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Abstract. We discuss the dynamics of a system of 2n ordinary differential equations
that can be looked at as the discrete version of a system of two reaction-diffusion equa-
tions, which differ only in their sensitivity to the reaction term. Such reaction—diffusion
systems occur in evolutionary models from biology. It is known that only the fastest
reacting species survives in generic situations. We prove similar results for the related
discrete system and give an interpretation of the results in terms of mathematical finance.

1. Introduction. Reaction-diffusion systems of the form

d N
au:dAu%—uf(t‘,x,u), re€NCR (1)
are used in biology [1, 5, 6] to model the evolution of a population with density u :
R* x Q@ — R*. In this model, the function f measures the difference between birth
and death rates at time ¢ and location x given the population density u. The diffusion
rate d is a positive constant. It is used to model the effect of a random walk, which the
individuals of the species are supposed to undertake. Systems of two or more coupled
equations of the form (1) are used to model competitive situations (like in [4, 7, 9]),
including predator-prey-situations. If we only deal with phenotypes of the same species
that live from the same source but differ in their sensitivity to environmental changes,
then we will obtain a system of the form

%ug:dAug+Cgu1gf(t,z,u1,u2), zeQCRY =12, (2)
where ¢, are positive parameters (the case in which the parameters ¢, coincide but the
diffusion constants d, differ was examined in [4, 9]). It was shown in (2] that if f is
sufficiently smooth and depends essentially on the space variable x (i.e., there are x1,
with f(t,x1,u) # f(t,xz2,u) for all ¢,u), then only the phenotype associated with the
largest sensitivity ¢, survives.
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In this paper we discuss whether a similar result holds if we discretise €2 and replace
A by the discrete Laplacian. Hence, we take n € Ny n > 2, and replace ug(t, x) by
(u1.(t)e. . upne(t)), f by

(f1 (t«, UL 1yee s Up 1 UL 2y e s Un,?)q v fu(tour g Up 1 UL 2 U 2))
and (2) by
d
gp ke = d Zu]’,[ —(n=Nuge| +coupefilt,uri..... Up 1, UL2,s - s Un2)
’ i#k
for ke {1..... n}. e {1,2} (3)

with ¢y, co.d > 0, ¢1 # ¢o. W.lo.g. we assume that ¢; < ¢o. Equations of this form can
be used to create models in mathematical finance where wuy ¢(t) represents the value of the
investment in some asset (for example, stock no. k) of portfolio no. . An interpretation
of (3) in terms of mathematical finance is given in the next section. Furthermore, the
main results are followed by a section in which the results are reviewed in this context.

In this paper, we concentrate on positive solutions of (3), i.e., on solutions for which
ug.¢ are positive for all k, ¢. Given such a positive solution. the function

b:RT > t+— min L(f) R*
LSk (g1 (£))°2/
is well defined. We will prove that b is strictly increasing, provided that f is sufficiently
smooth, bounded, and % f is small for large w. This preliminary result will be the key
to all following results. In particular, b plays the role of a Lyapunov function. As main
results, we will show that

(I) )
Zu;\,.l(t) -0 (t — o)
k=1

if RY 5t — Y )_, ur2(t) € R is bounded, and
(1I)
ZZ{=1 ug,1(t) =0
D e Uk 2(t)
if we have Y )'_, ux2(t) — o0 (t — 00).
Since Vp := Y} _; wk.e represents the total population of phenotype ¢ in the biological
model or the total value of portfolio no. ¢ in the model from mathematical finance, (I)
shows that, like for the reaction-diffusion equation (2), only the phenotype with the
largest sensitivity survives as long as the whole population is bounded. Then (II) gives
a similar result for the case of an unbounded population.

(t — o).

2. Interpretation of the problem in terms of mathematical finance. In this
section we will give an interpretation of the results in terms of mathematical finance.
Let Ay,...,A,, n > 2, be different assets, which may be stocks, bonds, or any other
investment. The price of each asset Ay at time ¢ > 0 is denoted by pi(t). In this paper
we do not concentrate on stochastic methods (like in [8, 10, 11]) to model the evolution
of py. For our purpose it is sufficient that p; are given functions, which might be the
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realization of some stochastic (Wiener) process. For technical reasons, we assume that
pr: RE — R, k€ {1,...,n}, are sufficiently smooth (being a realization of a stochastic
process, pr might not be sufficiently smooth; in this case one should replace px by a
smooth approximation).

An initial investment ux(0) in asset Ay will result in a total value of

ug(t) = ur(0) for t > 0. (4)

Introducing log-returns ¢ (t) := log(pk(t)/px(0)), (4) can be written in the form
up(t) = ug(0)e*® . (5)

The function g, is more useful than pj to describe the return on investment. For example,
we will obtain gx(t) = ~t for an investment in a bond with a constant interest rate.

An investor can reduce his risk by investing only half of the initial sum u(0) in the
asset Ar and the remaining sum in cash. Provided that the portfolio is permanently
readjusted so that at any time ¢ > 0 exactly half of the investment is held in cash, we
will have a levering effect with factor 1/2, i.e., we will obtain

%Pk

Dk

a
at Uk
uk

[N

Formally, this means that gx(t) is replaced by 1gx(t) in formula (5). In general, we obtain

e _ gk
Uk Pk

with a positive parameter ¢, i.e., qx(t) is replaced by cgx(t). Clearly, with a smaller
parameter ¢ the cash-part becomes larger — and for ¢ = 0 we would only invest in cash.
On the other hand, in case ¢ = 1, we do not have any cash at all. A factor ¢ larger than
1 corresponds to a situation in which the investor wants to make use of a levering effect
by taking out a loan. For example, ¢ = 2 means that half of the current investment in
asset Ay is financed on credit.

We note that the parameter ¢ does not depend on the actual market price py of asset Ay
and is characteristic for the risk aversion of the investor. In general, this risk aversion
may change within time, but for simplicity we assume throughout this paper that each
investor has his personal constant parameter c. Then the evolution of an investment in
asset Ar will be described by formula

ug(t) = ug(0)et®) (6)

instead of (5). We want to compare the success of two investors that differ (only) in
their risk aversion measured by the parameter c. Without additional transactions (e.g.,
selling or buying stocks), the total value of the portfolio at time ¢ > 0 is given by

V(t) =Y ur(t) =Y uk(0)e*®.
k=1 k=1
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Then the success of two portfolios Ve(t ZL_I ug ¢(t) with parameters ¢g, € = 1.2,
can casily be compared. In particular, thc ratio

Vi(t) _ Yoy tiea(t)
Va(t) ko una(t)

is bounded away from 0 and +oc as long as g, are bounded (which means that the prices

(7)

pi are bounded from above and bounded away from 0).

In this article we show that the situation changes if we assume that the portfolios are
readjusted on a regular basis in order to reflect some underlying stock index, which
works as a benchmark. This means that the investment in asset A, is reduced whenever
its relative weight in the portfolio succeeds the weight of Ay in the stock index. The
resulting cash is then distributed among all other assets. Since the success of a fund
manager is often compared to some stock index, this reflects a natural behavior of the
fund manager. Without adjustment to the index, uy defined by (6) satisfies a differential
equation of the form

d
—up = cu 8
a7 e = cunfi (8)
with fi = ditqk (and we assume that g is continuously differentiable). We want to

modify equation (8) such that it reflects the adjustment. For simplicity, we assume
that the index, which works as a benchmark, is organized in the way that each asset
Ay, ... A, is equally weighted (in case of different weights one only has to introduce
some weight-factors). In order to readjust the portfolio, we take a small fraction from
each single investment, divide this sum into equal parts, and reinvest each part in one of
the remaining assets. This leads to the equation

_UA =d Z uj — (n — Dug | + cup fr (9)
JFKR

where d > 0 is a parameter that indicates how fast the readjustment is realized (for small
d, we need a long time to readjust).
Formally, we obtain (9) from (8) by adding a discrete diffusion term. As it is known
from mathematical biology [1. 5] or physics [3]. a diffusion term (continuous or discrete)
is often used as an equalizer.

Now we compare two portfolios that have the same adjustient parameter d, but differ
in the investor’s personal parameter cg, £ = 1,2. Thus, we end up with the formula (3)

d
(—uk r=d Z“M —(n— Duge| + ceupefr (e {1.2}, ke {1,.... n}.

dt
i#k

We are interested in the total value Vi(t) of the portfolio and in the ratio (7). The results
of this paper will show that the existence of a benchmark-adjustment via the discrete
diffusion process explained above causes a significant change in the dynamics. No matter
how small the positive constant d is, i.e., no matter how small the adjustment is, the
ratio (7) will either tend to 0 or to +00. We will show that taking a higher risk, i.c.,
choosing a larger parameter c¢,, will pay as long as the total value of the portfolio does
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not converge to zero (like in a permanent bear market). A more detailed description of
the results in terms of mathematical finance will be given in Sec. 5.

3. Notation, general assumptions, and preliminaries. We assume that the
maps
Rt xR™ — R

(t,ul,lv"'7un,11u1,2,~"’un,2) = fk(t1u1,17~~'7un,17u1,27'-~>un‘2)

for k € {1,...,n}

satisfy the following conditions:
(A1) fr € CYR* x R>,R) for all k € {1,...,n}.
(A2) There is fimax > 0 such that ||fi|lct < fmax and

Ofx

Uk, ¢
Ouy e

S fmax

for all k € {1,...,n}.
Loosely speaking, this condition means that the non-linearity is not growing
faster than linear and that the dependence on uy ¢ is weak for large uy ¢.

(A3) The set

Fi; = {t >0: fk(t,Ul,Ug) = fj(t, Ul,ﬁz) for some [71,02 S Rn}

has no interior points for any k,j € {1,...,n}, k # j.

If (A1)-(A2) hold, standard arguments (Picard-Lindel6ff) yield that for any given ini-
tial value (U1,U2) = (u1,1(0), ..., upn.1(0),u12(0),...,u,2(0)) € R* equation (3) has
a unique solution (Uy,Us) = (U1,1,-+»Un.1,U12,---,Un2) : R — R?*" with initial value
(U1, Us)(0) = (Uy,Us) and uy e € CHR*,R) for all k € {1,...,n}, £€ {1,2}.
We note that condition (A3) is not needed to provide existence and uniqueness of solu-
tions. However, it is useful in order to avoid pathological cases in which two assets Ay
and A; behave exactly alike for some period of time (and thus cannot be distinguished).

Furthermore, given a solution (Uy, Us) of (3), both components U = Uy, £ = 1,2, solve
an equation of the form

d
—uk=d > up— (= Dur| +cunge(t), U= (ur,... un), (10)

ik
with gx : RT 5t — fi(t,U1(¢),Us(t)) € R for the concrete choice ¢ = ¢; of the parameter
c.
Since gy is defined using (Uy, Usz), we note that equation (10) is always associated with
a solution (Uy, Uz) of (3).
DEFINITION 1. Let u1,...,u, € CY(RT,R) and U := (u1,...,u,). Then we write

U>0 <= wu>0Vke{l,...,n},
U>0 1< wu>0Vke{l,...,n}.
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LEMMA 1. Assume that (A1)-(A3) hold and (Uy.Us) is a solution of (3). Let U =
(u1,...,u,) be a solution of the corresponding equation (10) with U(0) > 0. Then we
have either U(t) =0 for allt > 0. or U(t) > 0 for all t > 0.

Proof. 1f U(0) = 0, then we have U(t) = 0 for all t > 0. If U(0) # 0, then there is at
least one p € {1,...,n} with u,(0) > 0. Thus, equation (10) implies that
%uk((]) >0 for all k € {1.....n} with u(0) = 0.
Hence, there is 79 > 0 such that ux(t) >0 forall0 <t <19 and all k =1,...,n. Let

to:=sup{7 >0:ux(t) >0forallO<t<7andal k=1,..., n} € (0,40o0].

Assume that tg < +o0o. This implies that there is m € {1,....n} with u,,(to) = 0. Let
lm : [%,00) — R be the solution of

d
Eﬂm = —d(n = 1D)Um + clmgm(t,u(t)).
t t
Um(2) = un(2)>0.

2 2
Then we have @,,(t) > 0 for all t > 521, and the variation of constants formula yields
o

U (to) = Tm (to) + / dd ui(t)dt >0,

to/2  jam

which is a contradiction. O

LEMMA 2. Assume that (A1)-(A8) hold. Let (Uy,Us) be a solution of (3) with Ug(0) > 0,
0 =1,2. Given £ € {1,2}, we have either Ug(t) = 0 for all t > 0, or Ue(t) > 0 for all
t>0.

Proof. The assertion follows from Lemma 1 since U; and U, both solve equation
(10). a

DEFINITION 2. We call solutions (Uy, Us) of (3) and solutions U of the corresponding
equation (10) positive, if U(0) > 0 or Uy(0) > 0, ¢ = 1,2, respectively. If there is at
least one k such that ui(0) > 0 or ux¢(0) > 0, then we call U or U, strictly positive.
Furthermore, we call (U, Us) strictly positive if both U; and Uy are strictly positive.

REMARK. If (Uy, Us) is strictly positive, then Lemma 2 implies that U,(t) > 0 for all
t>0and?e {1,2}.

4. Main results.

THEOREM 1. Assume that ¢; < ¢y and that (A1)-(A3) hold. Let (Uy,Us) be a strictly
positive and bounded solution of (3).
(i) If we have

llgglf ,; ug2(t) >0,

then we obtain

Zzzl ug,1(t)

Sh=l TR g (4o o0).

S uka(t)
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(ii) If there is a sequence (t;), t; / oo such that

j—oc

lim infz up2(t;) >0,
k=1

then we obtain
D Uk () -0
ZZ=1 ug2(t;)
If the functions fr do not depend on (Uy,Uz), then the results (i) and (ii) also hold for
unbounded solutions (Uy,Us).

(4 = 0).

THEOREM 2. Assume that ¢; < co and that (A1)-(A3) hold. Let (Uy,Us) be a strictly
positive solution of (3) and (t;) be a sequence such thatt; / oo and > p_; uk2(t;) — 0
(j — oc). Then we have

D ukalt;) =0 (5 —o0).
k=1

THEOREM 3. Assume that ¢; < co and that (A1)-(A3) hold. Let (Uy,Us) be a strictly
positive and bounded solution of (3). Then we have

D upa(t) =0 (t—o0).
k=1

THEOREM 4. Assume that ¢; < ¢y and that (A1)-(A8) hold. Let (Uy,Us) be a strictly
positive solution of (3) with initial value

uk,g(0)=% forallke{1,...,n}, €€ {1,2}.

Take t > 0. Then we have either
D uke(t) <1 forf€{1,2}
k=1

or

n

D una(t) > > ukalt).
k=1

k=1

5. Interpretation of the results in terms of mathematical finance. In terms
of the economical model, our results can be interpreted as follows: As long as the price
of the assets is bounded and does not tend to zero, Theorem 1 shows that taking a large
risk, i.e., a large parameter ¢, pays for the fund manager. If we take into account that
stock prices usually increase in the long run (simply because of positive inflation), we do
not expect a permanent bear market, and this assumption is likely to be satisfied in the
real world economy. However, Theorem 2 shows that if the value of the risky portfolio
(i.e., the portfolio with the larger parameter c) tends to zero, the value of all less risky
portfolios tend to zero, too. Hence, taking less risk does not prohibit bankruptcy in this
scenario, anyway.

Theorems 1, 2, and 3 describe the long time evolution of the portfolios. However, in-
vestors have only a limited time horizon (simply because their own life is limited) and




630 MATTHIAS BUGER

would therefore prefer results like Theorem 4 that can be applied for finite times. The-
orem 4 shows that whenever we start with portfolios that reflect the underlying stock
index, and whenever the value of at least one portfolio is above its initial value, the
performance of the portfolio with the higher parameter ¢ is better than the performance
of the portfolio with the lower parameter.

Obviously, taking a large risk does not pay if the value of all portfolios decrease — like in
a permanent bear market, in which the value of all underlying assets decrease and tend
to zero. However, this is an obvious fact. In all other cases, our results show that taking
a higher risk pays — at least in the long run.

6. A comparison argument.

LEMMA 3. Assume that ¢; < c3 and that (A1)-(A83) hold. Let (Uy,Us) be positive
solutions of (3). If there are 3 > 0, tg > 0 such that

uka(to) > B (upa(to)/ forallk € {1.....n}, (11)
then we have either Uy(t) =0 for allt > 0 or
Up o (t) > B (g1 (1)) for allk € {1,....n}, and all t > t,. (12)
Proof. We introduce q := ¢2/c; > 1 and

2k RT3t upa(f) — Buf (1) €R.

Then (11) yields zx(tg) > 0 for all k£ € {1,...,n}. An elementary computation shows
that
d
P dZun d(n — Dug.2 + coug 2 fu(t. Uy, Us)
' j#k

~Bquitt (4> uin —d(n = Dugy + crug fi(t, Ur, Un)
s

= d Z (’IL]"Q — ﬁquzﬁ_llujﬁl) — (TL — 1) <’U,k_yg — ﬁquZl)
J#k
+02zk.fk’(t7 Ula U?)

= dY 2 —dn— 1)z + cozifi(t.Up.Un) + BTk, (13)
J#k

where T} is given by

Tp = Z (uj |~ qui Y, 1) +(n—1)(g - Duj 4

_ q 2,471
= E ( —up )~ quy (w51 — uk‘l)> .

Jj=

<.
>

—
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Let hy : R — R be defined by hy(x) := 2% —uf | — quZ;l (z — ug.1). Since g > 1. an
elementary computation shows that hy(x) > 0 for all z > 0. Hence, we obtain

Ty = th(um) >0.
j=1

Let (21....,2,) : [to.o0) — R™ be the solution of the homogeneous equation
d . . R
pri d;czj_d(n_1)Zk+c22kfk(t7U17U2)-,
J
Zp(to) = zk(to) 20 for k e {1,....n}. (14)

Since (14) has the form (10), Lemma 1 implies that 2¢(¢f) > 0 for all ¢t > t5 and all
ke {1,...,n}. Because of 8T} > 0 for all k, the variation of constants formula yields
21(t) > 0 for all t > tg. Hence. we have

U2 (t) > 3 (upa ()2 for all k € {1,...,n}, and all t > ¢,. (15)

If there is some m € {1,...,n} with z,,(f¢) > 0, then Lemma 1 implies that 2.(¢) > 0
for all t >ty and all k € {1,...,n}. Then the variation of constants formula implies that
zi(t) >0 for all t >ty and all k € {1,....n}.

If we have zi(tg) = 0 for all k € {1,..., n}, then (14) implies that 2, = 0 for all .
We assume that there is ¢ > o such that zx(t) = 0. Using the variation of constants

formula once again, we obtain Ti(7) = 0 for almost all 7 € (tg,t). We note that we have

Ty(7) = 0 if and only if u;1(7) = ug,1(7) for all j = 1,...,n. Since uj1, j =1,...,n,
are continuous functions and we have T} = 0 for almost all 7 € (to,t), all functions w; 1,
i=1,..., n, have to coincide with u; ;. on (to,t). In particular, we have

d . .

E(“” —uLk) =0 in (tg,t) forall j=1,...,n.

This implies that u;,f; = ug1fr in (to.t). If Uy was not constantly zero, then we
would have U(7) > 0 for all 7 € (tg,t) by Lemma 1. This would lead to fr = f; and
(to,t) C Fij, contradicting (A3). Thus, we have either U;(t) = 0 for all ¢ or 2(t) > 0
for all t > tg and all k € {1....,n}. d
DEFINITION 3. Given a strictly positive solution (U, Uz) of (3), we introduce

b:RY 3¢+ min L(t)/ € RT.
1<k<n (uk‘l(f,))cz “
We note that b is well defined since ug ¢(t) > 0 forallt > 0, k € {1,...,n} and £ € {1,2}
by Lemma 2.

LEMMA 4. Assume that ¢; < co and that (A1)-(A3) hold. Let (Uy.Us) be a strictly
positive solution of (3) and let b be defined as in Definition 3. Then b is strictly increasing.

Proof. Since U is strictly positive by assumption, Lemma 3 implies that the quotient
ug.o(t)/ (uk‘l(t))CZ/C1 is strictly increasing for all k € {1,...,n}. Thus, b is strictly
increasing. O
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LEMMA 5. Assume that (A1)-(A3) hold. Let (Uy,Us) be a solution of (3) and U =
(ugy- .., un) a strictly positive solution of the corresponding equation (10). For k,m €
{1,...,n}, k #m, define Qp,, : RT - RT by

ug(t)

Um () .

Given T > 0, the restriction Qpm|(r.~) is bounded from above and bounded away from

zero; i.e., there are R = R(U1. Uy, U, k.m.7).e = e(Uy, Us. U, k.m,7) > 0 such that
€< Qum(t) <R forallt e[, 00).

ka(t) =

Proof. First we note that Qpn, : RT — RT is well defined by Lemma 1 (although
ux(0)/um(0) need not be defined). For all ¢ > 0 an elementary computation shows that

d 0 1 d d y
—Qkm = 5 |Um W — Up—
dt km U?n ldt k kdt m
1 n n
= u2 d Um Z Uj — Up Z Uj + Cumuk(gk - gm)
m i=1 i=1
n
= d(l - ka) Z Qjm + Cka(gk - gm) .
Jj=1

If there is t > 0 such that
4¢ finax
Qrm (t) > max {1 + -(:J;}li?} = Q4
then we will obtain

d Qs 1
LWk 2 < —d— j - : max
Q) < —d5 ;Qm +Qy 2,

—_—
>2Qum 2Q 4+

Q+ 4Cfmax Q+
—d—=— - < —d=—— < —d.
d 5 Q+ P <—d 5 = d

IN

Hence, we have Qi (t) < max {Q(7),Q+} for all t > 7 > 0, and Qy, is bounded from
above for all k, m.

Since we have Qpm = 1/Qmxk, the fact that Qg,, is bounded away from zero is a conse-
quence of the fact that @, is bounded from above. O

LEMMA 6. Assume that (A1)-(A8) hold. Let (Uy,Us) be a strictly positive solution of
(3). Furthermore, assume that (Uy,Us) is bounded or that all functions fi. do not depend
on (Uy,Us).

Let b be defined as in Definition 3. Then we have b(t) / +oc (t — 00).

Proof. 1. We assume that b(t) 4 400 (t — oc). Since b is strictly increasing by
Lemma 4, there is b, € RT such that b(t) " by (t — o0).
For all k € {1,..., n} we introduce

up.2(t)
(up.a(t))ez/a

by :RY 3t eR*.
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Then we have b(t) = mini<k<n bk (t), and there is a function x : Rt — {1,...,n} such
that b(t) = be)(t) (note that we only claim existence of , not uniqueness). Since
(k(J))jen is a sequence in the finite set of values {1,...,n}, there is a sequence (t;) en
in N, t; / oo, such that x(¢;) has the same value for all indices j. W.l.o.g. we assume
that x(t;) =1 for all j, i.e., b(t;) = bi(t;) for all j.

2. Let g : Rt — R be defined by gi(t) := fi(t,U1(t), Us(t)). If fi does not depend
on (Uy,Us) for all k € {1,...,n}, then gx(t) = fi(t) and (A2) implies that gmax :=
maxg HngCl(RtR) < fmax is finite.

If at least one fi depends on (U, Usz), then (Uy,Us) is bounded by assumption, i.e.,
Uk,m : RT — R* are bounded for all k,m € {1,...,n}. Then (A2) implies that the right
side of equation (3) and, thus, the derivatives %uk'm are bounded, too. Together with
(A2), we obtain that giax := maxy ||gk||c1 (r+ r) is finite.
Hence, in both cases, the restriction
gt + )1 : [0,1] 57— gr(t+7) € C*((0,1),R)
satisfies [|gx(t +)[0,1)/lc1(0,1) < gmax uniformly for all ¢ > 0 and all k € {1,...,n}. Since
bounded subsets of C*((0,1),R) are contained in compact subsets of C°([0, 1], R), the
sequence
(9% (t; + o)) jeny

has a subsequence that converges in C°([0,1],R). We note that wug,(t)/ui(t) are
bounded and bounded away from zero for all £k € {2,...,n}, £ € {1,2} by Lemma
5. Thus, there is a subsequence (¢;) of (t;) such that

(i) (gk(tg + ')[0,1])j€N converges to some limit gy € C°([0,1],R) forallk € {1,...,n},

(1) uk.e(t))/ur,e(t}) converges to some limit gr, € R* for all k € {2,...,n}, £ €

{1,2}.
Furthermore, we set g1,1 = g2,1 := 1.
3. Let (U1,Us) = (1,1, 8n1,U1.2,-- -, 8nz2) be the solution of

d 77 57 — _ —
ke =d Z“jyf —(n—1tge| +cotinegn(t), ke{l,...,n},
J#k
te{1,2} (16)
with initial value
akvl(o) = qk,l )
Uk 2(0) = beoqre  forke{l,...,n}.

Then (Uy,Us)(t; +-) : RY 3t — (U1, U)(t) + t) € R*™ is a solution of

d
Euk’e(t; +:) = d Zuj,g(t; +:) = (n = Duge(t; +)
Jj#k
Fepug ety + - )gr(t) +1)

for ke {1,...,n}, ¢ € {1,2} (17)
and depends continuously on the initial value (Uy, Uz)(t; + 0) as well as on the non-
linearity g (t; +-). It follows that (Ul(j),UQ(j)) = (u(lji, . ,u“},uﬁ{%, a9y o, 1] —

n, » Pn,2
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R?" defined by

) up (15 +1)
uk.l(t) 11,;\-‘1(1‘9)
G) u 2t +1)
t - J @
Uk.‘g( ) ukAZ(t;)
satisfies (for all fixed ¢ € [0.1])
(U, U (#) = (01, T2)(t)  (j — 0). (18)

(We note that we have to restrict ourselves to t € [0. 1] since gi(t} +1t) — g (t) (j — oc)
holds for ¢ € [0,1] only.)
We introduce b analogously to Definition 3. Then (18) yields for all ¢ € [0,1] (using
bi(t;) = b(t;) by step 1)

- U 2(t

b(t) = min _uk—Q()—-

1<k<n (’u,k’l(t))c’Z/‘«l
il
= lim min -

j—oc 1<k<n (u;cj)l(t; + t))e2/er

-1
uy o (t) ug o (t; +t
= by lim (———1’2( ;) > mi kalt; +0)

mnin
1<k<n (Uk,l(t; + t))e2/e1

Jj—oc (ul.l(t}))Q/Cl
=by (t/)=b(t}) —bx =b(t}+t)
— H / —
= jl_lqnolc b(t; +1t) = b . (19)

Since (16) is an equation of the form (3), gx satisfies (A1)-(A3), and (U;, Us) is strictly
positive, we can apply Lemina 4, which ensures that @ is strictly increasing. This con-
tradicts the fact that b(t) = b, for all t € [0, 1] by (19). ]

7. Proof of the main results.
Proof of Theorem 1. (i) We take ty > 0. Then there is ¢ = £(t9) > 0 such that
ZZ:I ug 2(t) > € for all t > ty. Since we have

_ uka(t) >b(t) > 0.
(w27

w1 (1) < (u;é()t)yx/@ |

we obtain for all ¢ > ¢,

Thus, we have

Z:=1 ’U,kﬁl(t) < 1 ZZ:l (uk.Q(t))Cl/Cz
Sopoyuka(t) T obe/er ST uga(t)
1 Yo max{ugo(t), 1} 1S 1+ wea(h)

< -
- per/ez ZZ:I 'Urk.Z(t) - I)Cl/c2 ZZ:I uk.?(t)
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1 n

< — |1
= pare ( Iy uu(t))
1 n
(1 + g) -0 (t— o) by Lemma 6,

- pe/e2

which proves assertion (i).
(ii) The proof of part (ii) proceeds analogously to the proof of (i). We only have to
replace t by ¢; and t — oo by j — oo. O
Proof of Theorem 2. By assumption, we have up2(t;) — 0 (j — o0) for all k£ €
{1,...,n}. If there was k € {1,...,n} such that liminf; .. ug1(t;) > 0, then we would
obtain

liminf b(¢;) =0

j—o0

contradicting Lemma 4. Thus, we have ux1(t;) = 0 (j — o0) forall k € {1,...,n}. O
Proof of Theorem 3. Since (U, Us) is (strictly) positive and Y_}'_, uy 2 is bounded,
uk,2 must be bounded for all k € {1,...,n}. Lemma 6 implies that for all k € {1,...,n}

11.k,2(t)
(uka (1)

Thus, we have ug1(t) — 0 (t — oo) for all k, which implies that Y}, ux1(t) — 0
(t = ). g

Proof of Theorem 4. If we have Y ;_ uj.1(t) < 1, then the assertion is satisfied. Thus,
assume that Y _ uk 1(t) > 1. We introduce b as in Definition 3, and set q := ca/c; > 1.
Since we have uy ¢(0) = X for all k € {1,...,n}, £ € {1,2}, it follows that

T n

>b(t) » 400 (t — 00).

b(0) = (11//73(1 = na-t,

Then Lemma 4 yields b(¢) > b(0) = n?~! and, thus,

ug2(t) > b(t)uf | (t) > n'uf | (t)  forall ke {1,...,n}.

Since we have g > 1, Jensen’s inequality yields

1 — P (D))
L0 2 (Bt

n

Hence, we obtain

n n n
1
up2(t) > ni! ul ()=n? = ul (t
kE_l k.2(t) ]?_1: ka(t) - /;—1: ra(t)

q
S ey wka(t)\? &
> q | &=k=1 "2V —
> n ( - Zuk,l(t)
k=1
n
> Zuk,l(t) using Y,y up(t) > 1,
k=1

which proves the assertion. O
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8. Numerical examples. In this section we present some numerical examples that
illustrate the results shown above. All of the examples deal with the most simple non-
trivial case in which we have three assets A;. Ay, A3, the diffusion constant is d = 1, and
we have ¢; = 1, co = 1.2. At the initial state, each portfolio should have value 1 where
each asset has a fraction of 1/3. The functions f1, fo, f3 are chosen as bounded functions
that depend only on ¢t. As described above, this is reasonable for the mathematical
finance interpretation.

The functions fi, k = 1, 2, 3, describe the return of an investment in asset Ag. If fr =y
is constant, the value of the investment in Ay will evolve exponentially like a bond with
constant interest rate. In the long term, such a behavior is reasonable. Therefore, we
construct fr in our examples as a constant interfering with some noise. For simplicity,
this noise is modeled by trigonometric functions, i.e., we consider functions fj of the
form fk(t) —E Ok Sil’l(akf + Uk)

A typical situation is described in the first example, in which we set

2 = 12 L2 eas(E10)
X' t) = —1+0.8sin(t/5),
x1(t) = —5—cos(t/2).

Figure 1 shows how the value of the investments uy ; of the first portfolio evolve.

| | . /
60+

| i/
50 / e
40| / 7
30/ /

20| o

10|

Fic. 1. Value of the assets in portfolio 1 in example 1.

The dashed line shows the development of u;;, the dotted line that of us;, and
the solid line us3 ;. It is expected that w; ; lies above w1 and wus, simply because an
investment in asset A; will, in the long run, increase exponentially while investments
in A; and As will decrease. However, it is remarkable that the growing value of asset
A; is able to keep the whole investment in the black. Furthermore, the readjustment
modeled by the diffusion has the effect that even the values of the investments in Ag
and As increase (simply because the profit from A; is partially invested in As and Aj).



MHERSUEEESSEOEFASIE RBAGEIONSANDIS CR BIESREACIFIONSDIHBUSTON MO DET: 637

| /

4000 | ,
/
/
3000 - /
/
/

2000 |

‘ /

/
1000 /
/
&
.
0 B e T :
0 2 4 6 8 10

Fi1c. 2. Value of portfolio 1 (lower line) vs. portfolio 2 (upper line).

The second portfolio looks alike. But if we concentrate on the total value V; of each
portfolio, we see a clear trend that the value of the risky portfolio (upper line) performs
much better than the less risky one — like it was stated in Theorem 1.

FI1G. 3. Value of the assets in portfolio 1 in example 2.

It is remarkable that even in the situation
$X2(8) = —0.01 + cos(t/117),

=0 —0.1 + 2sin(t/51),
x2() = —0.3— 1.5cos(t/29),
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F1G. 4. Value of portfolio 1 (finally lower line) vs. portfolio 2 (finally
upper line) in example 2.

the value of both portfolios increase in the long run.

In this case, the value of both portfolios decreases at first, but then turn into the black
again and stay there. The next figure shows the value of both portfolios.

At first the value of portfolio 2 is in fact (a little) below portfolio 1, but when the

values begin to increase, portfolio 2 performs much better. In particular, V5 is always
above V; when their values are above 1 (like it was proved in Theorem 4).
We note that if there was no diffusion in example 2, i.e., d = 0, then we would get
u$X? ~ et with 43 = —0.01, 72 = —0.1, 73 = —0.3. However, the oscillation ¢ caused
by the trigonometric terms has the consequence that the value of each asset increases
in some time intervals. These time intervals are different for each asset (because 29, 51
and 117 have no common divisor). It seems that the simple re-adjustment caused by the
diffusion has the effect that we manage the portfolio in a way such that, on average, we
invest more money in assets that are going to increase than in the ones that decrease.

When the long-term trends are too negative, like in example 3:

ex3()) = —0.2+ cos(t/117),
SR = =08 4= Daidi i),
*3(t) = —0.4—1.5cos(t/29),

then all portfolios finally tend to zero, but in the long run, the value of the risky portfolio
2 still stays above portfolio 1.
However, if we reduce the oscillation:

eE ) —0.2 + 0.1 cos(t/117),
() —0.3 + 0.2sin(t/51),
x4(2) = —0.4—0.15cos(t/29),

Il
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O 2 = 4 7 V 6 78 : lO

FI1G. 5. Value of portfolio 1 (lower line) vs. portfolio 2 (upper line)
in example 3.

FI1G. 6. Value of portfolio 1 (upper line) vs. portfolio 2 (lower line)
in example 4.

then the (negative) long-term trends become dominant and the more risky portfolio
performs better.

Anyway, in both examples 3 and 4, the total value of the portfolios tend to zero,
illustrating the result of Theorem 3.

In the four examples mentioned above, both portfolios evolve similarly from a quali-
tative point of view: Both portfolios either increase or decrease. However, it is possible
that the less risky strategy leads to bankruptcy while the more risky one promises large
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=5

F1G. 7. Value of portfolio 1 tends to zero while portfolio 2 finally increases.

profits:
X5(3) = 1-—0.2cos(t/117),
eX3(¢) = —0.35+sin(t/51),
§x5(t) = —0.55-0.5 COS(t/zg) .

We note that the contrary result, a situation in which the more risky strategy leads
to bankruptcy while the less risky one promises large profits, is impossible by Theorem
4.

Acknowledgment. The author thanks Professor Dr. B. Fiedler, Freie Universitat
Berlin, for the fruitful discussion that drew the attention of the author to the problem
dealt with in this article, and Dr. M. R. W. Martin, Deutsche Bundesbank, for help on
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