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DYNAMIC BEHAVIOR OF THE INEXTENSIBLE STRING

By

R. W. DICKEY

Department of Mathematics, University of Wisconsin-Madison, Madison, WI 53706

Abstract. The two dimensional dynamic behavior of a geometrically exact inextensi-
ble string is discussed. A variety of exact solutions are described and various asymptotic
theories are derived. The similarity between the motion of the inextensible string and
galactic motion is described.

1. Introduction. Problems involving the behavior of the inextensible string have
been studied for many years. One of the earliest successes in the calculus of variations
was the demonstration that the inextensible string, hanging under gravity, would have
the shape of a catenary (cf. [1]). More recently Kolodner [2] solved the problem of finding
all shapes of the inextensible string, fixed at one end, hanging under gravity, and rotating
with constant angular velocity about a vertical axis. In this paper we discuss the two
dimensional dynamic behavior of an inextensible string.

We consider a string whose reference state (the state in which the string is stress-free)
is a straight line from a; = 0 to a; = 1. A point on the string (x, 0) will have coordinates
(x + u(x,t),w(x,t)) and will be in a state of stress T(x,t) at some later time t. The
equations governing the motion of this string are easily derived (cf. Antman [3]). They
consist of a pair of balance of force equations and a constraint that guarantees that the
string is inextensible. The equations are

Utt - faT(l +Ux) = 0 (L1)

wtt-—Twx= 0 (1.2)

(1 + ux)2 + w2x = 1. (1.3)

For simplicity we have assumed the density is 1. The equations (1.1), (1.2), and (1.3) are
geometrically exact; i.e., there are no assumptions on the magnitude of the displacements.
Indeed, the only assumptions are that the tension (compression) is tangent to the string
and the string is inextensible.

Received May 17, 2002.
2000 Mathematics Subject Classification. Primary 74-XX.
E-mail address-, dickeyamath.wisc.edu

©2004 Brown University
135



136 R. W. DICKEY

Presumably, in addition to the equations (1.1), (1-2), and (1.3), we need to prescribe
appropriate initial and boundary conditions. For the linear string and for any extensible
string the most obvious boundary condition is fixed ends, i.e., u(x, t) and w(x, t) vanishing
at x = 0 and x = 1. In the case of the inextensible string these boundary conditions
would imply the string could not move. Thus at least one end of the string must be free,
or if it is attached to a support, that support cannot be rigid. In the latter case there
must be some relation between the elastic properties of the support and the motion of
the end of the string.

In Sec. 2 we consider the energy associated with equations (1.1), (1-2), and (1.3) and
in particular the conditions under which energy is conserved. In Sec. 3 the equations
(1.1), (1.2), and (1.3) are rewritten in polar coordinates and we look for solutions in
which the radius vector depends only on the polar angle.

In Sec. 4 we introduce a new variable ip(x, t)—the angle the tangent to the string
makes with the positive x axis. This new variable reduces equations (1.1), (1-2), and
(1.3) to the pair of equations

tf-T4>l + Txx = 0 (1.4)
At - Tipxx - 2Txipx - 0. (1.5)

The equilibrium problem for equations (1.4) and (1.5) is discussed in Sec. 5 and various
exact solutions for the time dependent problem are discussed in Sec. 6.

In Sec. 7 it is shown that, under certain conditions, equations (1.4) and (1.5) can be
reduced to a single equation for ip(x,t). From this equation there follows two distinct
asymptotic theories—one in which the amplitude of the angle is small and another in
which the amplitude is large. These two theories are discussed in Sections 8 and 9. In
Sec. 10 we describe a theory which assumes small angular velocity. In Sec. 11 we compare
the similarity between the motions of galaxies and the motion of inextensible strings.

2. Energy considerations. It is of interest to discuss the energy associated with
solutions of (1.1), (1.2), and (1.3). If Eq. (1.1) is multiplied by ut and Eq. (1.2) is
multiplied by u>(, the two equations are added together, and then integrated from x = 0
to x = 1, we find after an integration by parts

Jq (ut + wt)dx + \ Jo T^((l + ux)2 + w2x)dx (2.1)

= T(( 1 + ux)ut + wxwt)\xxZl

The constraint (1.3) implies the second integral in (2.1) vanishes, so that the energy
identity becomes

1 d
2 dt

The energy of the inextensible string is entirely kinetic. The string can change shape,
but it cannot compress or stretch and hence cannot store energy.

As a special case, consider the situation in which the end is held fixed at x — 0. If
energy is conserved, (2.2) requires that either T(l,t) — 0 or (1 + ux,wx) ■ (ut,wt) = 0 at
x = 1. Thus either the force vanishes or the velocity is orthogonal to the string at x = 1.

/'<J o
ut + wt )dx = T(1 + ux, wx) ■ (ut, wt)\x=0. (2.2)
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The equations (1.1), (1.2), and (1.3) also have a variational formulation. In particular,
the problem can be written in the form: Find the stationary values of

d
dt //'«Jo Jo

ut+wt)~ T(x, t)(( 1 + ux) + wx))dxdt (2.3)

where the Lagrange multiplier T(x,t) is to be chosen so that the constraint (1.3) is
satisfied. T(x,t) is, of course, the stress in the string.

3. Polar coordinates. It is useful to rewrite equations (1.1), (1.2), and (1.3) in polar
coordinates. Introduce the change of variable

x + u = rcos($) (3.1)

tt> = rsin($). (3.2)

Equations (1.1) and (1.2) can be written in terms of r and as

rtt - rO2 = ^.Trx - Trd2x (3.3)

rOtt + 2rt6t = ^TrOx +Trx6x. (3.4)

The constraint (1.3) becomes

rx + r2dx = 1. (3.5)

We consider the question of whether the equations (3.3), (3.4), and (3.5) have a
solution of the form

r = F{0). (3.6)
If there is a solution of this form, then the constraint (3.5) implies that

+ F(8)2)92x = 1. (3.7)

Assuming that 8 is an increasing function of x, Eq. (3.7) implies

J H(0)d3 = x + A(t) (3.8)
where A(t) is an arbitrary function of t and

H{9) = + (3.9)

It is a consequence of (3.8) that

(3.10)

(3.11)

H{0)
-F'{F" + F)

XX

and

e =it H

_ A ■ A2F'(F" + F)

(3.12)

(3.13)



138 R. W. DICKEY

In addition, it is a consequence of (3.6), (3.10), (3.11), (3.12), and (3.13) that
F'

rT = —x H

F(F"F - (F')2)
rxx - H4

(3.14)

(3.15)

AF"
rt = -W- (3.16)

AF" A2F(F"F - (F')2)
rtt = -jr + 1 H4 [ "■ (3.17)

Placing these equations into (3.3) and (3.4), we find

F'(A-TX) , F(FF"-2(F')2~F2)(A2-T) n /o ioNjj ' jj 4 ^ (o.loj

F(A-TX) F'(FF" — 2(F')2 — F2)(A2 — T)
H HA ( ^

Equations (3.18) and (3.19) imply that either

Tx = A (3.20)

T = A2 (3.21)

or the determinant of the coefficients in (3.18) and (3.19) vanishes. This determinant is
easily computed to show that a necessary and sufficient condition for the determinant to
vanish is that

FF" - 2(F')2 - F2 = 0. (3.22)
If (3.22) is satisfied, equations (3.18) and (3.19) imply that (3.20) must be satisfied. Thus
the force on the string is

T = A(t)x + B{t). (3.23)
Equation (3.22) can be solved explicitly. Introduce the change of variable

F=~ (3.24)

Equation (3.22) reduces to
G" + G = 0. (3.25)

Thus the general solution of (3.22) can be written as

F = SSSTSS (3'26»
where C\ and Ci are arbitrary constants. Given the expression (3.26) for F, there is no
difficulty in showing that

(1 + ux,wx) = (sinC2,cosC2); (3.27)

i.e., the unit tangent is a constant vector. Equivalently, the string is a straight line
accelerating through space due to the force T(x,t).

If (3.22) is not satisfied, then the only alternative is that (3.20) and (3.21) are satisfied.
Equation (3.21) implies that

Tx = 0. (3.28)
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Thus (3.20) requires that
A(t) = 0 (3.29)

or
A(t) = Ct + D (3.30)

and from (3.21)
T = C2. (3.31)

Given (3.30) and (3.31), equation (3.18) and (3.19) is satisfied regardless of the choice of
F(9); i.e., r — F(9) is a solution when T is given by (3.31) and 9 is given by

/'
H(9)d9 = x + Ct + D. (3.32)

It is convenient to denote the solution of (3.32) as

9 = G(x + Ct + D). (3.33)

If (3.6) represents any curve, then

r = F{G{x + Ct + D)). (3.34)

Equations (3.33) and (3.34) satisfy equations (3.3), (3.4), and (3.5) when T is given by

(3.31).
At time t = 0, the shape of the string is r — F(G(x + D)). At some later time the

position of points on the string is given by (3.34); i.e., each point on the string moves
along the curve (3.6). An elementary example of a string moving along a non-closed
curve is the case r = exe. Equation (3.32) implies

J ^A2 + 1 exed,0 = x + Ct + D (3.35)

or

fl=iln(-^==(a; + C« + Z?)). (3.36)

Every point on the string remains on the curve r = exe. The actual position at time t is
given by

x + u = exe cos(9) (3.37)

iy = eAe sin(0) (3.38)

where 9 is given by (3.36).
If (3.6) describes a closed curve, then points on the string simply move around the

curve. A special case occurs when the string itself is closed, i.e., when the length of
the closed curve described by (3.6) is 1. The string would appear to be sitting in space
without moving since the shape of the string would not change. However, each point on
the string could be moving with large angular velocity. The simplest example would be
the circle r = \/2tc. This is a circle of circumference 1. Equation (3.32) implies

9 = 2ir(x + Ct + D). (3.39)
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In rectangular coordinates, the position of a point at any time t is

x + u — J- cos(27r(x + Ct + D)) (3.40)
Z7T

w = — sin(27r(x + Ct + D)). (3-41)
Z7T

Each point on the string moves in a circle at constant angular velocity. In the case of
any simple closed curve the situation is similar, except that the angular velocity would
not be a constant.

4. Reformulation of the equations. It is possible to remove the constraint (1.3)
by introducing a change of variable. Define

1 + Wz = cos(?/>) (4.1)

wx = sin (ip). (4.2)

Since the vector (1 + ux,wx) is the unit tangent, ip(x,t) is the angle the unit tangent
makes with the x axis. In order to write the equations (1.1) and (1.2) in terms of V,
differentiate both equations w.r.t. x, so that

92
uxtt ~ 7^j^(l + ux) = 0 (4-3)

d2
Wxtt - q-^Twx = 0. (4.4)

Thus equations (4.1) and (4.2) imply

W cos W ~ ^2 T cosM = 0 (4'5)

^2 sinW " §~2Tsin(^) = °- (4-6)

After simplification, equations (4.5) and (4.6) may be rewritten in the form (1.4) and

(1.5).
If equations (1.4) and (1.5) (or (4.5) and (4.6)) are solved for ip(x,t), equations (4.1)

and (4.2) require

x + u — a(t) + f cos(4.7)
Jo

w = b(t) + f sin(ip(t))d. (4.8)
J o

Given that tp(x,t) satisfies (4.5) and (4.6), a(t) and b(t) are determined by the require-
ment that (4.7) and (4.8) satisfy (1.1) and (1.2). It is a consequence of (4.1) that

A r\

—T(l + ux) = — Tcos(^). (4.9)
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In addition, differentiation of (4.7) w.r.t. t yields

d2u„ = a(t) + J J^cos(ip{Z,t))d£ (4.10)

= d^ + Io ^2Tc0S^^'^)^

= + ^r(£>f) cos(M^ t))l|=o

(cf. (4.5)). Subtracting (4.9) from (4.10) yields

utt - -^cT(l + ux) = a(t) - l) cos(i>(x, i))|x=o- (4.11)

If equations (1.1) and (1.2) are to be satisfied, we find

da(t) = — T cos(VOU=o- (4.12)

An identical argument of (4.8) implies
r\

b(t) = —T sin(-0)|x=o- (4.13)

If u(0,t) = w(0,t) = 0 so that the end of the string is fixed or if u(0,t) and w(0,t) are
linear functions of t, in which case the string is in a reference frame in which the origin
is not accelerating, then a(t) and b(t) vanish. In this case equations (4.12) and (4.13)
imply that either

T(0,f)=Tx(0,*) = 0 (4.14)
or

Tx(0,t)=M0,t). (4.15)
If neither of the conditions (4.14) or (4.15) is satisfied, then the string is in a reference
frame whose origin is accelerating. If we were looking for solutions of (1.4) and (1.5)
which were symmetric about the origin, i.e., solutions which satisfy ip{—x,t) = ip(x,t)
and T(-x,t) — T(x,t), it follows that ipx(0,t) = Tx(Q,t) = 0. Thus a(t) = b(t) = 0.
If the string is symmetric about the origin of the reference frame, then the reference
frame is either stationary or its origin is moving with constant velocity. It cannot be
accelerating.

5. The static problem. Before treating the full dynamic problem, it is of interest
to look for solutions which are independent of t. In this case equations (1.4) and (1.5)
become

d?T ^ f dip 2

^-T{t)=° <5I)
d2ib dTdip

t^+2t,I=0- <5'2>
Equation (5.2) can be rewritten as

= 0 (5.3)
ax ax
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or equivalently

T2— =C= constant. (5-4)
ax

If the string is fixed at x — 0, then either T(0) = 0 or ip'(0) = 0. In either case C = 0.
Thus either ik'{x) = 0 or T(x) = 0. If ip'(x) = 0, then Eq. (5.1) implies T"(x) = 0 and
hence T(x) is a constant (T"(0) == 0). In this case the string is simply a straight line
under tension. If T(x) = 0, then Eq. (5.1) is satisfied regardless of the choice of ip- In
the absence of tension, every length preserving curve is a solution.

If C ^ 0, the end of the string at x = 0 is accelerating. Equation (5.4) combined with
(5.1) yields

0. (5.5)

The general solution of (5.5) is

T=\j^+A^x + BY (5.6)

where A and B are arbitrary constants. It is a consequence of (5.4) that

tp = tan-1 (^j(x + B)*j + D. (5-7)

For simplicity choose D = 0 in (5.7). In this case an easy calculation shows that the
string is undergoing an acceleration a — 0 and b = A. It can be directly verified that
(5.7) is a catenary. This is what is to be expected. There is no gravity, but the string is
undergoing a constant acceleration up to the ordinate.

6. Time dependent solutions. It is easily verified that equations (1.4) and (1.5)
have the solutions

T = C2 (6.1)

ip{x,t) — F(x + Ct) (6.2)

for every twice differentiate function F(x); i.e., equations (1.4) and (1.5) have travelling
wave solutions. None of the solutions correspond to a fixed endpoint solution. In fact,
combining (4.9), (4.14), (4.15), (6.1), and (6.2), it is an elementary calculation to show
that

px+Ct
x + u — At+ B +

r-X+Ct

w = Dt + E +

/•2 + Ot

/ cos F(£)d£ (6.3)
Jo

/>x+Ct

/ sin F(Z)<% (6.4)
Jo

where A. B, D, and E are arbitrary constants.
It is of interest to give some examples of these solutions. Since the string is accelerating

through space, we will plot the solutions in a moving reference frame; i.e., we will plot
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(V, W) where

V = x + u — a(t) = f cos F(£ + Ct)d£ (6.5)
Jo

W = w - b(t) = [ sin F(Z + Ct)d£ (6.6)
Jo

for various choices of F and different values of t. In addition, we will plot the motion of
the reference frame

fCt
a(t) = / cos F(£)d£ (6.7)

Jo
rCt

b(t) = / sinF(£)d£. (6.8)
Jo

In the elementary case F(x) = x, the integrals in (6.5), (6.6), (6.7), and (6.8) can be
evaluated explicitly. The reference frame moves in a circle of radius one and center (0,1).
In the moving reference frame the string rotates periodically about the origin without
changing shape. In Fig. 6.1 the case F(x) = x3 (C = 1) is plotted. The string moves
into a tighter and tighter spiral. The reference frame also moves in a spiral (Fig. 6.1(e))
and approaches the point

nOO

a = / cos (x3)dx (6-9)
Jo

pOO

Jo '■b= sin (x)dx (6.10)

as t —> oo. In Fig. 6.2 we have plotted the solution in the case F = l/(x + 1) (C = 1).
In this case the string starts as a spiral and unwinds. As t —► oo, V —> x and W 0.
The reference frame moves in a spiral and runs off to infinity as t —> oo.

Another exact solution of (1.4) and (1.5) is the "whirling string",

%b = Ct, (6-11)

T = T0 + ^-(l~x2) (6.12)

where C and To are constants. Equations (6.11) and (6.12) satisfy (4.15) so that the end
at x = 0 is fixed (or moving with constant velocity). The string whirls around the origin
with constant angular velocity ipt = C. Such solutions are well known even in the case
of the extensible string (cf. [3]).

This particular solution is a special case. Equations (1.4) and (1.5) have a solution of
the form

ip(x,t) = a(t) + f3( x) (6.13)
T{x,t) = i(t)S(x). (6.14)
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Placing (6.13) and (6.14) into equations (1.4) and (1.5), we find that (6.13) and (6.14)
satisfy (1.4) and (1.5) if

c?— = A (6.15)
7

— = /x (6.16)
7

6" - (P')25 = -A (6.17)

8/3" + 25'0' = n (6.18)
where A and /j are separation constants.

The whirling string solution is a special case of (6.15) (6.18). If a = Ct, then equations
(6.15) and (6.16) imply that /z = 0,7 is a constant, A = C2, and conversely. There is no
loss in assuming 7 = 1. Equation (6.18) reduces to

~^S2p' = 0 (6.19)
ax

so that

S2/3' = K. (6.20)
Combining (6.17) and (6.20) leads to the equation for the determination of 5(x):

K2
6" - = -C2. (6.21)

oA

If K = 0 and C / 0, then Eq. (6.20) implies that 0'(x) = 0; i.e., the string is a straight
line. Thus, up to an additive constant, ip = Ct and T = S(x). Equations (4.12) and
(4.13) imply the motion of the end of the string (x = 0) is

R2 = a2+b2 = (6.22)
G

The end of the string moves in a circle of radius R. The solutions of (6.21) with K =
0, <5'(0) = —RC2, and 5(1) = 0 are

6{x) = C2( 1 — x) ^R + — + x

If K / 0, then the solutions are not straight lines and there are no solutions satisfying
6(1) = 0.

All solutions of the form (6.13) and (6.14) have the property that they do not change
shape as time evolves. In fact, it is clear from (6.13) that the string rotates about the
origin with angular velocity ipt = <*(£)■ However, the shape is determined by f3(x). These
solutions simply represent a string on a turntable turning with angular velocity a(t).

If /u. 7^ 0, then equations (6.15) and (6.16) imply

a = ja2. (6.23)
A

The general solution of (6.23) is
A i„ (-, M
M

a(t) = A--\n(l-^Bt) (6.24)
a \ A /
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where A = a(0) and B = a(0). For simplicity we will choose A = 0. It is a consequence
of (6.15) that

7= A (1 — fBt)2' (6'25)
If fxB/X > 0, then the solution blows up in finite time. If [iB/\ < 0, then the solution
exists forever.

It is possible to write down an explicit solution of (6.17) and (6.18). It is easily verified
that

5 = x2 (6.26)
(3 = D + E\n(x) (6.27)

satisfies (6.17) and (6.18) if

2 - E2 = -A (6.28)

3 E = /i. (6.29)
We will choose D = 0 (/3(0) = 0). If the string is in tension, (6.25) and (6.26) require
that A > 0.

An exact solution of (4.10) is given by (6.13) and (6.14) where a(t),f3(x), and 6(x)
are given by (6.24)-(6.27). It may be verified that this solution implies that a(t) = 0 and
b(t) = 0. In rectangular coordinates the solution is (cf. (4.7) and (4.8))

x + u = —7 [cos(a(i) + E In x) + E sin(a(t) + E In x)] (6.30)
b -hi

w — —[sin(a(£) + Z?lnar) — Ecos(a(t) + iJlna:)]. (6.31)E + 1
The tension in the string is

(6-32>

and the angular velocity is

ipt = a(t-) = 1 _BEBt- (6-33)

The curve described by (6.30) and (6.31) is a spiral. Note that if nf3/A > 0, then
both T(x,t) and ^jt{x,t) blow up as t —♦ A/nf3. If fi0/X < 0, then T(x,t) and ipt{x,t)
approach zero as t —> oo. Even though the angular velocity approaches zeros as t—>oo,
the spiral itself does not approach an equilibrium.

7. Asymptotic theories. If t) has three continuous derivatives, then it is possi-
ble, in principle, to eliminate the tension T from equations (1.4) and (1.5). Differentiating
Eq. (1.5) w.r.t. x, we obtain a third equation involving T,TX,TXX. In particular we find

i>xtt ~ Tipxxx - 3Txipxx - 2Txxipx = 0. (7.1)

Equation (7.1) and equations (1.4) and (1.5) are three equations for the determination
of T, Tx, Txx.
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The solution for T is found to be

^ 2ipxipxtt - 3ipxxiptt + 4ip2xrf
2rpx^xxx - 3 iplx + Hi

provided the denominator of (7.2) does not vanish. Conversely, if xp satisfies (1.5) where
T is given by (7.2), then V also satisfies (1.4). To see this, rewrite (7.2) in the form

T(2ipxt/jxxx - Zip2xx + 4ipx) = 2ipxipxtt - 3ipxxiptt + (7-3)

Differentiation of (1.5) w.r.t. x gives (7.1). Using (7.1) and (1.5) to eliminate tpxtt and
iptt from (7.3) leads to (1.4).

If the equations (1.4) and (1.5) have solutions for which the denominator of (7.2)
vanishes, i.e., if (1.4) and (1.5) have solutions for which

2ipxtpxxx - 3^4 + 4iPi = 0, (7.4)

then these solutions may not satisfy equations (1.5) and (7.2). It is of interest to decide
which solutions, if any, are eliminated. One obvious case is ipx = 0, which implies ip = Ct,
i.e., the whirling string. In this case T, given by (7.2), is undefined. If ipx ^ 0, then Eq.
(7.4) can still be solved explicitly.

If there is a value of x for which ipx 0, then Eq. (7.4) can be rewritten as

-^%+Wxx = 0. (7.5)dx Vs
Assuming ijj is an increasing function of x, (7.5) can be written as

(i f d I \2 f s
+ i>xx-0. (7.6)

(7.7)

dx \dx
For simplicity, introduce the change of variable

1r VET
In terms of </>, Eq. (7.6) becomes

+ (7-8>

Integrating (7.8), we find that

<j>l + ^ = A2. (7.9)
This is an ordinary differential equation for </> in which t plays the role of a parameter.
Rewriting (7.9) yields

r rhrlfh
= x + B. (7.10)

/ yjA2<1P - 1
After an integration it is possible to solve for explicitness to find

cj)2 = A2(x + B2) + l/A2 (7.11)

so that (cf. (7.8))

^ = A\x + B)2 + 1 (7'12)
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(note that the assumption that ipx / 0 at a point implies that ipx never vanishes).
Integrating (7.12) leads to

ip = tan~1(A2(x + B)) + C. (7-13)

The quantities A, B, and C in (7.13) may depend on t. Equation (7.13) defines a one
parameter family of catenaries (cf. Sec. 5). In summary, the solutions of (1.4), (1.5), and
(7.2) are identical except in the case of the whirling string or solutions of the form (7.13).

Although (1.5) and (7.2) constitute a single equation for the determination of ip, that
single equation is quite complicated and furnishes no obvious advantage over the original
problem given by (1.4) and (1.5). However, this form of the equation is very useful in
developing certain asymptotic theories.

For this purpose we introduce amplitude explicitly as a parameter; i.e., we define
<l>{x,t) as

ip(x, t) = Acp(x, t). (7-14)

In this case (1.5) and (7.2) become

(j>tt-T(j)xx-2Tx<j)x=0 (7.15)

rp _ %'4>x(t)Xtt ~ 34>xx4>tt + 4A2(f>^.(p2 tn i
20S0XZ* - 3<PIX + 4A2<t>*

We consider two cases:
(a) the small amplitude case A2 -C 1, and
(b) the large amplitude case A2 » 1.

In case (a), Eq. (7.16) implies that to first order

2 4>x(f>xtt 3 eftXX <t>tt

2(px4*xxx 3 (f)'.%x
(7.17)

In the large amplitude case (case (b)), Eq. (7.16) implies that to first order (in 1 /A2)

d2T=-±|. (7.18)
<PX

8. Small amplitude theory. The small amplitude theory consists of equations
(7.15) and (7.17). This theory is equivalent to a linear theory. In order to see this,
rewrite equation (7.17) in the form

Mxx(<Att - T(f>xx) = 24>x(4>xtt - T<j>xxx). (8.1)

Differentiating (7.15) w.r.t. x yields

<t>xtt ~ T<j>xxx = 3Tx(f>x + 2Txxcf)x. (8-2)

Combining (7.15), (8.1), and (8.2), we find

<\>xTxx = 0. (8.3)

Thus, if 4>x / 0 (straight line), we find that

T(x,t)=T0(t) + xT1(t). (8.4)
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Equation (7.15) becomes

<t>tt ~ CTo(t) + xTi{t))(j}xx - 2Ti(t)(t>x = 0. (8.5)

Conversely, if <t>(x,t) satisfies (8.5), then it follows from (7.17) that T{x,t) satisfies (8.4).
The assumption that |j4| <C 1 also implies small displacements. Indeed, keeping terms

of first order in A in (4.7) and (4.8), we find that

u(x,t) = a(t) (8.6)

w(x,t) = b(t) + A f <j>(£,t)d£ (8.7)
Jo

where a(t) and b(t) must satisfy (to terms of first order in A (cf. (4.12) and (4.13)))

a(t) = T1(t) (8.8)

m = A{T1(t)4>(0,t) + T0(t)<l>x(0,t)). (8.9)
It follows from (8.7) that

Wxx = A<j>x(x,t) (8.10)

wtt = b + A f <j>tt(Z,t)d£ (8.11)
Jo

= b(t) + A fX(T0(t) + £T1(t))*«(£,t) + 2T1(t)<l>s(Z,m.
Jo

Integrating the expression on the right of (8.11) and using (8.9), we find

wtt - {To{t) + xTi(t))wxx - 2Ti(t)wx = 0. (8-12)

w(x, t) satisfies the same equation as 4>{x, t), although the boundary conditions will differ.
Equations (8.6) and (8.12) could be obtained directly from equations (1.1), (1-2),

and (1.3) by linearizing about the exact solution u(x,t) = b(t) (where b{t) = Ti(t)),
w(x,t) = 0, and T(x,t) = T0(t) + xT\{t). If the string is not accelerating along the x
axis, then 7\ (<) = 0 and the problem reduces to

wtt - T0{t)wxx = 0. (8.13)

Separations of variables on Eq. (8.13), i.e., w(x,t) = a(t)(3(x) leads to the pair of
equations

P" + u}2P = 0 (8.14)

a + oj2To(t)a = 0. (8.15)

The separation constant u2 is chosen positive since otherwise, Eq. (8.15) has unbounded
solutions (To(i) > 0). If we require that w(0,t) = w(l,t) = 0, then u = nn and

/3 = sin(n7ra;). (8.16)

If To(t) = A + /X7(t) with A > fi > 0 and 7(t) is periodic with |7(f)| < 1, then (8.15)
are a series of Hill's equations. In the special case 7 = cos(t), equations (8.7) are a series
of Mathieu equations (cf. [4], [5]). It is well known that the solutions of these equations
may be bounded or unbounded depending on the values of A and /i. Thus, with this
choice of tension, the validity of the small amplitude theory depends on the values of A
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and /x. If A is much larger than /j, then the measure of the set of values of // which give
growing solutions is small (but not zero).

Another choice for T0(t) is

™ = J(8',7)

&n(t) = \Jy? — t cos \Jn27t2/j.2 — 1 ln(A2 — (8.18)

if n27r2/u2 — 1 > 0. As i£ —> \2(To(t) —> oo), the frequency increases and the amplitude
decreases. However, if A2 > 1, then the initial effect of increasing the tension is to
decrease the frequency although the frequency will begin to increase when the tension is
sufficiently large (i.e., when t is sufficiently close to A2). It is also of interest to note that
if n27r2^t2 — 1 < 0, for example, if 7T2/x — 1 < 0, then the solution a\(t) has the form

aj.it) = A{\2 -i)ri +B{\2 -t)r2 (8.19)

where r\ and r2 are positive. This mode would not vibrate at all, but simply decrease
in amplitude. Of course the higher modes would have n27r2/x2 — 1 > 0 and these would
behave as described above.

Thus, the net effect of increasing the tension as described by (8.17) is to increase the
frequency and decrease the amplitude.

9. Large amplitude theory. The only difference between the exact theory (1.4) and
(1.5) and the large amplitude theory (7.15) and (7.18) is that the term Txx is missing
from the large amplitude theory. It is an immediate consequence that both the exact
theory and the large amplitude theory have the same traveling wave solutions (6.1) and
(6.2) since the traveling wave solutions have Txx = 0.

In order to find other solutions of (7.15) and (7.18), it is convenient to rewrite the
equations as a single equation for 4>. Eliminating T we find

<l>x<t>tt ~ "I" 3(f)f(j)xx = 0. (9.1)
Equation (9.1) has the property that if cp = S(x,t) is a solution, then every function

<t> = F(S(x, t)) (9.2)

is also a solution. This is easily verified:

4>x = F'SX (9.3)

4>t = F'St (9.4)
<t>xx = F"S2X + F'SXX (9.5)

<j>tt = F"S2 + F'Stt (9.6)
(j>xt = F"SxSt + F'Sxt. (9.7)

Placing (9.3)-(9.7) into (9.1) we find that the coefficient of F" vanishes identically, leaving

(.F')3{S2xStt - 4SxStSxt + 3S?SXX) = 0 (9.8)
since S satisfies (9.1).
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It is easy to find a particular solution of (9.1). We look for a solution of the form

4> = (Aix + A2)^(Cit + Cit)**. (9.9)
It is easily seen that (9.9) satisfies (9.1) if A = —3jU. For simplicity choose n = — 1 so
that A = 3. Thus equation (9.1) has the solution

/(Ais + y a (910)
\ C\t + C2

for every twice differentiable function F. Given the solution (9.10), the corresponding
tension is (cf. (7.18))

C?(AlX + A2)2
9 A21(C1t + C2)2' [ '

There are other methods for solving (9.1). For example, variables can be separated
in the form 4> = a{t)/3(x) or <j) — a(t) + (3(x). Both of these methods lead to solutions
which are simply different functions of the variable

s^={-Wf- (9'12)
It is of interest to look for various special solutions of the form (9.1). In particular we

will look for solutions for which T(l,t) = 0. We will choose A\ — A2 and C\ = C2 = A2
so that (cf. (9.11))

r=CT- «-3»
The solution of (9.1) is of the form

i = F (-
t + 1

= F ( -—— ) . (9.14)

1>(x,t)=AF[ , a')3 ) . (9.15)
Thus,

ib(x.t) — AF f -
t + 1

In order to graph the solution represented by (9.15) for various functions F(x) we will,
as in Sec. 6, plot the results in the moving reference frame V = x + u — a(t), W = w — b(t)
(cf. (9.9)). We find

V = / cos I AF ( -—^ (9.16)

W= I sin ( AF ( J d£. (9.17)

Equations (9.16) and (9.17) were evaluated numerically for various choices of F—includ-
ing powers, exponential functions, trigonometric functions, and logarithms. The results
are qualitatively the same for all of these choices. In particular the results are spirals,
behaving in one of two ways—either approaching a straight line as t —> oo (if limx^o F(x)
exists) or spiraling into the origin (if limx^o F(x) = oo).

In Figs. (9.1) and (9.2), we have plotted (9.16) and (9.17) for the function F(x) = xk.
In Fig. 9.1, we have plotted the case A = 10 and k — 1/2 for increasing t. Different
choices of k (k > 0) and different choices of A affect the overall shape of the spiral and
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the number of loops for each value of t, but qualitatively the results are similar. In this
case V{x,t) —> x and W(x,t) —> 0 as t —> oo. In Fig. 9.2, we have plotted the case
A = 1 and k = —1/2 for increasing t. For this data the spiral is wrapping up on itself.
Eventually, the spiral becomes so tight that it appears to be a point. As above, different
choices of k (k < 0) and A lead to similar results.

We have not plotted the motion of the reference frame as we did in Sec. 6. However, we
note that all of the solutions of the form (9.15) with T given by (9.13) are in accelerating
reference frames (Tx(0,t) ^ 0). We cannot piece together these solutions to obtain a
solution which is symmetric about the origin.

10. Small angular velocity theory. An exact solution of (1.4) and (1.5) is given
by (6.11) and (6.12) with T = 0—the "whirling string". It is convenient to introduce
new dependent variables

tp(x, t) = Ct + cj)(x, t) (10-1)

T(x,t) = ^-(l-a?) + S{x,t). (10.2)

The boundary conditions on 4>(x,t) and S(x,t) are 4>(l,t) is bounded

0x(O,i) = O (10.3)
Sx(0,f) = 0 (10.4)
S(l,i) = 0. (10.5)

Any solution satisfying these conditions will be in a non-accelerating reference frame and
have no force on the end (x = 1). Rewriting (1.4) and (1.5) in terms of 4>(x,t) and
5(x, t), we find

2C<l>t + eft - ^(1 - .T2) + 5^ <pl + Sxx = 0 (10.6)

A, - (!yd " I2) + s) 0., + 2(C3x - SJfc = 0. (10.7)

It is convenient to begin by looking at the linearized theory

2 Cc/>t + SXX = 0 (10.8)

C2
l-x2)0ra + 2C2x0x = 0. (10.9)

Equation (10.9) can be solved by separation of variables. Let

4>{x,t.) = a(t)/3(x). (10.10)

The usual arguments lead to the pair of equations

a + Aa = 0 (10.11)
2A

(1-x2)/3"-4x/3'+ 7^/3 = 0. (10.12)cz
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Equation (10.12) can be written in the self-adjoint form

^(1 - x2)0' + ^(1 - x2)0 = 0. (10.13)

The boundary conditions on (10.12) (or (10.13)) are

0'(O) = 0 (10.14)
and (3(1) should be finite.

Equation (10.12) has orthogonal polynomials as solutions. If we look for solutions of
the form

OO

/3 = YJbixl (10.15)
1=0

we find that this is a formal solution if be satisfies the recursion relations

b2 = --^b0 (10.16)

1 (. A
(10.17)

11(1 + 3) - U)
l'« = -lbsf5yb- (1018>

The boundary condition (10.14) requires that bi = 0 and hence all the odd coefficients
vanish. The eigenvalues are

C2
\e = —£(£ +3), £ = 0,2,4,.... (10.19)

The corresponding eigenfunctions can be written

0o = 1 (10.20)
02 = 1 - 5x2 (10.21)

04 = 1 - 14a;2 + 2lxi (10.22)

06 = 1- 17x2 + 99x4 - (10.23)

08 = 1 - 44x2 + 286x4 - 572x6 + ^^x8. (10.24)

The higher eigenfunctions are found recursively. It is a consequence of (10.13) that these
eigenfunctions satisfy the orthogonality relation

,•1
(1 - x2)02j02kdx = 0, j ^ k. (10.25)

/Jo
In order to simplify the notation, let uj2 = 1(1 + 3)/2 so that

Xe = C2Jj. (10.26)
If the initial data for (10.9) are sufficiently smooth, then we can write the solution in
terms of the Fourier series

(X)

<j)(x, t) = (A0 + B0t) + ^2(A2e cos(Cu2et) + B2e sm(Cu2et))02e(x). (10.27)
t=\
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Assume the initial conditions have the form

4>{x,0 ) = f(x) (10.28)
0) = Cg(x). (10.29)

Combining (10.27), (10.28), and (10.29), we find that the coefficients in (10.27) must
satisfy

1 f1
A2e = — / (1 - x2)f(x)/32e(x)dx (10.30)

A42f Jo

[ (1 - x2)g(x)(32e{x)dx (10.31)
Jo

M21 J 0
1

2~~
^2£/^2£ Jo

where

— I (1 ~~ x/S)/32((x)zdx. (10.32)f"J o
In addition, since we will require the solution to be bounded for all time, we will require
that B0 = 0; i.e., g(x) must satisfy the condition

f (1 — x2)g(x)dx — 0. (10.33)
J o

We will assume that (10.27) can be twice differentiated term by term and that the
resulting functions are bounded for all time. This would certainly be the case, for ex-
ample, if the initial data (10.28) and (10.29) generated a finite series. Differentiation of
(10.27) yields

<t>x{x, t) = ^2(A2( cos(Cu)2et) + B2e sm(Cco2et))P'2e{x) (10.34)
e=i

= Fi(x,t)
OO

<t>xx{x, t) = ^T(A2e cos(Cuj2(t) + B2e sm(Cu)2it))/32e(x) (10.35)
e=i

= F2 (x,t)
OO

(j>t{x, t) = C ^2(-A2e sin(Cv-ut) + /32e cos(Cw2et))u2(l32e(x) (10.36)
e=i

= CGi(x,t).

It follows from (10.8) that

S(x,t) = 2C [ H{x,Z)MZ,t)d£ (10.37)
Jo

where the Green's function H(x, £) is

, . f 1 - x 0 < £ < x
HM=\^ . (10.38)11 — £ #<£<!•
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Thus (10.36) implies

S(x,t) = 2C2 [ H(x,£)Gi(€,t)d£. (10.39)
/o

We wish to consider the question of how close the solution of the linearized problem
(10.27) (with Bq — 0) and (10.39) is to an exact solution of (10.6) and (10.7). Alter-
natively, we consider the question of what body forces must be applied to the string in
order to make the solution of the linearized problem an exact solution. Define F(x,t)
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and G(x, t) by

F(x,t)=<j>2x-<^-(l-x2)<j>2x-S<t>l (10.40)

= C2 (G? - ^(1 - x2)F2 + 2F2 H(x,OG1(U)df

G(x,t) = Scj)xx - 2SX4>X (10.41)

= — 2C2 ( F2 + 2F, I G&rfdZ .
Jo

The functions Fi(x,t), F2(x,t), and Gi(x,£) are bounded for all time. We assume that
\C\ 1 (small angular velocity). In this case the "body forces" F(x,t) and G(x,t)
in (10.40) and (10.41) are 0(C2). Thus F(x,t) and G(x,t) will be small if the rate of
rotation is sufficiently slow.

In Fig. 10.1 we give an example of the motion of a string whose initial position is a
(barred) spiral which is symmetric about the origin and whose initial angular velocity
g(x) — 0. This solution is discussed in Sec. 11.

11. A string universe. Galaxies appear in a variety of shapes. There are three-
dimensional structures such as elliptical galaxies and two-dimensional structures such as
lenticular galaxies. However, many galaxies appear to have an essentially one-dimensional
structure, e.g., spiral galaxies (cf. Fig. 11.1) and barred spiral galaxies (cf. Fig. 11.2).
There are galaxies which have the form of a simple closed curve (cf. Fig. 11.3) and galaxies
which have no geometrically simple shape (irregular galaxies).

All of these one-dimensional shapes have their analog in the theory of the inextensible
string. It is of interest to compare a universe consisting of inextensible strings to the
one-dimensional objects actually observed in the real universe.

It is convenient to begin with irregular galaxies. It is possible that an irregular shape
is transitory and will evolve with time. However, we have seen (Sec. 5) that in a string
universe these irregular shapes may correspond to solutions that do not change with
time. It is quite possible to have strings which are moving with constant velocity but
unchanging shape. A second possibility is a string in the shape of a simple closed curve
(cf. Sec. 8 and Fig. 11.3). These strings do not change shape with time. However, it is
possible that each point on the string is moving with a non-zero angular velocity that
depends on the position of the point on the string. Thus even though the string does not
change shape, it is a time-dependent solution.

The most familiar galactic shapes are the spiral and barred spiral galaxies. These
galaxies are symmetric. We note that in a universe consisting of inextensible strings,
these shapes cannot be accelerating; i.e., the center of symmetry is either at rest or is
moving with constant velocity. In Sec. 10 we described an approximate theory of string
which is applicable in the case of small angular velocity. In the case of a string the size
of a galaxy rotating with the angular velocity of a galaxy, the linear theory described in
Sec. 10 should be appropriate. We would like to compare the motion of such a string to
the actual motion of a spiral or barred spiral galaxy. For this purpose we need initial
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FIG. 11.1

conditions (cf. equations 10.1, 10.28, 10.29)

V>(x, 0) = <p(x, 0) = f(x) (11.1)
tpt{x, 0) = h(x) = c + ipt(x, 0) = c + cg(x). (H-2)
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FIG. 11.2

In addition g{x) must satisfy condition (10.33) so that

C = 5 [ (i -x2)h{x)dx. (11.3)
2 J o

Thus, all of the quantities in the small angular velocity theory are known if the initial
shape and angular velocity are known.

In Fig. 10.1 we have plotted the evolution of a string whose initial shape is that of a
barred spiral. In the absence of information on h(x), we have chosen g(x) = 0. Fig. 10.1
depicts the motion of the string in units of C. The motion is not periodic (the frequencies
are irrational) but are almost periodic. In the situation shown in Fig. 10.1, the string
returns to a shape similar to its initial position after three units of time, although the
orientation is different.

Computations were made with other choices of g(x). In many of these cases the string
actually crosses itself. Although this is not possible for a string, it is possible for a
galaxy and could have the appearance of two galaxies colliding. There is a question of
whether there is an initial angular velocity such that a string initially in the shape of a
barred spiral would evolve into a spiral. While a series of numerical experiments are not
definitive, we note that in none of the cases that were run did this happen. The string
changed shape in various ways, but never became a spiral.
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Fig. 11.3
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