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Abstract. The problem of two semi-infinite fluids in uniform horizontal motion par-
allel to their interface is studied. Attention is focused on the interfacial disturbances
that are caused by the interaction between a fundamental mode and its third harmonic.
A series expansion for the disturbance profile is obtained in which the leading-order
amplitudes are assumed to be slowly varying functions in time and space. By use of
this expression we are able to derive a pair of coupled nonlinear Schrédinger-type equa-
tions which model the evolution of the interface. Solutions to this system are found
and thus we are able to describe the possible wave profiles, which turn out to be triple-
or quintuple-dimpled. We also find that at perfect resonance three profiles are always
possible but that at near-resonance there may be one or three profiles depending on the
values of the parameters present in the problem.

1. Introduction. Resonant interactions among surface waves are a well-known and
much studied phenomenon. Although their existence was noted as far back as 1915
[26], it is only really in the last thirty years or so that thcy have been the subject of
intense research activity. For a comprehensive survey of this the reader may consult, for
instance, the review article of Hammack and Henderson [10]. However, resonances can
occur for other types of water-waves as well, an obvious example being at the interface
of two fluids, and this topic appears to have attracted less attention. It is the object of
this work to consider the propagation of the wavetrain that occurs at the interface of two
stratified fluids of different densities and that is formed when a fundamental wave and its
third harmonic travel at the same speed and thus interact with cach other. This, together
with the corresponding interaction between the fundamental and its second harmonic, is
probably the most important and the easiest to reproduce experimentally. It is therefore
worthy of detailed study, particularly as it contains various novel features which mark it
out from other interactions. As well as considering the case when the parameters in the
problem are at the precise values necessary for third harmonic resonance, we also unfold
the interaction by considering what happens when the parameters are detuned slightly
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from these values. This is particularly important from an experimental point of view,
because of the inevitable approximations that arise in any laboratory work.

We shall be concerned with small-amplitude disturbances and hence we shall adopt
a weakly nonlinear approach. In §2 we obtain expressions for the velocity potentials of
both fluids as series expansions in powers of a small parameter that acts as a measure
of the wave steepness. We shall allow the leading-order wave amplitudes to be slowly
varying quantities in both space and time and this approach allows us to derive a pair
of coupled nonlinear partial differential equations which they must satisfy. In §3 we seek
solutions to these equations which correspond to sinusoidal wavetrains. We identify a
parameter pV? (the shear), the value of which has an important influence on the number
and nature of the solutions. Here p is the density ratio of the fluids and V' is a measure
of the ratio of the velocities. Precise details are presented in §3, but roughly speaking
at perfect resonance three distinct wavetrains are always found to exist. Further, if the
value of the shear lies between about .36 and 2.7, then these three waves persist as the
volume of the detuning is amplified. On the other hand, if the shear lies outside this
range, then two of the waves disintegrate as the detuning is increased. Finally, in §4 we
shall make an examination of the stability of the wavetrains to plane wave perturbations.
In general we find that out of the three waves present, one tends to be highly stable,
one highly unstable, while the stability properties of the third depend strongly on the
properties of the perturbation.

A certain amount of work concerning internal waves in stratified fluids has been carried
out over the years, a fundamental result being the Kelvin-Helmholtz instability mech-
anism; see for instance [3] or [6]. In [21, 22] this theory was modified and extended
somewhat and methods similar to those employed here were used to investigate both
nonresonant stratified waves and those waves that occur when the fundamental and its
second harmonic have the same phase velocity. However, the scaling employed in those
reports was slightly different to that which we use here. The same kind of resonance was
the topic of [2, 4], which examined the problem both by means of variational techniques
and numerical methods. A comprehensive study of the stability of capillary-gravity waves
on an interface between two bounded fluids was carried out in [5], which employed both
variational and multiple-scale techniques but excluded resonant effects. A quite general
analysis of resonant interfacial waves may be found in [15], which uses similar methods
to those employed in this work but excludes both second and third harmonic resonance.
We also note the experimental study [25]. which has been carried out by introducing a
jet stream adjacent to a liquid layer.

Notwithstanding the work referred to above, a far larger body of research has been
devoted to the study of surface waves in a channel. Pioneering work in this area was
conducted by Zakharov [27], who showed how the evolution of waves could be modelled
by the nonlinear Schrédinger equation and by Benjamin and Feir who conducted experi-
ments and theoretical studies [1] into the stability mechanism that now bears their name.
This work has been the subject of much generalisation. Hasimoto and Ono [11] consid-
ered the stability of two-dimensional finite-depth gravity waves; Davey and Stewartson
[7] extended the work to three dimensions while Djordjevic and Redekopp [9] introduced
surface tension. None of the above papers takes resonant effects into account, but in
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[13] Jones considers third harmonic resonance while he looks at other resonances in [14].
In a series of papers Nayfeh used the method of multiple scales to study second [18]
and third [19, 20] harmonic resonant waves and obtained series expansions of the wave
profiles. Similar theoretical studies were carried out by McGoldrick [16, 17] who also
conducted some ripple tank experiments as did Hammack, Henderson and Perlin [12, 23,
24]. Their experiments consisted of the mechanical generation of wavetrains with a range
of frequencies. Of particular interest are the results obtained for frequencies between 8.4
Hz and 7.6 Hz, these values corresponding to third and fourth harmonic resonance re-
spectively. The results obtained showed that third harmonic resonance was excited down
8.00 Hz while fourth-harmonic was excited up to 7.94 Hz. Thus resonance occurs for all
frequencies in the band between the discrete critical frequency values. These results are
of great interest because they demonstrate that resonant waves are excited for a broad
band of frequencies and not just at the discrete set of critical frequencies predicted by
the theory. In addition, they also illustrate the importance of considering imperfections
in the resonance.

2. Deriving the equations. The initial physical scenario consists of two stratified
ideal fluids of infinite vertical extent and with a horizontal interface. The lighter fluid is
above the lower; so we take their densities to be p2 and p; where ps < p;. We introduce a
three-dimensional Cartesian coordinate system in order that in the undisturbed state the
interface is given by z = 0 and gravity g acts in the negative z-direction. We assume that
when the interface is horizontal the two fluids are in motion in the z-direction parallel to
the interface and their velocities are Us and Uy, respectively. At the interface the forces
of capillarity are not neglected and we denote the effect of surface tension by S.

Since the motion is assumed to be irrotational, we may introduce the velocity poten-
tials Ej ( = 1,2) and we shall in fact write

5]- =Ujz + ¢; (2.1)

where ¢;(z,y, 2,t) are the velocity potentials for the disturbance. We also introduce a
function H(z,y,t) so that the disturbed interface is given by z = H (see Fig. 1). By the
standard theory of inviscid flow, it follows that the governing equations of the motion
are

9?¢1 . 021 4 %

= < .
ax2 ayQ 822 07 2= H, (2 2&)
D¢y 09y 029
= > .
812 6y2 322 Oa z 2 H, (2 2b)
¢ —0 asz— —oo, (2.3a)

$2— 0 asz— oo, (2.3b)
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FiG. 1. Scheme of the flow

= plpae + Uzdor + 3(83, + 03, + ¢3.)]

(2.4)
.8 (Heo(14 H2) + Hyy(1+ H2) — 2H. H H.,) o H
p1 (1+HZ+ HZ)%/? ’ ’
Ht_¢jz+Usz+¢sza:+¢ijy =0, z=H, Jj= 1,2. (25)

In the preceding equations the parameter p = po/p; is defined as the ratio of the densities
so that 0 < p < 1, (2.4) is Bernoulli’s condition applied on the fluid-fluid interface, and
(2.5) is the kinematic condition for both fluids.

We are interested in small amplitude disturbances on the interface, and therefore the
first step is to linearize the conditions (2.4) and (2.5) about the zero solution. They
become

S
1t + Urrz + 9(1 — p)H = p(¢2t + Uag2z) + p—l(Hzx + Hyy), 2=0, (2.6)
and
Ht_¢jz+UjHa:=Ov 2=0,75=12. (27)

As previously remarked, this paper is concerned with the sinusoidal waves that are
formed by the interaction between the fundamental mode of frequency w and wavenumber
k and its third harmonic. It is an easy cxercise to verify that the following are solutions
to (2.6) and (2.7):

(H,¢1,¢2) = (o)

, %(U]k‘ _ w)ei(kr—wt)+kz, %(Uzk _ w)ei(kz—wt)—kz% (2.8&)
3ilkz—wt) © ikt —w , —i Sk ot) 3k
(H.¢1,62) = (44770, 2 (Urk — w)eM e 0T _2 Uk — w)ikemet=sks),
(2.8b)
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provided that

p(Usk — w)? + (Urk — w)? = % (2.9)
and
S _g(1-p)
=T (2.10)

The conditions (2.9) and (2.10) are those that must be satisfied for perfect resonance.
However, since we also wish to take imperfections in the resonance into account, the
Bernoulli condition that we shall actually impose is

P¢2t+P(V2+ )¢21: ¢1t—<V1+ )¢1z— k(Vl“‘ pVZ)H

g(¢22 + ¢2y + ¢22) (¢?$ + ¢%y + ¢%z)

N (V2 +pV#)(1 +e0)(Hoe(1+ HZ) + Hyy (1 + HZ) — 2H, Hy H.,,) o a-H
4k(1+ HZ 4+ H2)%/? L

(2.11)

In (2.11) we have set V; = U; — %, where the quantity ¢ is a small positive parameter
that provides a measure of the wave steepness, and we have introduced a detuning pa-
rameter o which is taken to be of order of magnitude O(1). When o is zero the resonance
is exact while nonzero values correspond to near resonant interactions. In addition, we
shall set E(n) = expin(kx —wt) for any n > 1. Then since we are interested in a weakly
nonlinear approach, the next step is to develop the functions ¢; and H as power series
in €. Bearing in mind (2.2) and (2.3), they become, retaining terms up to cubic order,

b =¢ [iVlCl +e(A? + 211C1x)

. . 2
SQ(A(I?’) — zzAgz)z - Z—;—‘k/;—lclyy - %—Vlclxx)] E(])ekz
€ [iVlC'g + 5(A§2) +2V1Csx) (212)
. 12V 22
e2(APY —izA{) - 6_k103YY V1C3XX):I E(3)e**

+ 2A(2)E(2)e** + 2 A(4)E(4)e*** + e2A(6)E(6)e%** + (c.c.),
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¢y =¢ |:— iVoCh + S(BF) + zVoCix)

szg

52
+52(B§3) + 'ingg C1YY + = V201XX)] E(1)e™*

+e [ —iVoCs + S(B:(:)z) + 2V2Csx) (2.13)
2
+e*(BY +izB) - ZV2 o ey + 2 Vzcaxx)] E(3)e~%*
+e?B(2)E(2)e = 4 523(4)E( Je 4k L 2 B(6)E(6)e™% + (c.c.),
= (40 + OB +e(Cs O+ OB

+£2C(2)E(2) 4+ €2C(4)E(4) + €2C(6)E(6) + (c.c.)

where (c.c.) stands for complex conjugate. In the expansions (2.12)—(2.14), the coef-
ficients Al(j ),Bz@, etc. are functions of the slow variables X = ez, Y = ey, T = «t,
T, = €?t. The next stage in the investigation is the elementary but somewhat lengthy
procedure of substituting the expansions (2.12)—(2.14) into the conditions (2.5) and (2.11)
and matching like powers and harmonics €' E(j) to each other seriatim. More detailed
accounts of analogous procedures may be found in [13, 14, 15, 18].

The terms of order ¢ are matched already. The terms of the form €2E(1) in the
kinematic conditions yield:

k0 — kA® 4+ %Clx +Cir =0, (2.15a)
ka0 + kB + £01x + Cir =0, (2.15b)

k
while Bernoulli’s condition presents us with

ik AP —ipkV, BP + k(V2 + pVACP +i(Vy + pVa)Cur

Then using (2.15a,b) to eliminate A§2) and Bim from (2.15¢) leads us to the following
relationship between C; and its derivatives:

w (VP +pV5) _ iok(V{ +pVZ)
k' ai+pVe) [ T T8V v pVe)

which means that the equations (2.15a,b) may be somewhat simplified so that they read

(Vi +pV3) io (V2 + pVy)
k(1 + pVa) 8(V1 + pV2)

Cir + { (2.16)

AP =vicf? Cix +

o (2.17a)

and

(VP+oV3) (o io(VE+ oY)

BY) — —ivpo® +
1 ‘ 4k(Vi+ pVa) X 7 T8(Vh + pVa)

C1. (2.17b)
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The corresponding relations, which arise from a consideration of the terms of order
e2E(3), are

w (V24 pVR) } 9iok(VY® + pV3)
O+ 49 W tpVa) | oklVi +pVy) 2.18
T {k 4(Vi +pV) | %X 8(Vi+pVe) (218
VE+ pVE) 3io (V2 + pVE)
A2 — e Wi HeVe) o o 3oV 4 oVy) 2.18h
3 =N v o) X T TR 1) (218%)
and
BY — _jv.c? _ (V2 +0V3) _ 3io (VP + PVQQ)C (2.18¢)
3T TN T k4 V) X T T8 pVe) Y '

When we match the terms of the form e2E(2) in the conditions (2.5) and (2.11), there
result three simultaneous equations for A(2), B(2), and C(2), which may be solved to
give

_ tkVi(3VE — 5pV2) 4ikVy (3V2 — 5pV3)

A2 Cc? C5C*, 2.19
@) (VE+ pV3) Lt (VE+ pV3) 3 ( a)
ikVa(3pV2 — BVE) ., 4ikVa(3pV2 — 5VE)
B(2) = c? + C5C, 2.19b
@) (VZ+pV$) ! (VE+pV3) s ( )
2 _ 12 2 12
c(2) = E=pVs) o JORVE = 0V) (o (2.19¢)

(VP +pV5) (V? + V%)
In a similar way, consideration of terms of the form ¢2FE(4) and €2 E(6) yield

 &ikVy(pV2 - 3VR)

A(4) VT p0) C1Cs, (2.20a)
1
4ikVy(VE — 3pV2
B(4) = (;(Qipv,f) 2) 00, (2.20b)
1 2
8k(pVE — V2
C4)= —(‘(f; i pv;))clcs (2.20¢)
1 2
and
—3ikV1(OVE + pVE) o
A(6) = c2, 2.21
©) 5(VE+pVg) P (2:212)
—3ikVa(V2 +9pV2) .,
B(6) = cz, 2.21b
O = ey (2210)
2 _ Y2
C(6) = 12hoVs — Vi) o (2.21c)

5V +pV5) %
(The asterisk stands for complex conjugate.) Now we move on to the lengthy considera-
tion of the terms of the form e2E(1). The two kinematic conditions give us

w . , iv;
Cir, + O+ (Vi + E) O +ivicf — kAP +iAl + Towy

—2k2A(2)Cy — ik*VIC(2)Cr — 4k A(4)C3 — 3ik*ViC(4)C5 + 2k2 A (2)C3

3ik3 11
— 3ik2V,C*(2)Cs — ’Tvl|cl|201 — 19ik°V[C32Cy — ik NGO =0 (2.220)
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and

w ) : : Nz %
Cur, + O+ (Vo + =) O +ikvaCl? + kB —iBR + SeCivy

— 2k2B(2)CT 4 ik*VoC(2)CF — 4k* B(4)C; + 3ik*VoC(4)C + 2k2 B*(2)Cs

3ik?
1 3ik2VaC* (2)Cy — ZTV2

. 11 .
— 19ik3V,|Cs2Cy — gik*‘vgcgcf =0, (2.22b)

while Bernoulli’s condition leads to
. : . : . : . w
ipkVaBY — ikVi AP — k(VE 4+ pVR)C® —i(Vy + pVa)Cir, +p (v2 + E) B

w : V] V.
(M) AR o8 - a2+ Lz pvpie B

VE + pVi i k N
WPV o L 4 o = B2 4 100 127 - e

+ 8ik* (V1 A(4) + pVaB(4))C5 — 8ik?(V1A*(2) + pVaB*(2))Cs 4 9E* (V2 — pV2)C*(2)C3

17A3 281k3 85k3
(V2 + pVH)|C1*Cr — (V2 + pV3)|Cs*Cy — —(V1 + pV$)C3Cy?

(2 22c)
(These and certain other calculations were accomplished with the help of MATHEMAT—
ICA.) Then putting the three preceding equations together eliminates A B(S) nd

C{3) , leaving us with

W .
2i(Vi + pVa) Oy, + 2 AR — 223 4 42 _ ) p2)

k k
(Vi + V. )
+i {(1—2’2—) + E(VI + pVg)} CR +i(Vy + pVa)C2
Vi + pV.
- £1—4kp—2)cl\)\ - ——-(Vl + pV#)Ciyy
V2 V2 k
+1:( i '*‘2/) )UCIX k(Y :/)VQ)UC§2)

— 2ik3(V1A(2) + pVaB(2))Cy — 12ik* (V1 A(4) + pVa B(4))C5
— 6k (Vi — pV5)C(4)C5 + 10ik* (V1 A*(2) + pVaB*(2))Cs

. 20k3
— 6k* (V= pVZ)C™(2)Cs + —— (Vi + pV5)|C1 [P Cy

8
3o7k 12943
+

8

(V2 + pVH)|Cs*Cy +

(VE 4 pVHC3C2 = 0. (2.23)
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The linear terms in the above equations may be simplified by using (2.16)-(2.18)
and their derivatives to eliminate AgQ), B§2) and any derivatives with respect to T'. The
nonlinear terms may be simplified by means of (2.19)—(2.21). Clearly, a corresponding
equation may be derived by considering terms of the form £3E(3). The ultimate result
consists of

ch‘) +2i{V? + pV5' + 4(V1 + pV2)}C(2) +oC?
(V2 + pV){(p = 3)VE = 8pViVa + p(1 — 3p)ViE}

iC
+1iCi, + AEYIAL Cixx
+1)
-3 V2 V2 _ (p 2
(Vi +pV3)Cryy _—16(V1+pV2)2U 1
_ Lo+ 9V +16pVi V5 + p(9p + 1)VF} oClx
4(V1 + pVa)?
{69V — 118pVPVE +690°V5'} 5
2 2 |Cc%| C’1
(Vi +pV5)
{77V — 102pVEVE + 1702V}
- 2 2 |C1]7Cy
2(Vy +pV5)
123V* — 266pV2VE + 123p2Vy
L gl123V pViVy +1230°Vo} o ome g (2.24a)

2(V12 + /’V22)
and

iCS7 + 2i{4(Va + pVa) — (Vi + pV)}CSR + 90 CF
(V2 + pVE{(p = 1DV — 24pViVa + p(1 — 11p)V}
12(V1 + pV2)?
5 27(p+1)

_ v V2 2 __et\rr )2
( [ +pV5)Csyy 16(V; + pV2)2a
{(p =)V — 16pV1Va + p(1 — Tp)V}

4(V1 + pVa)?
{69V} — 118pV2VZ + 6902V
(V2 + pVs)
{783V — 5346pV2 V7 + 783p° V')
10(VE + pVy)
{123V}* — 266pV2V2 + 12302V}
2(VE +pV3)

+iCsy + Csxx

+ 37 oCsx

}lCl|2C3

|C3]2Cs

c3=o. (2.24b)

The system (2.24) has been simplified by the scaling transformations: kC; — Cj,
kCs — Cs, kCP — ¢ kCP = P, kX — X, kY — Y, kT — 8(Vi + pVa)T,
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kTy — 8(Vi + pV2)Ty. The system (2.24) models, up to cubic order, the nonlinear
evolution of a disturbance occurring on the interface of two fluids and that arises from
the interaction of the fundamental wave and its third harmonic. It is a generalisation of
a similar set of equations found in [13], which considered the waves at resonance formed
by the same interaction, but occurring on the free surface of a single fluid subject to
constant atmospheric pressure. They may also be compared with the equations derived
in [19, 20], which considered the case of a single fluid but employed rather different
scalings. The equations (2.24) bear a resemblance to those derived in [15] in which a
study was conducted of the waves occurring on a fluid-fluid interface and which arise
from the perfect interaction between the M th and Nth modes of the fundamental but
which specifically excluded the 1:3 resonance looked at here. The previous pieces of
research may furnish a check on our algebra. We first remark that the derivation of the
linear terms presented in [15] does in fact remain valid in the case of third harmonic
interaction and the terms in [15] do agree with those here in that special case. Secondly,
we may observe that the coefficients of V;* (and V') in the nonlinear terms agree with
those given in [13].

Observe that (2.24) does not constitute a closed system because it consists of two
equations in four unknowns: Cl,Cg,C£2), and CéQ). However, since we are primarily
interested in the waves that arise from the resonant interaction between two harmonics
of the lowest order, it would seem reasonable to neglect the terms in the equations that
involve 01(2) and C’éz). Indeed, if we look back to (2.14), we see that these quantities are
the coefficients of e2E(j), j = 1,3 in the wave profile expansion. Hence, their inclusion
may just be regarded as the superposition of an additional “free wave” of higher order
on the resonant wavetrain. Therefore, in the future, when discussing (2.24), we shall
ignore the first three terms in each equation although we shall make a further brief
discussion of their significance on the interface profile at the end of §3. The modified
equations may be further simplified by setting V = V,/V; and further scaling V2Ty — T1,
(Vi +pV2)X — X, and 0 — 4(V; + pVa)o. The equations of wave propagation may now
be written in abbreviated form as:

iCim, +p(1)Cixx +3¢(1)Cryy + 7“(1)0201 +is(1)oCix

+u(1)|C5]2Cy + v(1)|C1[2Cy + 3w(1)C3C2 =0 (Pa)

and

iCsr, + p(3)Caxx + 2q(1)Cayy + 27r(1)0*Cs +is(3)0Csx

+ 0(3)|C3]2C3 + u(1)|C1[2Cs + w(1)CE = 0. (Pb)
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The coefficients are given by
(14 pV3){p—3—8pV +p(1 - 3p)V?}

p(1) = 7 , (2.25a)

q(1) = —(1+pV?), (2.25b)

r(l)=—(p+1), (2.25¢)

5(1) = {p+9+16pV + p(9p + 1)V?}, (2.25d)
{69 —118pV2 4 69p°V*}

u(l) = e , (2.25¢)
{77 —102pV% 4 77p%V*}

v(l) = 25 VD) , (2.25f)
{123 - 266pV2 4 123p*V*}

w(l) = 0T V) , (2.25g)

p(3) = (1+pV*){p—11 - ing +p(1 - 11p)V?} (2.25h)

5(3) =3{p—T7—16pV + p(1 — Tp)V?}, (2.251)
{783 —5346pV% + 783p?V*} .

v(3) = — 10011 pV7) . (2.25j)

It is the system (P) that we shall focus attention on henceforth. Observe that our scalings
have reduced the number of parameters in the equations to three: the fluid density ratio
p; the velocity ratio V; and o, which is the measure of detuning.

3. Wavetrain evolution. We shall seek Stokes wave solutions of the form

Cy = exp[iBT1], (3.1a)
C3 = aexp[3iBT11], (3.1b)
where «, 3 are constants to be determined. A substitution into (P) followed by an

elementary calculation shows then that o must satisfy the cubic:
(v(3) = 3u(1))a® — 9w(1)a? + (u(1) — 3v(1) + 24r(1)o?)a +w(l) =0 (3.2)

and that [ is then given by

B =u(1)a® + 3w(l)a + v(1) + (1) (3.3)

Let us discuss the solutions of (3.2). We first remark that we need only concern ourselves
with solutions for which « is real. (To see this, simply put « = |a| exp(i arg @) in (3.1b);
then a substitution of (3.1) into (P) and easy manipulation soon shows that arga is
forced to be zero or 7.) We shall first examine the situation when o is zero. The equation
(3.2) then becomes

3{—051 + 2962pV% — 951p2V4} ,  9{123 — 266pV2 + 123p2V*}a?
10(1 + pV'2) « - 2(1+ pV2)
(=93 +70pV2 — 930°V4}a {123 — 266pV2 + 123p°V*4}
2(1+pV?) 2(1+ pV?)

=0. (34)
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Standard results (see [8]) on cubic equations show that the nature of the solutions is
governed by the discriminant, which in this case is given by

—162(v(3) — 3u(1))(u(1) — 3v(1))w(1)? + 29616w(1)* + 81(u(1) — 3v(1))%w(1)?
—4(v(3) — 3u(1))(u(1) — 3v(1))® = 27(v(3) — 3u(1))?w(1)?. (3.5)

A calculation using MATHEMATICA then shows that (3.5) is always positive (it is in
fact the ratio of two polynomials, the denominator of which is a constant multiple of
(1 + pV?)* and the numerator is a polynomial in pV? of order eight that has no real
roots). Hence (3.4) always has three real roots. It follows that when the first and third
modes interact perfectly, there arc always three different water waves.

Let us now consider what happens just off perfect resonance, that is, when the detuning
parameter ¢ is nonzero. The most convenient way to view this seems to be to regard
solutions of (3.2) as being points of intersection of the cubic

(v(3) = 3u(1))a® — 9w(1)a? + (u(1) — 3v(1))a + w(1) (3.6a)
and the straight line
fla) = —24r(1)o2a = 24(p + 1) (3.6b)

We now remark that in (3.6a) the coefficient of a® changes sign when pV? = 0.36 and
2.7; the constant term changes sign when pV? = 0.67 and 1.5 while the coefficients of the
other two terms never change sign. Consider first what happens when pV? lies between
0.36 and 2.7. In this case, the coefficient of ® in (3.6a) is positive and a calculation shows
that the equation formed by setting (3.6a) equal to zero always has at least one positive
and negative solution. It is then quite easy to sce that the cubic and any straight line
with positive gradient always cross three times and hence there are three real values of
o. We therefore conclude that in this case, there are always three different wave profiles.

Now consider what happens when pV? lies outside the range given above. In this case
the coefficient of o® is negative and again it is not hard to sce that a straight line with
small gradient always intersects the cubic three times, but for larger gradients there is
only one point of intersection. The conclusion is thercfore that for small perturbations
from perfect resonance, there are three waves, but as the perturbation increases, two of
the waves disappear. Having found the solutions (3.1), we may use (2.14) to determine
the corresponding wave profiles. It turns out that up to €2,

8e2(1 — pV?)
(1+pV?)
16e%(pV? — l)acos4s . 24e2(pV? — 1)
(pV2+1) 5(pV2 +1)
where s = kx — wt + 8T7. Some of these waves profiles are depicted in Figs. 2, 3, and 4.
Now let us briefly consider how the solutions are modified if we consider the full
equations (2.24), i.e., we do not neglect the terms that involve C%Q) and C’éz). This

H = 2ecoss + 2eaxcos 3s +

(1 4+ 4a)cos2s

a?cos6s  (3.7)



THIRD HARMONIC RIPPLES BETWEEN STRATIFIED FLUIDS

V=2, p=1/2, 0=0, 0=-.468

F1G. 2(a). One of three profiles that occur at perfect resonance when
V=2p= % Observe that in this and all subsequent cases two of
the profiles are symmetric about a crest and one is symmetric about
a trough. In this and all other cases we set ¢ = 0.3.

V=2, P=1/2, 0=0,@=1.36

2F

-3 -2 -1 1

F1G. 2(b). One of three profiles that occur at perfect resonance when
V=2p= %
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V=2, p=1/2, 0=0, a=.188
0.5F

-0.25

-0.75

v=3, p=1/3, 0=0,0=-9.86

30F

20

10}

-30 F

F1G. 3(a). One of three profiles that occur at perfect resonance when
V=3 p=

W=
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v=3, p=1/3, o0=0, a=-0.452

255

F1G. 3(b). One of three profiles that occur at perfect resonance when

V=3 p= %
V=3, p=1/3, ¢ =0,q =0.251
0.5F
-'3 -.2 —.1 Z;. é
-0.5f
-1}

FIG. 3(c). One of three profiles that occur at perfect resonance when
V=3 p= %
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V=3, p=1/3, 0=5.92, a=-5.14

10

-15 |

FI1G. 4(a). One of three profiles that occur at near resonance when
V =3, p= % and the detuning parameter ¢ = 5.92. For this
measure of detuning, two of the values of a are very close and hence
the corresponding waves are virtually identical.

v=3, p=1/3, 0=5.92, @ =-4.97

10}
AN
N\ N\
T\ z ) 1 >
-5}
_10}
-15 }

F1G. 4(b). One of three profiles that occur at near resonance when
V=3 p= % and the detuning parameter ¢ = 5.92. For this
measure of detuning, two of the values of a are very close and hence
the corresponding waves are virtually identical.
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V=3, p=1/3, 0=5.92,a =.0438
0.5

-3 2 -1 1 3

-0.25

-0.75

-1F

FIG. 4(c). One of three profiles that occur at near resonance when

V=3 p= % and the detuning parameter ¢ = 5.92. For this

measure of detuning, two of the values of « are very close and hence
the corresponding waves are virtually identical.

means that as well as (3.1) we seek solutions of the form

) = 4, exp(iBTY), (3.8)
C8? = 43 exp(3iBTY). (3.8b)

Substituting (3.8) into the system then results in Eq. (3.2) with the zero on the right-
hand side replaced by the expression 30 (a7y; —3v3). It therefore turns out that +; and 73
may be regarded as arbitrary and that when o is zero the values of « given by (3.2) are
unaffected while when o is nonzero the values of a undergo slight perturbations. Then
since sz) and C’§2) occur at order ¢? and are functions of the very slow variable T} only,
we see that they will be virtually constant and so their inclusion will have no qualitative
and only minor quantitative effects on the waves.

4. Stability of an interface. We shall now proceed to examine the stability of the
sinusoidal interfaces found in §3. For the sake of simplicity, we shall confine most of our
attention to waves occurring exactly at resonance, i.e., we shall set o to be zero. The
first stage is to make perturbations in the leading-order terms C; and Cj so that

Cy = (1 +n) exp[iBT + 1], (4.1a)
C3 = a1 + ¢) exp[3iBT + i) (4.1b)
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Then substituting these expressions into (P), ignoring products of the perturbations,

and separating real and imaginary parts leads us to
p(W)nxx +3q(D)nyy + (2v(1) + 3aw(1))n + (20°u(1) + 3aw(1))¢ — 671 =0, (4.2a
nr1 +p(1)0xx + 3q(1)byy — 9aw(1)8 + 3aw(1)y =0, (4.2b

)
)
(20u(1) + 3w(1))n + ap(3)oxx + Saq(1)dyy + (20°v(3) — w(1))¢ — avr, =0, (4.2¢)
)

adr, +ap(3)xx + 2aq(1)yy — w(1)y + 3w(1)8 = 0. (4.2d
We shall seek solutions of the form
U n
I exp(i(0X + &Y — k)], (4.3)
v =\
0 0

and then by substituting (4.3) into (4.2) we obtain a system of equations for the pertur-
bation amplitudes, which can only be consistent if the following determinant vanishes:

K 0 —P; — 9aw(1) 3w(1)
0 K 3w(l) —Py —a"tw(1)
—P; +2v(1) + 3aw(1) 20u(1) 4+ 3w(1) K 0
2au(1) + 3w(l) —Py +22%0(3) — o~ w(1) 0 K
(4.4)

where
P =p(1)6° +3¢(1)€%, P, =p(3)6% + 3q(1)€”.
Expanding this presents us with the following quartic for &:

k* — {(Py + 9aw(1)) (P, — 3aw(1) — 2v(1))
+ (Py + o 'w(1)(Py + o w(1) — 202v(3)) + 6w(1)(2au(1) + 3w(1)) }x*
+ (P, 4 90w(1)) (P2 + o tw(1))(Py — 2v(1) — 3aw(1)) (P + o~ tw(1) — 2a2v(3))
— (Py + 9aw(1)) (P + o fw(1))(20m(1) + 3w(1))?
—9w(1)3(P; — 2v(1) — 3aw(1))(Py + o w(1) — 202v(3))
+ 9w(1)?3(2au(l) + 3w(1))? = 0. (4.5)

Obviously for stability to prevail, all the roots of (4.5) must be real. Let us recall some
facts concerning roots of equations of the form

k*+Ck?*+D=0. (4.6)

Then
(i) if D >0, C? —4D >0 and C < 0, there are four real roots;
(i) if D > 0, C? — 4D > 0 and C > 0, there are four imaginary roots;
(iii) if D > 0 and C? — 4D < 0, there are four imaginary roots;
(iv) if D = 0 and C < 0 there are four real roots;
(v) if D =0 and C > 0 there are two real and two imaginary roots.
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Clearly all these alternatives imply instability with the exception of (i) and (iv). We
shall take representative values of the parameters to illustrate the various possibilities.

Case 1. V=2,p=%

Observe that pV? = 2 and recall that this means there are always three distinct waves,
both at perfect resonance and also when detuning is present. The values of P; and P,
are

_9

P=-= 62-9¢2 and P = —%—752 - 5¢2, (4.7)

while the three values of a given by (3.2) are —0.468, 0.188, 1.36 (here and henceforth,
numerical quantities are given to three significant figures). We consider the values in
turn:

a ~ —0.468. In this case a calculation, aided by MATHEMATICA,
C = —P? — P} — 258052 — 1680¢2 — 6800, (4.8)

which is clearly always negative,

D = P2P2 + 2290008° + 52400054£2 + 38000052¢4
+ 8630066 + 1.87 x 1056 + 2.81 x 10%6%¢2 + 993000¢*
+4.62 x 10552 + 2.9 x 10%¢2, (4.9)
which is clearly always positive (except at the origin). The discriminant C2? —4D is equal
to
(PE — P$)? + 758008° — 823006%¢> — 872006%¢* + 11500¢°
+1.78 x 1056* 4+ 1.02 x 10°52¢2 + 304000¢*
+1.65 x 10762 + 1.13 x 107¢2 +4.63 x 107.  (4.10)

A further calculation now shows that (4.10) has only one critical point (which actually
lies on the £-axis) and it is positive there. Then since for large § and £ the terms of order
eight dominate, we conclude that the discriminant is always positive. The conclusion,
then, is that in this case the waves are always stable.

a ~ 0.188. In this case,

C = —P? — P? + 104062 + 252¢% — 7210, (4.11)

which we can quite easily show always to be negative by a “completing the square” type
argument. On the other hand, the quantities D and C? — 4D do change sign. Their
actual values are

D = P}P? — 605005° — 1810005462 — 16400052¢*
— 43100£® — 8710006 — 1.01 x 10%62¢2 — 175000¢*
+6.20 x 10552 + 5.43 x 102 (4.12)
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v=2, o =-§— , @ = 0,188

Fic. 5. The regions of stability (denoted by S) and instability (de-
noted by U)

and

C? — 4D = (P? — P2)? —1590006° + 757006%¢>
+30100062¢* + 1190006¢ + 7.35 x 1054*
+ 8.40 x 10°5%¢% + 2.30 x 10%¢* — 3.98 x 10762
—2.54 x 10762 +5.22 x 10", (4.13)

The zeros and signs of these quantities are shown in Fig. 5, which also depicts the impli-
cations for stability. We see that the waves are stable to perturbations with wavenumbers
both sufficiently close to and far from the origin, but there are two “bands” of unstable
perturbations.
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a ~ 1.36. In this case the three quantities are given by:

C = —P? — P} — 838052 — 3590¢2 + 16500, (4.14)

D = P2P2 + 6040006 + 1.57 x 10°6%¢% 4 1.28 x 10952¢*
+ 317000£% — 8.95 x 1055* — 1.25 x 1076%¢2
—4.05 x 10%¢* — 1.47 x 1086 — 7.15 x 107¢%,  (4.15)

and

C? — 4D = (P? — P2)? 4 8150006° — 4660005*¢>
— 1.46 x 10%6%¢* — 508000£° + 9.97 x 1075*
+1.01 x 1086262 + 2.56 x 1076* +3.12 x 10862 + 1.68 x 10862 +2.71 x 108. (4.16)

A similar argument to that used in the first case now shows that the discriminant is
always positive while the zeros of the other two quantities are shown in Fig. 6. We see
that in this case the waves are unstable to perturbations with wavenumbers near the
origin and stable to those with larger wavenumbers.

Case 2. V=3,p=%

In this case, pV? = 3 and hence there are three distinct waves at perfect resonance
but only one when the detuning is sufficiently large. The three values of a are —9.86,
—0.452, 0.251. The stability analyses are, in fact, quite similar to those presented in the
previous case and for this reason we discuss the results more briefly and do not give the
numerical values of the expressions.

a ~ —9.86. This is quite similar to the last case. The discriminant is always positive
while the zeros of C' and D are both ellipse-like curves and are depicted in Fig. 7 along
with the stability implications.

a ~ —0.452. This is quite similar to the first case. The discriminant and D are always
positive but C is always negative. The waves are always stable.

a ~ 0.251. This is quite similar to the middle case. The quantity C is always negative
while the zeros of D and the discriminant are shown in Fig. 8. As before there are two
“instability bands” but the waves are stable to perturbations with wavenumbers both
close to and far from the origin.

Finally, we shall make a brief analysis of the stability of waves that occur just off
resonance. This procedure, although no more difficult in principal than that which has
just been carried out, is greatly complicated in practice by the fact that the equation
corresponding to (4.6) now contains, in general, cubic and linear terms. For this reason we
shall confine ourselves to perturbations at right angles to the wave, i.e., we shall take § = 0
in (4.3). It may be worth noting that in all the stability results hitherto presented here,
there was no qualitative difference in the stability behaviour for longitudinal, transverse,
or oblique perturbations.
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v=2 o =% a=1.36

F1G. 6. The regions of stability (denoted by S) and instability (de-
noted by U)

We shall again consider the case when V =3, p = % and we shall set the detuning

parameter o to 5.92. Then the three values of o are —5.14, —4.97, and 0.0438. Clearly
the first two solutions are just about to coalesce and hence two of the waves are just
about to disappear. We consider the stability of the three wave profiles in turn:
a ~ —5.14. Similar calculations to those already shown give us that
C =1.90 x 10% — 93700£2 — 188¢4,
which changes from positive to negative as £ increases through 4.42;

D =—-1.39 x 10"¢? + 1.44 x 10%¢* + 1.14 x 107¢% + 6400¢8,
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v =3, p=§, a = -9,.86

T T T T T — T

10

3

F1G. 7. The regions of stability (denoted by S) and instability (de-
noted by U)

which changes from negative to positive as £ increases through 7.96;

C? — 4D =3.62 x 10*? +1.98 x 102 4+ 2.30 x 10%¢* — 1.02 x 107¢% + 9910¢8,

which is always positive.
We conclude therefore that this wavepacket is unstable if the wavenumber £ of the
perturbation is less than 7.96 in absolute value, and otherwise it is stable.

a ~ —4.97. Obviously this case turned out to be more-or-less the same as the previous
one since the values of « are so close together. We therefore omit the details.
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v=3, o =%, o = 0,251

-

Fic. 8. The regions of stability (denoted by S) and instability (de-
noted by U)
a ~ 0.0438. Here
C = —1.57 x 10° + 1520062 — 188¢*,

which is always negative;
D = 2.690 x 10%°¢% + 1.94 x 10%¢* — 2.31 x 10%¢5 + 6400¢3,

which is always positive;

C2 — 4D = 2.47 x 10'2 — 5.85 x 101762 + 4.70 x 107¢* + 3.52 x 10%¢° 4 9910¢8,

which is again always positive.
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The conclusion is that this wavepacket is always stable. Hence two of the wavepackets
are quite unstable, while the other is stable.

These results are in accord with physical expectations since, of course, we would
expect the waves that are just on the point of extinction to be the ones that are the most
unstable.

5. Discussion and conclusions. An investigation has been conducted into the
small amplitude interfacial waves that may arise due to an interaction caused between a
fundamental mode and its third harmonic. A pair of coupled nonlinear partial differential
equations (P) that model the propagation of the interface was derived. These equations
are generalisations of a pair derived previously by the author in a consideration of the
third harmonic resonances which are present on the free surface of a single fluid that
is constrained by capillary-gravity forces and constant atmospheric pressure on the free
surface. The equations presented here bear a resemblance to other systems derived by
the author and various investigators who studied other types of resonant interactions,
and their genesis may ultimately be traced back to the work of Zakharov [27] who was the
first to show how the nonlinear Schrodinger equation may be used to model the evolution
of small amplitude waves.

Solutions to the system (P) were found that corresponded physically to Stokes-type
sinusoidal wavetrains. There are two parameters present in the equations: one is p, the
density ratio, and the other is V, which is a measure of the velocity ratio. It was found
that a particularly important influence on the nature of the waves which may occur
was the value of the quantity pV2. We were able to show that at perfect resonance
there are always three distinct wavetrains for all values of the parameters. However,
if the perturbation parameter is nonzero so that the resonance is imperfect, then there
are always three distinct waves if pV? lies between 0.36 and 2.7, but if that quantity
lies outside the range given, then there are three waves for sufficiently small detuning,
but only one wave persists as the detuning becomes increasingly severe. Since p is
required to liec between zero and unity, the principal influence on the value of pV? is V
and the situations when pV? is close to zero or large may both be regarded as “strong
shear” because in these cases the difference between the flow velocities is large. Thus,
the situation when the largest number of waves is capable of arising, both on and off
resonance is when the flow velocities are fairly close to each other. The case of near
resonance is of practical importance because in practice the values of the external forces
are fixed and the resonant waves described here arise when the frequency is at or near
some critical value.

We proceeded to discuss the stability of the waves to plane wave perturbations. In
general, at perfect resonance, the three wavepackets were found to display dramatically
different stability characteristics. One of them is always stable; one is highly unstable
and any “sideband” perturbation with wavenumbers close to that of the underlying flow
will destroy it; while the third is unstable only to a band of intermediate perturbations.
No qualitative difference was found between perturbations in different directions to the
main flow. A brief examination of a set of near-resonant waves was carried out when
the detuning parameter was such that two of the waves would soon cease to exist. As
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expected, the waves just on the verge of extinction were highly unstable, while the third
was stable.

It would be of interest to try to generate the waves studied here under laboratory
conditions. Indeed, some experiments have already been carried out, notably by Perlin
and Hammack [23] and McGoldrick [17] who have demonstrated successfully the exis-
tence of third harmonic resonant waves on a free surface of a single fluid under constant
atmospheric pressure. Indeed, their experiments show these waves to be quite robust
and to be selectively amplified for external forcing frequencies that lie in a fairly broad
band and not just at the critical frequencies predicted by the theory. It would be of great
interest to try to develop their experiments further, either by using two fluids of different
densities or by introducing a uniform air stream over a free surface.
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