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Abstract. We discuss the dynamics of a system of 2n ordinary differential equations

that can be looked at as the discrete version of a system of two reaction-diffusion equa-

tions, which differ only in their sensitivity to the reaction term. Such reaction-diffusion

systems occur in evolutionary models from biology. It is known that only the fastest

reacting species survives in generic situations. We prove similar results for the related

discrete system and give an interpretation of the results in terms of mathematical finance.

1. Introduction. Reaction-diffusion systems of the form

d

dt

are used in biology [1, 5, 6] to model the evolution of a population with density u :

R+ x Cl —> M+. In this model, the function / measures the difference between birth

and death rates at time t and location x given the population density u. The diffusion

rate d is a positive constant. It is used to model the effect of a random walk, which the

individuals of the species are supposed to undertake. Systems of two or more coupled

equations of the form (1) are used to model competitive situations (like in [4, 7, 9]),

including predator-prey-situations. If we only deal with phenotypes of the same species

that live from the same source but differ in their sensitivity to environmental changes,

then we will obtain a system of the form

d

dt

where ci are positive parameters (the case in which the parameters q coincide but the

diffusion constants dt differ was examined in [4, 9]). It was shown in [2] that if / is

sufficiently smooth and depends essentially on the space variable x (i.e., there are X\,X2

with f(t,Xi,u) ^ f(t,X2,u) for all t,u), then only the phenotype associated with the

largest sensitivity C( survives.

u = dAu + uf(t, x, u), i e SI C l" (f)

-ue = dAue + C£ uef(t, x, u\, its), x G Q C W.N, £=1,2, (2)
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In this paper we discuss whether a similar result holds if we discretise SI and replace

A by the discrete Laplacian. Hence, we take n £ N, n > 2, and replace ue(t,x) by

{uhe{t),... ,unit{t)), f by

(/l(£) Wl,i, . . . , Un,i, Ui,2, • • • , Un, 2)) • • • 5 Ml,l» ■ • • >un,l' ul,2! • • • I un,2))

and (2) by

d ,
-jLuk,e = d
at

22uj,e -{n-l)uk,t + C£Uk/fk{t,U 1,1, , Un, 1, Ul,2, • • • , «n,2)

for fc G {1,..., n}, £ G {1,2} (3)

with C\,C2,d > 0, C\ =/=■ C2- W.l.o.g. we assume that ci < C2. Equations of this form can

be used to create models in mathematical finance where Uk,e(t) represents the value of the

investment in some asset (for example, stock 110. k) of portfolio no. £. An interpretation

of (3) in terms of mathematical finance is given in the next section. Furthermore, the

main results are followed by a section in which the results are reviewed in this context.

I11 this paper, we concentrate 011 positive solutions of (3), i.e., on solutions for which

Uk,e are positive for all fc, I. Given such a positive solution, the function

b : R+ 9 t h-* min  Uk>2^ € K+
!<*<« (UkAt)Y2/Cl

is well defined. We will prove that b is strictly increasing, provided that / is sufficiently

smooth, bounded, and Jjj/ is small for large u. This preliminary result will be the key

to all following results. In particular, b plays the role of a Lyapunov function. As main

results, we will show that

(I)

(t^> 00)

fc=1

(ii)

if R+ 3 11—» 2Zfc=i uk,2{t) G R is bounded, and

1 (t —» 00).
Efc=i"fc.iW
ELi ukAt)

if we have X^I'=i uk,2{t) —> 00 (t —> 00).

Since Vn := 5Zfc=i uk,e represents the total population of phenotype £ in the biological

model or the total value of portfolio no. £ in the model from mathematical finance, (I)

shows that, like for the reaction-diffusion equation (2), only the phenotype with the

largest sensitivity survives as long as the whole population is bounded. Then (II) gives

a similar result for the case of an unbounded population.

2. Interpretation of the problem in terms of mathematical finance. In this

section we will give an interpretation of the results in terms of mathematical finance.

Let Ai,..., An, n > 2, be different assets, which may be stocks, bonds, or any other

investment. The price of each asset Ak at time t > 0 is denoted by pk{t). In this paper

we do not concentrate on stochastic methods (like in [8, 10, 11]) to model the evolution

of pk■ For our purpose it is sufficient that p^ are given functions, which might be the
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realization of some stochastic (Wiener) process. For technical reasons, we assume that

Pk '■ Rj ~^ ®"+> fc G {1,..., n}, are sufficiently smooth (being a realization of a stochastic

process, pk might not be sufficiently smooth; in this case one should replace pk by a

smooth approximation).

An initial investment Ufc(0) in asset Ak will result in a total value of

Uk(t) = Uk(0)^~r for t > 0. (4)
Pk{ 0)

Introducing log-returns qk(t) := log(pk(t)/pk(0)), (4) can be written in the form

uk(t) = uk(0)e«W . (5)

The function qk is more useful than pk to describe the return on investment. For example,

we will obtain qk(t) = 71 for an investment in a bond with a constant interest rate.

An investor can reduce his risk by investing only half of the initial sum Mfc(0) in the

asset Ak and the remaining sum in cash. Provided that the portfolio is permanently

readjusted so that at any time t > 0 exactly half of the investment is held in cash, we

will have a levering effect with factor 1/2, i.e., we will obtain

j\Uk _ 1 . It.Pk

^k 2 Pk

Formally, this means that qk{t) is replaced by \qk(t) in formula (5). In general, we obtain

ftuk _ cTtPk

Uk Pk

with a positive parameter c, i.e., qk(t) is replaced by cqk{t). Clearly, with a smaller

parameter c the cash-part becomes larger — and for c = 0 we would only invest in cash.

On the other hand, in case c = 1, we do not have any cash at all. A factor c larger than

1 corresponds to a situation in which the investor wants to make use of a levering effect

by taking out a loan. For example, c = 2 means that half of the current investment in

asset Ak is financed on credit.

We note that the parameter c does not depend on the actual market price pk of asset Ak

and is characteristic for the risk aversion of the investor. In general, this risk aversion

may change within time, but for simplicity we assume throughout this paper that each

investor has his personal constant parameter c. Then the evolution of an investment in

asset Ak will be described by formula

uk(t)=uk{ 0)ec^(t) (6)

instead of (5). We want to compare the success of two investors that differ (only) in

their risk aversion measured by the parameter c. Without additional transactions (e.g.,

selling or buying stocks), the total value of the portfolio at time t > 0 is given by

n n

V(t) :=J2uk(t) = YJ M0VQk{t) ■
k=1 k=l
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Then the success of two portfolios V((t) := uk,t{t) with parameters q, I = 1,2,

can easily be compared. In particular, the ratio

= Efc=i "fc.iW /7n

V2W ELi«fc.2.W 1 j

is bounded away from 0 and +oo as long as qf. are bounded (which means that the prices

Pk are bounded from above and bounded away from 0).

In this article we show that the situation changes if we assume that the portfolios are

readjusted on a regular basis in order to reflect some underlying stock index, which

works as a benchmark. This means that the investment in asset Ak is reduced whenever

its relative weight in the portfolio succeeds the weight of Ak in the stock index. The

resulting cash is then distributed among all other assets. Since the success of a fund

manager is often compared to some stock index, this reflects a natural behavior of the

fund manager. Without adjustment to the index, Uk defined by (6) satisfies a differential

equation of the form

= cukfk (8)

with fk := fftqk (and we assume that qk is continuously differentiable). We want to

modify equation (8) such that it reflects the adjustment. For simplicity, we assume

that the index, which works as a benchmark, is organized in the way that each asset

Ai,..., An is equally weighted (in case of different weights one only has to introduce

some weight-factors). In order to readjust the portfolio, we take a small fraction from

each single investment, divide this sum into equal parts, and reinvest each part in one of

the remaining assets. This leads to the equation

d ,
Jtut=d V "... - n I

i^k

+ cukfk (9)

where d > 0 is a parameter that indicates how fast the readjustment is realized (for small

d, we need a long time to readjust).

Formally, we obtain (9) from (8) by adding a discrete diffusion term. As it is known

from mathematical biology [1, 5] or physics [3], a diffusion term (continuous or discrete)

is often used as an equalizer.

Now we compare two portfolios that have the same adjustment parameter d, but differ

in the investor's personal parameter C(, t— 1,2. Thus, we end up with the formula (3)

d A
juk,e = d ~(n~ 1 )ukj + C( Ukjfk ^ e {1,2}, ke n}.

We are interested in the total value V((t) of the portfolio and in the ratio (7). The results

of this paper will show that the existence of a benchmark-adjustment via the discrete

diffusion process explained above causes a significant change in the dynamics. No matter

how small the positive constant d is, i.e., no matter how small the adjustment is, the

ratio (7) will either tend to 0 or to +00. We will show that taking a higher risk, i.e.,

choosing a larger parameter C(, will pay as long as the total value of the portfolio does
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not converge to zero (like in a permanent bear market). A more detailed description of

the results in terms of mathematical finance will be given in Sec. 5.

3. Notation, general assumptions, and preliminaries. We assume that the

maps

R+ x K2™ -> R

(t, Uit\, . . . , U„,i, Ui,2, • • • , «n,2) 1-4 fk{t, ul,l; ■ • • > "n,!, ul,2, • • • > Un^)

for k £ {1,... , n}

satisfy the following conditions:

(Al) fk £ C1^ x R2n,R) for all k £ {l,...,n}.

(A2) There is /max > 0 such that ||/fe||Ci < /max and

dfk
Uk,e~

' du,k,e
<fn

for all k £ {1,..., n}.

Loosely speaking, this condition means that the non-linearity is not growing

faster than linear and that the dependence on uk,e is weak for large ukj.

(A3) The set

Fkj :={t> 0 : fk(t, U1} U2) = fj(t, U1,U2) for some Uu U2 £ R"}

has no interior points for any k,j G {1,... ,n), k ^ j.

If (A1)-(A2) hold, standard arguments (Picard-Lindeloff) yield that for any given ini-

tial value (C7i, C/2) = (ui,i(0),..., wn,i(0), 1*1,2(0), ■. ■, Wn,2(0)) G R2n, equation (3) has

a unique solution (JJ\, U2) = (1*1,1, ■ • ■, un,i,ui,2, • • • ,un,2) : R —> R2™ with initial value

(UltU2)(0) = (Ui,tJ2) and ukj £ C1(R+,R) for all k £ {1,... ,n}, I £ {1,2}.

We note that condition (A3) is not needed to provide existence and uniqueness of solu-

tions. However, it is useful in order to avoid pathological cases in which two assets Ak

and Aj behave exactly alike for some period of time (and thus cannot be distinguished).

Furthermore, given a solution {U1, U2) of (3), both components U = Ug, £ = 1,2, solve

an equation of the form

— -J

at
- (n - l)uk + cukgk(t), U = («!,..., un), (10)

with gk : R+ 9 11—» fk{t, U\{t), U2(t)) £ R for the concrete choice c = eg of the parameter

c.

Since gk is defined using (U\,U2), we note that equation (10) is always associated with

a solution (U\, U2) of (3).

Definition 1. Let ui,...,un £ C1(R+,R) and U (u\,... ,un). Then we write

U > 0 : <=> uk > 0 V fc G {1,... ,n} ,

U> 0 : <*=> uk > 0 V/c G {1,..., n) .
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Lemma 1. Assume that (A1)-(A3) hold and (t/i, C/2) a solution of (3). Let U =

(ui,...,un) be a solution of the corresponding equation (10) with U{0) > 0. Then we

have either U(t) = 0 for all t > 0. or U(t) > 0 /or all t > 0.

Proof. If £/(0) = 0, then we have £/(£) = 0 for all t > 0. If f/(0) 0, then there is at

least one pG {1,... ,n} with up( 0) > 0. Thus, equation (10) implies that

— Ufe(0) > 0 for all k G {1,... , n} with Ufc(0) = 0.

Hence, there is To > 0 such that Uk{t) > 0 for all 0 < t < To and all k = 1,..., n. Let

to := sup{r > 0 : u/-(t) > 0 for all 0 < t < t and all k = 1,..., n} G (0, +00].

Assume that to < +00. This implies that there is m £ {1,..., n} with um(to) = 0. Let

um : [^, 00) —> K be the solution of

= d(n l)um ~t~ C-^rnQm(^r ^(^)) i

Um{j) = Mm(y) > 0.

Then we have um(t) > 0 for all t > and the variation of constants formula yields

rto  

um(t0) = um(t0) + Uj(t)dt > 0 ,

"'W2 j^m

which is a contradiction. □

Lemma 2. Assume that (A1)-(A3) hold. Let(U\,U2) be a solution of (3) with Ue(0) > 0,

£ = 1,2. Given £ £ {1,2}, we have either U((t) — 0 for all t > 0, or U((t) > 0 for all

t > 0.

Proof. The assertion follows from Lemma 1 since U\ and U2 both solve equation

(10). □
Definition 2. We call solutions (U\, U2) of (3) and solutions U of the corresponding

equation (10) positive, if U(0) >0 or Ue(0) > 0, £ = 1,2, respectively. If there is at

least one k such that Uk{0) > 0 or Uk,e{0) > 0, then we call U or U( strictly positive.

Furthermore, we call (C/i, C/2) strictly positive if both U\ and U2 are strictly positive.

Remark. If (U1, U2) is strictly positive, then Lemma 2 implies that Uf (t) > 0 for all

t > 0 and £ G {1,2}.

4. Main results.

Theorem 1. Assume that c\ < c-i and that (A1)-(A3) hold. Let (C/i, C/2) be a strictly

positive and bounded solution of (3).

(i) If we have

lim inf > Uk 2(t) > 0 ,

then we obtain

t—KX)
k= 1

^0 «-»).2^k=1 uk,2{t)
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(ii) If there is a sequence (tj), tj f oo such that

n

liminf }Uk,i{tj) > 0,
i —* i-v-i ' ^

then we obtain

1—+00
k=1

2^fc= 1 uk,2\tj)

If the functions fk do not depend on (Ui,U2), then the results (i) and (ii) also hold for

unbounded solutions (C/i, C/2) -

Theorem 2. Assume that c\ < C2 and that (Al)-(AS) hold. Let (C/i, t/2) be a strictly

positive solution of (3) and (tj) be a sequence such that tj /* 00 and ukfl{tj) —> 0

(j —> 00). Then we have

n

YukAtj) 0 U ~> °°) ■
k=1

Theorem 3. Assume that c\ < C2 and that (A1)-(A3) hold. Let (C/i, C/2) be a strictly

positive and bounded solution of (3). Then we have

n

(t —»00).

fe=i

Theorem 4. Assume that c\ < C2 and that (Al)~(A3) hold. Let (C/i, C/2) be a strictly

positive solution of (3) with initial value

Uk <(0) = — for all k £ {I,, n}, ( £ {1,2}.
n

Take t > 0. Then we have either
n

TukAt) < 1 for ie {1,2}
k=1

or
n n

fc=i fc=i

5. Interpretation of the results in terms of mathematical finance. In terms

of the economical model, our results can be interpreted as follows: As long as the price

of the assets is bounded and does not tend to zero, Theorem 1 shows that taking a large

risk, i.e., a large parameter c, pays for the fund manager. If we take into account that

stock prices usually increase in the long run (simply because of positive inflation), we do

not expect a permanent bear market, and this assumption is likely to be satisfied in the

real world economy. However, Theorem 2 shows that if the value of the risky portfolio

(i.e., the portfolio with the larger parameter c) tends to zero, the value of all less risky

portfolios tend to zero, too. Hence, taking less risk does not prohibit bankruptcy in this

scenario, anyway.

Theorems 1, 2, and 3 describe the long time evolution of the portfolios. However, in-

vestors have only a limited time horizon (simply because their own life is limited) and
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would therefore prefer results like Theorem 4 that can be applied for finite times. The-

orem 4 shows that whenever we start with portfolios that reflect the underlying stock

index, and whenever the value of at least one portfolio is above its initial value, the

performance of the portfolio with the higher parameter c is better than the performance

of the portfolio with the lower parameter.

Obviously, taking a large risk does not pay if the value of all portfolios decrease — like in

a permanent bear market, in which the value of all underlying assets decrease and tend

to zero. However, this is an obvious fact. In all other cases, our results show that taking

a higher risk pays — at least in the long run.

6. A comparison argument.

Lemma 3. Assume that ci < C2 and that (Al)-(A3) hold. Let (U\,U2) be positive

solutions of (3). If there are (3 > 0, t0 > 0 such that

UkAto) > P (.Uk,i{to))a2/ci for all k € {1,... ,n}, (11)

then we have either U\(t) — 0 for all t > 0 or

uk,2{t) > /3 (uk,i(t))C2^Cl for all k £ {1,... , n}, and all t > to. (12)

Proof. We introduce q := C2/C1 > 1 and

Zk ■ R+ Ukt2(t) — 0uk,l(t) e ® •

Then (11) yields zk(to) > 0 for all k E {l,...,n}. An elementary computation shows

that

dtZk =
2 - d(n - l)uk.2 + C2Uk^fk(t,Ui,U2)

~ d(n - l)Uk, 1 + ClUk,lfk(t,Ui,U2)

= d (wi.2 - Plul,i UJ^) ~ (n - !) (uk,2 ~ f3quqk l)

+C2Zkfk{t,Ul,U2)

= d^Zj -d(n-l)zk + C2Zkfk(t,Ui,U2)+0Tk, (13)

where Tk is given by

Tk := (uj,i ~ quk~iuj,i) + {ri- i)(?-

(ui,i " Mfc.i - 1Uk,l(Uh 1 - um)) ■

3 =1
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Let /ij. : 1 -t R be defined by hk(x) := xq — uqk 1 — quf~^ ■ (x — uk, 1). Since q > 1, an

elementary computation shows that hk{x) > 0 for all x > 0. Hence, we obtain

n

Tk = i) > 0.

3 = 1

Let (£i,..., zn) : [to, oo) —> Kn be the solution of the homogeneous equation

~zk = dYjj — d(n — l)zk + c2zkfk{t, Uu U2),
jzfik

h(to) = Zk{to)>0 for fc E {1,..., n}. (14)

Since (14) has the form (10), Lemma 1 implies that zk(t) > 0 for all t > to and all

k E {1,... ,n}. Because of f3Tk > 0 for all k, the variation of constants formula yields

zk(t) > 0 for all t > to- Hence, we have

uk,2(t) > (3 (uk,i(t))C2^Cl for all A: € {1,..., n}, and all t > t0- (15)

If there is some m E {1,.. •, n} with zm(to) > 0, then Lemma 1 implies that zk(t) > 0

for all t > to and all k E {1,,n}. Then the variation of constants formula implies that

Zfc(t) > 0 for all t. > to and all k E {1,..., n}.

If we have zk(to) = 0 for all k E {l,...,n}, then (14) implies that zk = 0 for all k.

We assume that there is t > to such that zk(t) = 0. Using the variation of constants

formula once again, we obtain Tk(r) = 0 for almost all r £ (to,t). We note that we have

Tk(r) = 0 if and only if Ujti(r) = ujt,i(r) for all j = 1,..., n. Since Ujj, j = 1,n,

are continuous functions and we have Tk = 0 for almost all r E (to,t), all functions Uj, 1,

j = 1  n, have to coincide with u\ik on (t0,t). In particular, we have

— (ui j - wi,fc) = 0 in (t0, t) for all j = 1,..., n.

This implies that Uj,i/j = uk,ifk in (to,t). If U\ was not constantly zero, then we

would have Ui(r) > 0 for all r € (tg,t) by Lemma 1. This would lead to fk = fj and

(to,t) C Fkj, contradicting (A3). Thus, we have either U\(t) = 0 for all t or zk(t) > 0

for all t > 10 and all k E {1,..., n}. □

DEFINITION 3. Given a strictly positive solution (t/i, C/2) of (3), we introduce

b:R+3t min Uh'2^ -™+
l<k<n (uktl(t))C2/Cl

We note that b is well defined since ukj(t) > 0 for alH > 0, k E {1,..., n} and £ E {1, 2}

by Lemma 2.

Lemma 4. Assume that c\ < and that (Al)-(A3) hold. Let (C/i,^) be a strictly

positive solution of (3) and let b be defined as in Definition 3. Then b is strictly increasing.

Proof. Since Ui is strictly positive by assumption, Lemma 3 implies that the quotient

ukfi{t)/{uk,i{t))C2^Cl is strictly increasing for all k E {1 ,...,n}. Thus, b is strictly

increasing. □
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Lemma 5. Assume that (Al)-(AS) hold. Let (t/i,C/2) be a solution of (3) and U =

(ui,... ,un) a strictly positive solution of the corresponding equation (10). For k,m G

{1,n}, k ^ m, define Qkm '■ R+ -> R+ by

Qkm{t) := ^ .
Um(t)

Given r > 0, the restriction Q km\[T,oc) is bounded from above and bounded away from

zero; i.e., there are R = R(U\, U2, U, k, m, r), £ = e{U\, U2, U, k, m, r) > 0 such that

£ < Qkm{t) < R for all t € [r, 00).

Proof. First we note that Qkm '■ IK+ IR+ is well defined by Lemma 1 (although

ufc(0)/um(0) need not be defined). For all t > 0 an elementary computation shows that

-O = —
dt m u2uu Um

1

-j/2

d d
Um-fUk ~ Uk—Ur

dt dt

d J um £ ui - uk u] ) + cumuk(gk - gm)

j = 1 j= 1

— d( 1 Qkm) Qjm ~t~ cQkm{9k 9m)-
3 = l

If there is t > 0 such that

Qkm(t) > max |l + 4t,^ndx , 21 =:

then we will obtain

d (a) ^
■Jt Qkm{t) < ~d^~ ^2 Qjm +CQ+ ■ 2/max

j=1

>Qkm >Q +

^ (r\ 4c/max Q_|_< -<<-2- (<?+ - —j— J S -tf-y < -d.

Hence, we have Qkm(t) < max {Q(r), Q+} for all f > r > 0, and is bounded from

above for all k, m.

Since we have Qkm = 1/Qmfci the fact that is bounded away from zero is a conse-

quence of the fact that Qmk is bounded from above. □

Lemma 6. Assume that (A1)-(A3) hold. Let (U1M2) be a strictly positive solution of

(3). Furthermore, assume that (U\, U2) is bounded or that all functions fk do not depend

on (UUU2).

Let b be defined as in Definition 3. Then we have b(t) S +00 (t —► 00).

Proof. 1. We assume that b(t) /+ +00 (t, —> oc). Since b is strictly increasing by

Lemma 4, there is b^, G M+ such that b(t) y b^ (t —* 00).

For all fc G {1,..., n} we introduce

bk : R+ 3 t ^ Uk'2® G K+ .
K,i(*))c2/ci
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Then we have b(t) = mini<fc<„ bk{t), and there is a function k : R+ —> {1,... , n} such

that b(t) = bK(t)(t) (note that we only claim existence of k, not uniqueness). Since

iKU))jeN is a sequence in the finite set of values {1,..., n}, there is a sequence (tj)jen

in N, tj /" oo, such that n{tj) has the same value for all indices j. W.l.o.g. we assume

that n{tj) = 1 for all j, i.e., b(tj) = b\(tj) for all j.

2. Let gk : R+ -» R be defined by gk(t) := fk(t,Ui(t),U2(t)). If fk does not depend

on (C/i, C/2) for all k £ {l,...,n}, then gk{t) = fk(t) and (A2) implies that gmax :=

maxfc ||pfc||ci(R+,R) ^ /max is finite.

If at least one fk depends 011 (C/i, C/2)» then (C7i, C/2) is bounded by assumption, i.e.,

Uk,m '■ R+ are bounded for all k,m, £ {1,..., n}. Then (A2) implies that the right

side of equation (3) and, thus, the derivatives are bounded, too. Together with

(A2), we obtain that #max := maxfc ||c/fcIlc1(R+,R) is finite.

Hence, in both cases, the restriction

9k(t + •)[0,1] : [0,1] 3 r 1—» gk(t + r) G C'1((0,1),R)

satisfies \\gk(t + ■)[0,1]IIc1 (0,1) < ffmax uniformly for all t > 0 and all k £ {1,... ,n). Since

bounded subsets of C1((0,1),M) are contained in compact subsets of C°([0,1],R), the

sequence

(gk(tj + -)[o,i]);-6N

has a subsequence that converges in C°([0,1],R). We note that uk,e{t)/u\^(t) are

bounded and bounded away from zero for all k £ {2, ...,n}, t G {1,2} by Lemma

5. Thus, there is a subsequence (t^) of (tj) such that

(i) (gk(tj + •) [0,1]) -N converges to some limits G C°([0,1],R) for all k £ {l,...,n},

(ii) uk,e{tj)/uite(t'j) converges to some limit £ R+ for all k £ {2,. ,.,n}, £ G

Furthermore, we set 91,1 = 52,1 := 1-

3. Let (U1, U2) = (mi.i, .. •, u„,i,ui,2, • • •, un^) be the solution of

d - ,
~r;Uk,e = a
at

+ ceuktegk(t), k£{l,...in},

££{1,2} (16)

with initial value

Wfc,i(0) = 9fc, 1,

Uk,2(0) = booqk.2 for k £ {1,... ,n}.

Then (U\, U-2)(t'■ + •) : R+ 3 t >—>■ (U\, + t) £ R2™ is a solution of

d .
dj.ukAtj + ■) = a u3tWj + ') ~ (n ~ + •)

+Q Uk,t{tj + -)gk(t'j + t)

for k £ {l,...,n}, £ £ {1,2} (17)

and depends continuously on the initial value (C/i, C/2)(^j + 0) as well as on the non-

linearity gk(t'j + •)• ^ follows that (£/p\ £7^) = ,.., ..., u^2) '■ [0,1] —►
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l2n defined by

«$(*) :=
+ t)

;= * J^1

ukAt'3) '

'ik.id'j +1)

Uk.2(t'j)

satisfies (for all fixed t G [0,1])

(uij),u^)(t)^(uuu2)(t) (j- 00). (18)

(We note that we have to restrict ourselves to t G [0,1] since gk{t'j +1) ► </fc(t) (j —» oo)

holds for t e [0,1] only.)

We introduce 6 analogously to Definition 3. Then (18) yields for all t 6 [0,1] (using

M^) = by step 1)

T.n\ ■ "mWbit) = mm —————7—
1 <fc<n (ttfc,i(t))C2/Cl

ufc,2('j + *)
lim min

J-OO l</c<n (UW (^. + t))ca/ci

ul,2(t'j) \ " .... Wfc,2(ij+t)
boo lim mm

K,i(£'7-))C2/Cl / (u*,i(iC + ^))C2/Cl

—bi (t'j )=b(t'j)—fb<x> =b(t'J+t)

= lim 6(t'- + i) = 6oo • (19)
j—>oo

Since (16) is an equation of the form (3), gk satisfies (A1)-(A3), and (C/i, t/2) is strictly

positive, we can apply Lemma 4, which ensures that u is strictly increasing. This con-

tradicts the fact that b(t) = bx for all t G [0.1] by (19). □

7. Proof of the main results.

Proof of Theorem, 1. (i) We take to > 0. Then there is e = e(to) > 0 such that

£Li Uk,2{t) > £ for all t > to- Since we have

Uk,2{t)

we obtain for all t > to

Thus, we have

, > b(t) > 0,
K,iW)C2/C1 "

'uk, 2(^ci/c2

Uk,l{t) <
b(t)

ELi < 1 E1U (uk.2(t))ci/c2

ELi uk,2(t) ^Cl/C2 ELi ukAt)

< 1 Efc=imaxW.2(*).i} < 1 ELi1 + uka{t)

bci/c2 ELi"fc,2(0 ~ frci/c2 ELrufc,2(0
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1 ( n
< 7^7" 1 +

bci/c2 V ELI'UkAt),

< ^77^7 (1 + ~) 00) hy Lemma 6>

which proves assertion (i).

(ii) The proof of part (ii) proceeds analogously to the proof of (i). We only have to

replace t by tj and t —> oo by j —> oo. □

Proof of Theorem 2. By assumption, we have Uk;i{tj) —* 0 (j —> oo) for all k E

{1,..., n}. If there was fc € {1,..., n} such that liminfj^oo Uk.i (tj) > 0, then we would

obtain

liminf b(tj) = 0
j^OO

contradicting Lemma 4. Thus, we have Uk,i(tj) —> 0 (j —> oo) for all k € {1,...,n}. □

Proof of Theorem 3. Since (U\,U-2,) is (strictly) positive and Y2k=iuk,2 is bounded,

Ufc,2 must be bounded for all k £ {1,..., n}. Lemma 6 implies that for all k € {1,..., n}

uk,2 (t) v | \
> b(t) —> +oo (f —> oo).

{Uk,i(,t))c2/ci

Thus, we have Uk,i(t) —> 0 (t —> oo) for all fc, which implies that Efc=i uk,i(t) —>> 0

(t —+ oo). □

Proof of Theorem 4. If we have El-=i uk.i(t) < 1, then the assertion is satisfied. Thus,

assume that Ylk= i uk,i(t) > 1. We introduce & as in Definition 3, and set g := c2/ci > 1.

Since we have u/c,t(0) = — for all A; e {1,..., n}, t € {1,2}, it follows that

6(0) = = nq~l.

Then Lemma 4 yields 6(f) > 6(0) = n9_1 and, thus,

Uk,2(t) > b(t)uqkl(t) > nq~luqkl(t) for all k e {1,..., n}.

Since we have q > 1, Jensen's inequality yields

1 n

>

k=l
n

Hence, we obtain

^ufc,2(t) > nq 1J2ul1(t) = nq-^-J2uk,i(t)
k=1 fc—1 fc=l

n

> using ELi^fc.iW ^ 1,
fe=i

which proves the assertion. □
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8. Numerical examples. In this section we present some numerical examples that

illustrate the results shown above. All of the examples deal with the most simple non-

trivial case in which we have three assets A\, .4 2, /I3, the diffusion constant is d — 1, and

we have c\ = 1, C2 = 1.2. At the initial state, each portfolio should have value 1 where

each asset has a fraction of 1/3. The functions fi, f2, fz are chosen as bounded functions

that depend only 011 t. As described above, this is reasonable for the mathematical

finance interpretation.

The functions fk, k = 1,2, 3, describe the return of an investment in asset Ak. If fk — 7

is constant, the value of the investment in Ak will evolve exponentially like a bond with

constant interest rate. In the long term, such a behavior is reasonable. Therefore, we

construct fk in our examples as a constant interfering with some noise. For simplicity,

this noise is modeled by trigonometric functions, i.e., we consider functions fk of the

form fk(t) = 7fc + Sk sin(akt + /3k).

A typical situation is described in the first example, in which we set

ftxl(t) = l + 1.2cos(f/10),

f2exl(t) = —1 + 0.8 sin(f/5),

flxl(t) = —5 — cos(i/2).

Figure 1 shows how the value of the investments Uk, 1 of the first portfolio evolve.

Fig. 1. Value of the assets in portfolio 1 in example 1.

The dashed line shows the development of the dotted line that of 1x2,1, and

the solid line 1x3,1- It is expected that 1x1,1 lies above 1x2,1 and 1x3,1, simply because an

investment in asset Ai will, in the long run, increase exponentially while investments

in A2 and A3 will decrease. However, it is remarkable that the growing value of asset

Ai is able to keep the whole investment in the black. Furthermore, the readjustment

modeled by the diffusion has the effect that even the values of the investments in A2

and A3 increase (simply because the profit from A1 is partially invested in A2 and ^3).
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Fig. 2. Value of portfolio 1 (lower line) vs. portfolio 2 (upper line).

The second portfolio looks alike. But if we concentrate on the total value V( of each

portfolio, we see a clear trend that the value of the risky portfolio (upper line) performs

much better than the less risky one — like it was stated in Theorem 1.

0 . 6

0 . 5

0.4

0.3

0.2

Fig. 3. Value of the assets in portfolio 1 in example 2.

It is remarkable that even in the situation

f^2(t) = —0.01 + cos(f/117),

/fx2(^) = —0.1 + 2sin(i/51),

/|x2(£) = —0.3 — 1.5 cos(t/29),
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Fig. 4. Value of portfolio 1 (finally lower line) vs. portfolio 2 (finally

upper line) in example 2.

the value of both portfolios increase in the long run.

In this case, the value of both portfolios decreases at first, but then turn into the black

again and stay there. The next figure shows the value of both portfolios.

At first the value of portfolio 2 is in fact (a little) below portfolio 1, but when the

values begin to increase, portfolio 2 performs much better. In particular, V2 is always

above V\ when their values are above 1 (like it was proved in Theorem 4).

We note that if there was no diffusion in example 2, i.e., d = 0, then we would get

uf2 ~ e7t< with 7j = —0.01, 72 = —0.1, 73 = —0.3. However, the oscillation c caused

by the trigonometric terms has the consequence that the value of each asset increases

in some time intervals. These time intervals are different for each asset (because 29, 51

and 117 have no common divisor). It seems that the simple re-adjustment caused by the

diffusion has the effect that we manage the portfolio in a way such that, on average, we

invest more money in assets that are going to increase than in the ones that decrease.

When the long-term trends are too negative, like in example 3:

flx3{t) = --0.2 - cos(//l 17),

flx3(t) = —0.3 + 2sin(i/51),

/f3(0 = -0.4-1.5cos(t/29),

then all portfolios finally tend to zero, but in the long run, the value of the risky portfolio

2 still stays above portfolio 1.

However, if we reduce the oscillation:

/r4(0 = —0.2 + 0.1 cos(</117),

f™\t) = —0.3 + 0.2 sin(t/51),

= -0.4-0.15 cos(t/29),
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0.8

0.6

0.4

Fig. 5. Value of portfolio 1 (lower line) vs. portfolio 2 (upper line)

in example 3.

0.8

0.6

FlG. 6. Value of portfolio 1 (upper line) vs. portfolio 2 (lower line)

in example 4.

then the (negative) long-term trends become dominant and the more risky portfolio

performs better.

Anyway, in both examples 3 and 4, the total value of the portfolios tend to zero,

illustrating the result of Theorem 3.

In the four examples mentioned above, both portfolios evolve similarly from a quali-

tative point of view: Both portfolios either increase or decrease. However, it is possible

that the less risky strategy leads to bankruptcy while the more risky one promises large
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1.1
/

/

/

0.9

Fig. 7. Value of portfolio 1 tends to zero while portfolio 2 finally increases.

profits:

f*x5(t) = 1 -0.2cos(i/117),

/|x5(0 = —0.35 + sin(t/51),

/f5(t) = -0.55 - 0.5cos(t/29).

We note that the contrary result, a situation in which the more risky strategy leads

to bankruptcy while the less risky one promises large profits, is impossible by Theorem

4.
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