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SURFACE WAVES OF NON-RAYLEIGH TYPE

By
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Abstract. Existence of surface waves of non-Rayleigh type propagating on some

anisotropic elastic half-spaces is proved. Conditions for originating the non-Rayleigh

type waves are analyzed. An example of a transversely isotropic material admitting a

surface wave of the non-Rayleigh type is constructed.

1. Introduction. In our previous paper [1], it was shown that some anisotropic

elastic materials exhibit property of nonexistence of the genuine Rayleigh waves:

3

u(x) = ^ Ckmkeir^*+n*~ct\ (1.1)

k-1

where Ck are complex coefficients determined up to a multiplier by the traction-free

boundary conditions; are complex eigenvectors of the Christoffel equation, which

will be introduced further; these eigenvectors correspond to complex roots 7k of the

characteristic polynomial; r is the (real) wave number; v is an outward normal to the

boundary IT of the half-space along which the surface wave propagates; n £ Uu is the

unit vector determining direction of propagation of the surface wave, and c is the phase

speed. The terms

Ufc(x) = mfceir(7'eI"x+n'x_ct) (1.2)

are called partial waves.

As was shown in [1], the existence of the "forbidden" directions or "forbidden" planes

along which the genuine Rayleigh wave cannot propagate is due to the appearance of

the Jordan blocks in a specially constructed 6 x 6-matrix associated with the Christoffel

equation. The following analysis reveals that the situation regarded in [1] appears to

be more complicated. The Jordan blocks in the regarded matrix lead to a qualitative

change of the structure of the partial waves (1.2) and, while the genuine Rayleigh wave at

the situation considered in [1] does not exist, there remains an exponentially attenuating

with depth surface wave of the non-Rayleigh type.
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2. Basic notations. Equations of motion for anisotropic elastic medium can be writ-

ten in the form

A(dx,dt)u = divz C • V^u - pii = 0, (2.1)

where u is the displacement field; p is the density of a medium; and C is the fourth-order

elasticity tensor assumed to be positive definite:

VA (A • -C • -A) = V AijCijmnAmn> 0. (2.2)
A£sym(.R3<g>.R3),A^0 ^

The sign in (2.1), (2.2) and henceforth means the scalar multiplication in the

corresponding unitary or Euclidean vector space.

Substituting partial waves (1.2) in Eq. (2.1) produces the Christoffel equation:

[(7kv + n) • C • (n + 7ku) - pc21] • mfc = 0, (2.3)

where I is the unit diagonal matrix. Equation (2.3) can be written in the equivalent

form:

det[(7*^ + n) • C • (n + 7^) - pc21] = 0. (2.4)

The left-hand side of Eq. (2.4) represents a polynomial of degree 6 with respect to 7fc.

Remark 2.1. It can be shown (see [1]) that if the phase speed does not exceed the

so-called lower limiting speed (cij™):

c < 4im, (2.5)

then all the roots of Eq. (2.3) are complex with Im(7fc) ^ 0. The inequality (2.5) ensures

that three partial waves (1.2) with Im(7fc) < 0 attenuate with depth in a "lower" half-

space at (v ■ x) < 0. Only attenuating with depth partial waves, as being physically

reasonable, will be considered further.

3. Six-dimensional formalism. Following [1], a more general representation for

the partial wave than (1.2) will be considered:

v(x")eir(nx~ct\ (3.1)

where x" = iru • x is the dimensionless complex coordinate, v(x") is an unknown vector

function, and the exponential multiplier in (3.1) corresponds to propagation of the plane

wave front along the direction n with the phase speed c. Substituting representation

(3.1) into Eq. (2.1) yields the following system of ordinary differential equations:

((v ■ C • v)d2n + (y ■ C • n + n • C • v)dx" — (n • C n — pc2l))\(x") = 0. (3.2)

Direct analysis of system (3.2) is rather difficult, and reduction to the first-order system

can simplify it.

Introduction of a new vector-function w = dx<<v allows us to reduce the second-order

system (3.2) in C3 to the first-order one in C6:

=R6- (VV (3.3)
w / \ w
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In (3.3) the complex six-dimensional matrix R,6 has the form

^ = (—M -n) ' <3'4>

where three-dimensional matrices M and N have the form

M = {v • C • v)'1 • (n C • n - pc2l)

(3.5)
N = [y ■ C • v)'1 ■ (v • C • n + n ■ C • v).

In (3.4) I stands for the unit (diagonal) matrix in the three-dimensional space.

A surjective homomorphism 3: C6 —> C3, such that

3(v,w) = v (3.6)

will be needed for the subsequent analysis.

The following proposition takes place [1]:

Proposition 3.1. Let c e (0;4im):

a) Spectrum of the matrix R6 coincides with the set of all roots of polynomial (2.4);

b) If 7 is a complex eigenvalue and m = (m', m"), m', m" 6 C3 is the corresponding

six-dimensional eigenvector of the matrix R.6, then 7 is also an eigenvalue with the

corresponding eigenvector m = (m',m");

c) The matrix Rg admits the following Jordan normal forms:

^6
(I) _

/7l \

7i

72

72

73

T(II) _
6 —

73/

(/71 1N \
0 71

7i 1
0 7,

73

73/

T (HI) _
6 —

0\ \
1

(3.7)
7i/

0

\ \0 0 7i//

d) According to the Jordan normal forms the following three types of representations

for surface waves occur:

(i) for the Jordan normal form \ the corresponding representation is given by (1.1);

(ii) for the Jordan normal form Jg , the representation is as follows:

u(x) = (Ci + irC2v ■ x)m,1eir(7lI"x+n x-rf)

+ C2m'2eir^^+n^-ct) (3.8)

+ C3m^eir(73l"x+nx-ct),
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where = 3(nii) € C3, and mi is the eigenvector of Rg corresponding to the eigenvalue

71; m'2 = 3(m2) £ C3, and 1112 £ C3 is the generalized eigenvector associated with mi,

and the eigenvector 1x13 £ C6 corresponds to the eigenvalue 73;

(iii) for the Jordan normal form Jgm\ the representation is as follows:

u(x) = (Ci + irC2u ■ x + \C3(irv ■ x)2)m'ieir(7lI"x+n x-ct)

+ (C2 + irC-iv • x)m^eir(7ll/ x+n x-rf) (3.9)

+ C3m^eir(7lI"x+nx-ct),

where m'j = 3(mi) £ C3, and mi is the eigenvector corresponding to the eigenvalue 71;

and 1112,1113 £ C6 are the generalized eigenvectors associated with mi.

COROLLARY. For any of the Jordan normal forms of the matrix Rg the three-dimensional

components m'fe,m'fc' of the (proper) eigenvector mj. satisfy the equations

mk = 7fcm'fc

(3.10
(7fcl + 7fcN + M) • m'fc = 0.

Proof. When the matrix Rg has 110 Jordan blocks, the solution of Eq. (3.3) in view of

(3.4) leads to Equations (3.10). Thus, the component mjc belongs to the kernel space of

the matrix (7^1 + 7fcN + M). □

4. Construction of the generalized eigenvector for Jg'". In view of [2], the

solution of Eq. (3.3) corresponding to a Jordan block of the second rank can be repre-

sented in the form

(CiK.m'') + C2(/(mi,m") + (m2,m")))e7lt , (4.1)

where as before x" = irv ■ x.

Proposition 4.1. a) The three-dimensional components m'. m" of the genuine eigen-

vector satisfy Equations (3.10);

b) Components , m^' of the generalized eigenvector satisfy the following equations:

(7l2I + 71N + M) • m^ = — (27lI + N) • m',

„ ,, , (4-2)
m 2 = in 1 + 7im2

c) At c G (0;cgm) the matrix (2711 + N) is not degenerate;

d) At c € (0; Cgm) vectors (2711 + N) ■ m, and m'j ■ {u ■ C • u) are orthogonal.

Proof. Conditions a) and b) flow out by directly substituting the solution (4.1) into

Eq. (3.3).

To prove c) it is sufficient to demonstrate that the matrix

(v ■ G ■ v) ■ (27il + N) = 27i(i/ • C • v) + (1/ • C • n + n • C • v) (4.3)

is not degenerate. Considering multiplication of the right-hand side of (4.3) by any

nonzero conjugate complex vectors a, a £ C3 and accounting Remark 2.1, which ensures
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Im(7i) ^ 0, we arrive to

Im(a • (271 (is • C • is) + (is ■ C • n + n • C ■ is)) ■ a)

(4.4)
= 2 Im(71)(a <g> is ■ C ■ is ® a) ^ 0.

In obtaining (4.4) we took into consideration that Im(a • (v ■ C • n + n ■ C ■ is) ■ a) =0,

since the matrix (is ■ C ■ n + n ■ C ■ is) is (real) symmetric. The last inequality in (4.4)

completes the proof of condition c).

To prove d), Eq. (4.2) can be transformed into an equivalent one by multiplying both

sides by the nondegenerate matrix (is ■ C • is); this gives

(7f(is ■ C • v) + 7i(f ■ C • n + n • C ■ is) + (n • C • n — pc21)) • m'2

= — (271 (f •C-z/) + (i/-C-n + n- C- is)) ■ m^.

Now, the vector mj belongs to the kernel space of the matrix in the left-hand side of Eq.

(4.5), which flows out from Proposition 4.l.a. Moreover, the regarded matrix is complex

symmetric, hence its left and right eigenvectors coincide. The latter allows us to write

for the left-hand side of Eq. (4.5)

m'i ' (li(v ■ C ■ is) + 7 x(is -C-n + n- C-^)-|-(n-C-n — pc2!)) ■ = 0. (4.6)

Similarly, for the right-hand side of Eq. (4.5),

m1! ■ (271 (is •C'j/) + (^-C-n + n- C' is)) ■ irtj = 0. (4-7)

In view of (3.5), Eq. (4.7) completes the proof. □

Corollary. In the factor-space C3/Ker(72I + 71N + M), the vector m.'2 admits the

following representation:

m'2 = -(7i2I + 7iN + M)"1 • (27il + N) • . (4.8)

Remark 4.1. a) At the regarded speed interval c e (Ojclj1"1), the eigenvectors of

the complex symmetric matrix appearing in Eq. (4.6) may not form a set of mutually

orthogonal vectors in C3, in contrast to the mutually orthogonal eigenvectors of any real

symmetric matrix.

b) For supersonic Lamb waves propagating with the phase speed exceeding the greatest

limiting speed c^11", all eigenvalues of the matrix R.6 become real. Presumably, in such a

case, condition c) of Proposition 4.1 and the subsequent Corollary can be violated.

5. Dispersion equation for J J.'''. The traction-free boundary conditions on the

surface 11^ can be written in the form:

t„ = v ■ C • -Vu|xGn„ = 0. (5.1)

Substituting the displacement field into Eq. (5.1) yields

3

^Cfetfc = 0, (5.2)
fc=1

where are the partial surface traction.

The following two cases for the partial surface traction fields will be considered:
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(i) For the Jordan normal form Jg1' and the representation (1.1), the partial surface

tractions are of the form

tfc = (lkv ■ C • v + v ■ C • n) • m/fceir(n'x~ct). (5.3)

(ii) For the Jordan normal form Jg"' and the representation (3.8), the partial surface

tractions are of the form

tj = (7lly • C • v + i/ • C • n) • m'ieir(n x-ct)

t'j = (71(1/ • C • u) ■ m'j + (72^ • C • v + v ■ C • n) ■ m'2)e,r'n'x"ci' (5.4)

t3 = (73z, • C • v + v ■ C • n) • m^eir(n x-ct).

Equations (5.2) can be regarded as linear system with respect to the unknown coef-

ficients Ck■ The existence of the nontrivial solution of Equations (5.2) is equivalent to

vanishing of the following determinant:

ti A t2 A t3 = 0. (5.5)

Equation (5.5) provides a necessary and sufficient condition for the existence of the

surface wave.

Equation (5.5) is known as the dispersion equation, despite the fact that the phase

speed determined by this equation does not depend upon the wave number or the wave

frequency.

6. Surface waves of non-Rayleigh type in transversely isotropic media. Let

the unit vectors ek, k = 1,2,3 form an orthogonal basis in i?3, and vector ei is normal

to the Il^-basal plane of a transversely isotropic medium. This ensures that vector ei

and v coincide. The corresponding elasticity tensor has the following components:

C11 C12 C12 0 0 0

c22 c23 0 0 0

C22 0 0 0 , .

cti 0 0

c55 0

C55,

whee C44 = 1/2(c22 — C23) and the elasticity tensor is assumed to be positive-definite.

The following Proposition is needed for further analysis:

Proposition 6.1. If the components of the elasticity tensor (6.1) satisfy the relation

(c55 - 9cn)ci2 + 2c55(c55 - 17cu)c?2

+ (c55 - 45c11c55 - 5C11C22C55 - 80^055 + 9c2uc22)cl2

O \ * /

+ 2C11C55(5C11C22 — 12c55 — 4C11C55 — 5C22C55)C12

+ C11C22C55(4CHC22 — 9 Cg5 — 3C11C55) = 0,

then
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a) At the parameter x = pc2 determined by the polynomial equation

Cll(Cll — C55)x3 + Cn(c22C55 + 2 c\2 — C11C55 — 1C\\C22)x2

+ (C11C22 — cf2)(cnc22 + 2C11C55 — cf2)x — C55(CHC22 — c12)2 = 0;

the Jordan normal form Jg11' appears in the structure of the matrix R^;

b) At any other value of the phase speed c G (0;c3lm), there is no genuine Rayleigh

wave admitting the representation (1.1) and propagating on a traction-free boundary of

the transversely isotropic half-space.

Proof of Proposition 6.1 can be found in [1],

Remark 6.1. Equation (6.3) for a transversely isotropic half-space with the elasticity

tensor, which does not satisfy Eq. (6.2), was obtained in [3] by application of the three

dimensional complex formalism. It can be shown that Eq. (6.3) has the unique positive

root in the interval (0;/5(c3lm)2).

Combining Equations (5.6) with (6.3) and substituting the corresponding values of

the elasticity constants and the phase speed into Equations (3.10), (4.8), we arrive to

Proposition 6.2. At the conditions (6.2), (6.3) of Proposition 6.1:

a) The eigenvalues 7k in the representation (3.8) take the form:

1/0

. (CUC22 - (en + C55)pc2 - 2c12c55 - c\2 \
71 1 V 2C11C55 J

9 2xlV (6'4)C22 - c23 - 2pcz x

73 = 2c55

b) The corresponding amplitudes m'fc (m'j and are of the unit length) are of the

form:

mi = p{(3v — ia. n),

m2 = sp(-iav + /3n), (6.5)

1113 = v x n,

where

( PC2\1/4 fc22-pc2\1/4
a-{'"W • • (M)

p is the normalization factor:

p=(a2+/?2)"1/2, (6.7)

and the parameter s is obtained by Eq. (4.8):

= en/32 + c55q;2 

(q/3)2(ch - c55) + (c22 - c55)'

c) The partial surface tractions (5.4) are of the form

ti = ((lien/3 - ici2a)v + (C55(/? - i7ia))n)eir(n x"ct)

t2 = (((en + c\2s)(3 - i^\C\isa)v + (c55(7is/3 - i( 1 - s)a))n)e®r(n'x_ct) (6.9)

t3 - 73C55we"-(n a:-ct).
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Substituting the surface tractions (6.9) into the dispersion equation (5.5) yields

Corollary. At the conditions of Propositions 6.1, 6.2,

a) The dispersion equation (5.5) takes the form

ti x t2 = 0, C3 = 0. (6.10)

b) The nontrivial coefficients Ci,C2, defined up to arbitrary scalar multiplier by Eq.

(5.2), are of the form

^ ((en + Ci2s)/3-i7lCllsa) ^

C' = bidrf -  ' C2 = I' <6J1)

Thus, Propositions 6.1-6.3 completely characterize the surface wave propagating on a

basal plane of the transversely isotropic half-space and corresponding to the representa-

tion (3.8).

The question whether there exists a surface wave admitting the representation of (3.9)

remains open.
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