —> oo for every a, so sa — ma < e for all a and all sufficiently large t. By Theorem 6.2,

y(oo) exists, and hence so does X(oo). Moreover, y(oo) ^ —eN-1!. Letting £ —> 0, we

obtain y{oo) ^ 0, so x(oo) ^ I.
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As for the uniqueness of £, assume that Eq. (21) also has a solution £ > 0. If X(0) = £,

then x(t) = £ for all t, whence £ = X(oc) ^ L But interchanging the roles of t and £

shows that Thus £ = £, so the solution is unique. □

Finally, we turn to the xa^-

Theorem 6.4. Assume that the sQ,fc(oc) = ma^ exist for all a and k. Then the

%a,k{°°) = £a,k also exist for all a and k, and are given by Eq. (29) below.

Proof. Write (4) in the form

*^a,k 2 ^ ' -Ea,i%a.j ^a^a,k ' ^ ^ 9 ;3o*' 0 ,k ^ ^ 9a0^a,k ~t~ Sa.k- (^8)

i+j=k 0 0

The xa,fc(oo). if they exist, must satisfy the system

(P4)a = ^ ^ £a,i£a,j +ma,k, (29)

i+j=k

where for k ^ 1, the column vector 4 (respectively m^j has entries £a^ = xa^{oo) (resp.

ni-a,k), and P = diag(^Q) + H has entries

Pa,a — £<x ^ ' 9a0■ Pa.0 = 90a foi all (X ̂ /5. (30)

0

Observe that IP is the vector consisting of the £a > 0, so by Theorem 3.2. P is invertible

and its inverse has non-negative entries. Thus, (29) can be recursively solved for the £k,

starting with £\_ = P~1m\.

Now let £k denote the unique solutions of (29), and set xa.k = £a^ + zaM and xa =

£a + Ua- Substitution into (28) eventually leads to

za,k 2 ^ * za,iza,j 1 ^ ; £a.iza,j "I" ̂  y90az0.k (31)

i+j=k i-\-j=k 0

— (^q H~ ̂  ^ daft)Za,k H~ ̂ a,kVa Va^a^k ~t~ Sa,k ^a,k-

0

We prove that Zk\t) —> 0 as t —> oo by induction on k. When k = 1, Eq. (31) simplifies

to

^a,l ^ y 9(3Oiz0,1 (^a ^ ^ 9oc(3)Za.,l H" ̂ a,l Va Va^a,l ^a,l 77ia,l • (^2)

0 0

We know that ya —► 0 and sa,i —> mQ)i as t —> 0, so given any £ > 0, we have

Z'a,l < ~ Jr^J9a0)Za.l +£

0 0

for all large enough t. By Theorem 6.2, the za,i(oo) exist. Letting t —» oo on both sides

of (32), we obtain

o = 90aZ0,l(oo) - (£a + ^2ga0)za,i(oo).

0 0
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That is, P^(oo) =0. As P is invertible, we find that zi(oo) = 0. In general, if Zj(oo) = 0

for all i < k, then for all large enough t, Eq. (31) leads to

^a:k ^ ^ ^ 90a^0,k ^ ^i

0 0

as the other terms have limit zero as t —» oo, and so can be approximated from above by

any fixed e. The proof that Zfc(oo) = 0 now proceeds exactly as for Z\_. Finally, having

proved that all the z^it) —» 0 as t —> oo, it follows that xa^(oo) = ma k for all a and k,

as required. □

7. Conservation of Mass. Assume that all the sa,k = 0. Let = 53fcLi kxa,k{t)

and fi(t) = (na(t))a. Multiply (2) by k and formally sum to obtain p! = H/la, whence

= eHtp(0) as in (5). (This may be justified rigorously in the usual way, e.g., by using

generating functions as in [6]. This is routine and is left to the reader.)

In particular, 1 //(£) = HltJ/i!/x(0) = l/i(0). In other words,

^ = 'y ^q(O) (33)
a a

for all t. This is, of course, conservation of total mass. As already pointed out in Sec. 2,

complex eigenvalues of H can lead to oscillatory behaviour in the components of fi. It is

worth pointing out, however, that such behaviour can only occur if F has at least one

cycle. More precisely, if T has no (directed) cycles, then H has triangular form relative

to some suitable ordering of the vertices. As H = —diag(ca) + GT, it is sufficient to prove

the result for G.

Suppose T is a graph with no directed cycles. It is then well-known (and trivial to

prove) that T has at least one initial vertex a, i.e., a vertex which is not the terminal

vertex of any edge of F. Assign levels to the vertices of F as follows: The level t(a) of a

vertex a is the maximum length of a simple path ending in a (so the level of every initial

vertex is zero). This is easily seen to be well-defined and finite. Moreover, let e = (3a

be an edge in F. If p is a simple path of maximal length ending in (3, then pe is a path

ending in a, so t(a) ^ £(/?) + 1 > £(/3).

Arrange the vertices of T in order of increasing level. If a comes before (3 in this

ordering, then t(a) < t{P), so by the above argument there is no edge from (3 to a. This

means that the matrix of G only has zero entries below the main diagonal, as claimed.

8. Data. In this section we present the complete set of data for the graphs in Sec. 2.

For g = g-max, the results were

^3 ,b

P4

Pi

0.324

0.108

V,5,a n2,

0.186 0.186

0.037 0.037

^3,2 ^4,2 -A-2 ^3

0.166

0.024

0.156

0.017

0.252

0.126

0.235

0.078

Ae

0.244

0.041

For g = 0.2, the numbers were as follows:
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P4

Pa

P3,i

0.359

0.12

V:5,a

0.286

0.057

H2,2

0.323

0.065

7^3,2 "^4,2

0.295 0.272

0.042 0.030

^2

0.337

0.169

^3

0.364

0.121

Ar

0.417

0.07
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