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Abstract. We study the existence problem for the following nonstrictly hyperbolic
system:

ur + %(3u2 +v?), =0,
vy + (uv), =0,

with singular initial data, i.e.,
(u(t, z),v(t, x))|li=0 = (uo(z),vo(x)) € L*(R,R?).

A strong convergence result of the L*(R; x R, R?) bounded approximating sequences
generated by the method of vanishing viscosity is obtained. The analysis uses Young
measure, half-plane-supported entropy-entropy flux pairs, and Tartar-Murat’s theory of
compensated compactness.

1. Introduction and statement of the main result. The general 2 x 2 system
of conservation laws with quadratic flux functions
up + %(alu2 + 2bjuv + cva)I =0,

. 1.1
v + %(agu2 + 2byuv + cov?), =0 (L1)

is of interest because solutions of (1.1) may approximate solutions of an arbitrary 2 x 2
system of conservation laws

u + f(u,v)z =0,

vy + g(U,U)I =0 (12)
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in a neighborhood of an isolated hyperbolic singularity. Such a singularity is an isolated
point in a neighborhood of which (1.2) is hyperbolic and at which the Jacobian

O (wv), 9w v)) _ <fu,(u,v) fv(u,v)>

Al v) = O(u,v) 9u(u,v)  gu(u,v)

has equal eigenvalues and is diagonalizable. In fact, system (1.1) is obtained from system
(1.2) as follows. Let Aj(u,v) < As(u,v) denote the eigenvalues of A(u,v), and let (ug, vo)
denote the isolated point at which A (ug,vo) = Ao(ug,vo) = Ag. First, replace (u,v) by
(u—wug,v—1vg) and translate the reference frame (¢, x) to (¢, — Aot) so that the resulting
system has an isolated singularity at (u,v) = (0,0) with double eigenvalue A = 0. Then
system (1.1) is obtained by expanding the flux functions of this transformed system in
Taylor series about (0,0) and neglecting the higher-order terms.

E. Isaacson et al. found that system (1.1) could be reduced further by a nonsingular
linear change of dependent variables [21, 22, 23, 37, 40, 41]. Two systems related by
such a transformation S are isomorphic in the sense that (Su(t,z), Sv(t,x)) is a weak
solution of the transformed system if and only if (u(t,z),v(t, x)) is a weak solution of the
original system. Since the nonsingular transformation S contains four free parameters
and since system (1.1) contains six parameters, E. Isaacson et al. expected to find a
two-parameter family of isomorphism classes for system (1.1) and wanted to look for
representatives of the isomorphism classes in a normal form containing two parameters
[23]. As a breakthrough in this regard, Shearer and Schaeffer showed in [37, 40, 41]
that when system (1.1) is hyperbolic, there is a nonsingular linear change of dependent
variables that transforms system (1.1) into

Uy + %(au2 + 2buv +v%), =0,
vt + 3 (bu® + 2wv), = 0. (1.3)
System (1.3) depends on two free parameters a and b and can be taken as a normal
form for the hyperbolic quadratic systems (1.1). It is also shown in [40] that the integral
curves of (1.3) fall into four nonisomorphic classes depending on the parameters a and b.
These classes define four regions in the (a, b)-plane which are referred to as regions I-1V
(see Fig. 1).

The regions are determined by the number of lines that form the Hugoniot locus of the
origin, as well as the direction of increase of the approximate eigenvalue on these lines.
In Regions I-III, the Hugoniot locus consists of three distinct lines, while in Region IV,
it consists of only one line. When b = 0, system (1.3) can be rewritten as

u + 3(aw? +0°%), =0,

v, + (uwv), = 0. (1.4)

Such a system is symmetric, since in this case the solutions have both up-down symmetry
((u(t, z), —v(t, z)) satisfies (1.4) if and only if (u(t,z),v(t,z)) does) and left-right sym-
metry ((u(t,z),v(t,z)) satisfies (1.4) if and only if (—u(t,—x),v(t, —x)) does). Hence,
the structure of the solutions in each region is much more simple.




NONSTRICTLY HYPERBOLIC CONSERVATION LAW 629

Ao 5 . fa—1=b?
a= Z}b2

(1663+9(1—2a)b)2
—4(4b2—3(a—2))3=0

Fic. 1
In this paper, we are concerned with a special case, i.e., a = 3, of the system (1.4),
ie.,
ue + %(31&2 +v?), =0, (L5)
v + (w)z =0,
with singular initial data
(u(t,z),v(t,x))|t=0 = (uo(x),vo(x)) € L*(R,R?). (1.6)
Let F be the mapping from R? into R? defined by
F: (u,v) — (%(3u2 + v?), uv).
Then two eigenvalues of dF are
A1 (u,v) = 2u — V2 + 02, A2(u,v) = 2u + Vu? + 12, (1.7)

and the corresponding right, left eigenvectors and Riemann invariants are

V2 (\/u2+v2 —u)
T](U,’U) = ]
2v/u? + v2 — uv/uZ + 2 v
V2 (\/u?+v2 +u>
TQ(U,U) = s
2v/u2 + 02 + u/u? + 02 v
2
h(u,v) = L (Vu? +v% —u, —v),
2v/u2 + v2 — uv/uZ + o2
2
lo(u,v) = V2 (Vu2 +v2 + u,v),
2V/u2 + 02 + uv/u? + 12
and
w(u,v) = Fu+ Vu? +v2),  z(u,v) = F(u— Vu?+0?), (1.7)

respectively.
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By simple calculation, we have

A (r) = VA () - 71 (u,0) = 332, 1 — —%
() e w) m(wv) =g VuZ + 02 (1.8)
Ao (r) = Vo(w,v) - 7o (u,0) = 3v2, 1+ —— |
2(12) 2(u,v) - ra(u,v) = 3 Jero
and
1 d2F(r2,72) = il
, V2 + 0% + u/u? 02 (19)
2|y '
2

2 =
le F(rl,rl) \/u2+v2_u\/u2+v2.

Here d*F is the second Fréchet derivative of F. Therefore, it follows form (1.7) that
A1(u,v) = Ao(u,v) at (0,0) at which strictly hyperbolic fails to hold. That the first
characteristic field is linearly degenerate for u > 0, v = 0 and the second one is linearly
degenerate for u < 0, v = 0 follows from (1.8). It is easy to deduce that the Smoller-
Johnson condition [44] does not hold for v = 0, u < 0 (or u > 0); this follows from
(1.9). Hence, the system under our consideration is nonstrictly hyperbolic with linearly
degenerate, but not completely degenerate, characteristic fields.

It is well known that solutions to the Cauchy problem (1.5), (1.6) may develop discon-
tinuities (shocks) in finite time even if the initial data is sufficiently smooth and small.
Hence, for general initial data, only discontinuous solutions may exist globally and we
have to seek global weak solutions. By a global weak solution here, we shall mean it
satisfies (1.5), (1.6) in the sense of distributions. However, since the class of weak solu-
tions is broader too, uniqueness of the global weak solutions is lost even for the simplest
model u; + (u?), = 0, and some additional conditions must be imposed on the weak
solutions to exclude the nonphysical solutions. To this purpose, a number of criteria,
also called entropy conditions, motivated by mathematical and/or physical considera-
tions, have been proposed in order to single out an entropy weak solution (for a survey
in this regard, see, e.g., Dafermos [9]). For the system (1.5) with singular initial data
(1.6), motivated by Lax’s entropy condition defined through convex entropy-entropy flux
pairs, we give the following definition of admissible solutions.

DEFINITION 1. A pair of functions (u(t, z),v(¢,z)) is called an admissible solution of
the Cauchy problem (1.5), (1.6) if it satisfies the following requirements:

19 (u(t,z),v(t,z)) € L (R4 x R);

20 (u(t, ), v(t,x)) — (uo(x),vo(z)) in Ll (R) as t — 0+;
3%, For each (n(u,v),q(u,v)) € ¥ and every nonnegative test function ¢(t,x) €

C3¢ (R4 x R), the following inequality holds:

+oc  ptoc
/ / {n(u, v)u(t, 2) + g, v)pa(t,2)} dedt > 0.
0 —oC
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Here

Y= {(ﬂ(uyv)aQ(U,v))i (ﬁ(uav)a‘I(U, ’U)) € C](RZ’R2)7 Vg = VﬂdFJI(U’U)
is convex, |q(u,v)| + |n(u,v)] < C(1+ |u|® + |v|*),0 < a < 4}.

Under the above definition, our main results can be summarized in the following.

THEOREM 2 (Main results). Suppose that vg(z) > 0 (or vo(z) < 0), (uo(x),ve(x)) €
L*(R,R?). Then the Cauchy problem (1.5), (1.6) admits a global admissible solution
(u(t,x),v(t,x)) that satisfies, in addition to the conditions stated in Definition 1, the

following properties:

v(t,z) >0 (orv(t,x) <0), (1.10)

lut, z)llLsry + vt 2)lLsry < lluo()llLam) + lvo(@) 4 (r)- (1.11)

Before stating the outlines of the proof of our main results, we first recall that, for
general nonlinear hyperbolic conservation laws, local existence of smooth solutions for
systems of conservation laws in many space variables is available via a classical iteration
scheme (see Lax [26, 27], Kato [25], Majda [32]). Since these local solutions are smooth,
the time of existence clearly cannot be extended beyond the onset of shocks. Hence, the
major difficulty in proving global existence arises from a difficulty in obtaining estimates
strong enough to show that an approximating sequence converges to a weak solution.
One of the methods for obtaining the approximating sequence is the method of the
finite difference scheme (such as the Lax-Friedrichs scheme, Glimm scheme, etc.), i.e.,
first discrete the original partial differential equations and then get a difference equation.
After solving this equation, one can obtain a family of discrete solutions {u (¢, z; At, Az)}
of the difference equation. Then one hopes that {u (¢, z; At, Az)} will converge to a weak
solution of the corresponding hyperbolic conservation laws as the mesh length |At|+|Az|
tends to zero. The method of vanishing viscosity can also be used to obtain approximate
solutions, i.e., artificial viscosity is added to the right side of the corresponding hyperbolic
conservation laws to obtain a family of parabolic equations that formally tends to a
solution of the corresponding hyperbolic conservation laws as the viscosity coefficient
tends to zero. The viscosity will smooth the shocks and if classical blow-up can be
avoided, then the solutions will exist for all time. Similar to that of the finite difference
method, the proof of the global existence result is transferred to prove that the viscosity
solutions converge strongly to a global weak solution of the hyperbolic system.

To prove the strong convergence of the approximating sequence, one must get, as
stated above, some a priori estimates on the approximating sequence. For hyperbolic
conservation laws, the a priori estimates in BV space are quite natural. In fact, in
his well-known paper [18], Glimm uses detailed information of solutions to the Riemann
problem and wave interactions to get BV estimates and obtains a general global existence
theorem for general n x n strictly hyperbolic conservation laws with genuinely nonlinear
or completely degenerate characteristic fields with small initial data (i.e., the initial data

Eo(:v) is near some arbitrarily constant state solution measured in the BV norm). But
for viscous solutions, such an a priori estimate in BV space is, if not impossible, quite
difficult. However, we can always assume that the viscous system admits a bounded
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invariant region, which implies that the viscous solutions satisfy uniformly bounded L>-a
priori estimates by employing Chueh, Conley, and Smoller’s theory of positively invariant
regions, or a convex entropy-entropy flux pair (n(a),q(a)) with c|5|7’ <n(u) <! |§|”
(1 < p < 00), which implies that the viscous solutions satisfy uniformly bounded L?-
a priori estimates by employing the standard method of the energy integral. Hence
a subsequence converges weakly and its weak limit is a natural candidate solution for
the hyperbolic system. However, the operation of composition with the nonlinear flux
function may not be continuous with respect to the weak limits. So the central problem
is to show the weak continuity of the nonlinear flux function.

Tartar-Murat’s theory of compensated compactness addresses the question of weak
continuity of the operation of nonlinear composition. As we know, this method was
established by Tartar [46, 47] and Murat [33], motivated in part by the paper of Ball
[1] on nonlinear elasticity. This method has shown itself to be powerful in resolving
some important problems in the theory of conservation laws. Tartar first succeeded in
giving a new proof of convergence of the viscosity sequence for scalar conservation laws.
Through an extremely novel use and generalization of Lax’s entropy-entropy flux pairs
[26], DiPerna [11, 12, 13] (see also Ding, Chen, and Luo [10] and Lions, Perthame, and
Souganidis [29]) successfully proved the existence of the Cauchy problem for the equations
of isentropic gas dynamics in Eulerian and Lagrangian coordinates.

We observe that, however, all the above papers require the local uniform boundedness
in L> of the approximate sequence of viscosity solutions, or the approximate sequence
constructed by a finite difference scheme. It is still an open problem to establish the
convergence of more general approximate solution sequences of conservation laws.

In our paper, since we only treat the case when the initial data belongs to L*(R x
R*), we cannot hope that the approximate sequences will have uniform L>-a prior:
estimates. Therefore, we confront in the analysis the difficulty that the supports of
the Young measures of an approximating sequence are no longer uniformly bounded,
so that consequently DiPerna’s argument does not apply directly. On the other hand,
since the system (1.5) under our consideration is nonstrictly hyperbolic with degenerate
characteristic fields, its Riemann problem exhibits complex wave phenomena and wave
interactions are quite complex [31], we cannot hope to treat our problem by the method
of the finite difference scheme. Hence, we adopt the method of vanishing viscosity, i.e.,
we first consider the following parabolic conservation laws:

ui + 5(3(u)” + (v9)?). = eug,,

vf 4+ (uTv®), = evs

€rr

(1.12)

with initial data

(u®(t, ), v (t, 2))i=0 = (ug(x), v5(x)). (1.13)

@ = [T uman i@ = [ o) iy

p(z) is a mollifier, ie., 0 < p(x) € C3°(R), supp p(x) C [-1,1], [g p(z)dz = 1. Then
we consider the convergence of (u®(t,x), v°(¢,z)) as ¢ — 0+ by employing the natural

Here
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energy estimate, LP Young measures, a class of slowly growing, some special types of
half-plane-supported entropy-entropy flux pairs (similar to those first used by D. Serre
in [39]), and the theory of compensated compactness.

The proof is in four parts. First we prove global existence, regularity of viscous
solutions, and energy estimates for the Cauchy problem (1.12), (1.13). One of our contri-
butions in this step is that we find the following convex (but not strictly convex) entropy:
n(u,v) = ut + gu2v2 + ;:l)vﬂ which is quite useful in our following analyses. Secondly,
we construct and find global growth bounds for a class of entropy-entropy flux pairs
(solutions of a related linear hyperbolic problem with Goursat data). The properties of
hypergeometric functions and a regularity theorem to the corresponding Euler-Poisson-
Darboux equation (3.8), which was due to P. T. Kan [24], play an important role in our
analysis. Thirdly, we derive Tartar-Murat’s equation by applying the Div-Curl Lemma
to the entropy-entropy flux pairs composed with the viscosity approximations and obtain
a quadratic form involving weak limits. The energy estimates supply us with uniform
LP-like estimates and so the weak limits have a representation via LP? Young measures.
Using the representation of weak limits via LP Young measures, this quadratic form
becomes Tartar-Murat’s equation. By varying the entropy-entropy flux pairs in Tartar-
Murat’s equation, one obtains information about the Young measures. This we do in the
last step and generalize versions of Serre’s and DiPerna’s weak* trace lemma to show
that the Young measures are supported on at most four points, and a second argument
shows that it is supported on a single point. This implies that the approximate solutions
converge strongly and the limit is a global weak solution.

The fact that we are using only LP-like bounds on the viscosity approximation instead
of additionally assuming uniform L°° bounds means that most of the above arguments
differ significantly from the previous results. Previously DiPerna and others have used
Lax’s entropy-entropy flux pairs written in an asymptotic form in Tartar-Murat’s equa-
tion. However, the error estimates for these equations grow exponentially and this makes
them unsuitable since the estimates of the composition with the viscosity solutions will
blow up. Instead we use Goursat initial data and work to get tight growth bounds (here
again the standard bounds grow exponentially). The existence and regularity theory of
the Young measures must also be modified to accept only LP-like bounds. Finally, the
weak* trace lemma must be redone since, for example, a compactly supported sequence
of probability measure will converge weak* to a probability measure; however, if the
sequence is not compactly supported, mass may be lost at infinity and it may converge
weak™® to a measure with mass anywhere between zero and one.

We comment briefly on the LP? (1 < p < 00) theory to hyperbolic conservation laws
involving compensated compactness. For the case of scalar conversation laws, Schonbek
[38] first generalized the method of compensated compactness and Young measures to
accept uniform LP-bounds on the approximate solutions. Later, through choosing two
types of entropy-entropy flux pairs and by employing the weak continuity of the 2 x 2
determinant, Y. G. Lu [56] modified her results and removed the convex condition needed
in [38]. Roughly speaking, for L? (1 < p < 00) uniformly bounded approximate solutions,
to get the strong convergence of the approximate solutions, both of their results required
the flux function f(u) to satisfy limj,|_oc % = 0. Recently, H. J. Zhao [53] also
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considered the same problem. By employing compactly supported entropies and the
theory of compensated compactness, he obtained the strong convergence of the L? (1 <
p < o00) uniformly bounded approximate solutions but did not ask f(u) to satisfy any
growth condition at infinity. But to have the integral f0+ = [ f(w)g.dz dt make sense,
he asked f(u) to satisfy |f(u)| < ¢(1 + |u|?), where (¢, ) is a test function. For the
case of a 2 x 2 hyperbolic system, Lin [28] and Shearer [42] considered a special strictly
hyperbolic, genuinely nonlinear system, i.e., the quasilinear wave equation

u —o(v), =0,
v —u, =0, (1.14)
(u(t,z),v(t,x))|i=0 = (uo(x),vo(x)).

Here o'(v) > 0, ¢”(v) # 0. Since o”(v) # 0, there would be no bounded invariant
regions to the viscous system of (1.14) and the uniform L>-a priori estimate is no
longer available. But its viscous system admits a convex entropy

n(u,v) = %uz +/ o(s)ds,

0
which implies a uniformly bounded LP-a priori estimate on its viscous solutions. Having
obtained these a priori estimates and by employing some special types of entropy-entropy
flux pairs and the theory of compensated compactness, they successfully proved that
the viscous solutions converge to a weak solution of (1.14) provided that o(v) satisfies
certain growth conditions at infinity. For the case of nonstrictly hyperbolic systems
with degenerate characteristic fields, Frid and Santos [16] studied the following Cauchy
problem:

Z[ — (?7)1 = 07
Z(t,x)|i=0 = Zp(z).

Here Z(t,x) = u(z,t) + iv(t,2), t >0,z e R, 1 <r < 2.

Comparing Frid and Santos’ results with those of Lin and Shearer, new difficulties
arose in Frid and Santos’ work, which was due to the occurrence of the nonstrictly
hyperbolic point and degenerate characteristic fields.

We recall now some results concerning the Cauchy problem (1.3) (or (1.4)), (1.6).

First, in order to develop a Riemann problem solver that can be used for front tracking
in numerical stimulations of oil reservoirs, E. Isaacson et al. [21, 22, 37, 40, 41] considered
the Riemann problem to the symmetric system (1.4). Each paper corresponds to one
of the four Regions I-IV defined above respectively. They found that the properties of
solutions to its Riemann problem in Region I are quite different than those in Regions II-
IV. Roughly speaking, in solving the Riemann problem in Region I, a new type of shock
wave not satisfying the classical Lax entropy condition [27, 28, 43] must be introduced.
Recall that for a 2 x 2 system, the Lax condition requires one family of characteristics
to converge on the shock from both sides while the other family of characteristics passes
through the shock. These shocks will be referred to as compressible. The new shocks
encountered are undercompressive in the sense that both families of characteristics pass
through the shock. While in Regions II-IV, compressive shock waves plus rarefaction
waves are sufficient to solve the Riemann problem. For details, see [21, 22, 37, 40, 41].

(1.15)
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Secondly, for the case of a = 3, the Cauchy problem (1.4), (1.6) with bounded mea-
surable initial data was studied by P. T. Kan in his Ph. D. thesis [24] (almost at the
same time, Y. G. Lu [30] also got the same result by employing a different method) and
was later extended to the case of a > 2 by Rubino [35] and to the nonsymmetric case,
i.e., system (1.3) with (166 + 9(1 — 2a)b)? — 4(4b*> — 3(a — 2))® < 0 by Chen and Kan
[3]. The above results all asked that the initial data be uniformly bounded measurable.
The main contributions of the above papers are regularity results to the so-called east
and south entropies near the umbilic point (0,0). Such a regularity result is also helpful
to our analysis.

Before concluding this section, we remark that in this paper the case a = 3 makes the
structure of entropy waves and so the reduction of Young measures very simple. But we
believe that the ideas given here can be used to extend the result to the Cauchy problem
(1.4), (1.6) with @ > 1. On the other hand, whether the admissible solution obtained
in Theorem 2 is unique or not remains an open problem. We wish to deal with these
problems in a forthcoming paper.

This paper is organized as follows. This first section is the introduction and the
statement of our main results. The second section considers the viscous system (1.12),
(1.13). Section 3 will concentrate on some special types of entropy-entropy flux pairs
and the H_!(Q) conditions. The reduction of Young measures and hence the proof of

loc
our main results is presented in Sec. 4.

2. Viscosity solutions. In this section, we consider the related Cauchy problem
(1.12), (1.13). First we have

LEMMA 2.1. Under the assumptions stated in Theorem 2, we have (uf(zx),v§(z)) €
C>(R) and for each i € Z

6i £ i,,E
} M n ’ m < My(e) < oo, (2.1)
02 iy Il 97" =)
lug (@) ary + lvo(X)lLary < lluo(@)llLem) + llvo(@) || La(r)- (2.2)

Since (u§(x),v§(z)) € C*(R), following the techniques of Ding and Wang [55], we
have

LEMMA 2.2 (Existence of the local solution). Under the assumptions of Theorem 2, the
Cauchy problem (1.12), (1.13) admits a unique smooth solution (uf(t,z),v(¢,z)) on
[l;, = {(t,2): 0 <t < t;,z € R}, where t; depends on [|u§(x)||p=r), |v5(x)L>(r)
only and (u®(¢,x),v°(t,x)) satisfies the following estimates: For each k € Z

(u*(t, ), v° (¢, )

< Ni(e, t1) <oo, 0<t<ty, (2.3)

Iz
Oxk L=(R)

[ (wf(t,2),v°(t, )l L2y < Clluo(®@)llLamys lvo(x)l|Ler), t1,€) < o0, 0<t <ty
(2.4)
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FiG. 2

In order to extend the local solutions obtained in Lemma 2.2 globally, one needs to
obtain the L*°-a priori estimates on (u®(¢,z),v°(¢t,z)). In this paper, we employ the
theory of positively invariant regions developed by Chueh, Conley, and Smoller in [4] to
get this type of a priori estimate, i.e.,

LEMMA 2.3 (A priori estimate). If the conditions of Theorem 2 are satisfied, then the
following regions £* are invariant ones for (1.12) for all € > 0:

Tt = {(w,v): w(u,v) < M, 2(u,v) > —M,v > 0}
and
57 ={(u,v): w(u,v) < M, z(u,v) > —M,v < 0}.
(See Fig. 2.)
Lemma 2.2 with Lemma 2.3 together deduce the following global existence result.

THEOREM 2.4 (Global existence result). Under the conditions of Theorem 2, the Cauchy
problem (1.12), (1.13) admits a unique global smooth solution (u®(¢,z),v*(t,z)) and
(u®(t,z),ve(t,x)) satisfies

lu(t, 2) | Lo r) + l° (¢, @) || L) < Mo(e), 0Lt < oo, (2.5)

(u®(t, z),v°(t,x)) <Ne(e,T)<oo, 0<t<T, k=12,..., (2.6)

|
L>(R)

dak

[ (u®(t, z), v (t, ) Lar) < Clluo(@)]Law), lvo(@)llLary, 6, T) <00, 0Lt <T.
(2.7)

We now give some energy estimates that are useful in our reduction of the L” Young
measures.

LEMMA 2.5. Under the conditions of Theorem 2, the solutions (u®(t, z), v*(t, x)) obtained
in Theorem 2.4 satisfy the following estimate:

| (u®(t, ), v*(t, ) 2r) < Nluo(z)llLam) + llvo(@)lLer), t=0. (2.8)
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Proof. 1t is easy to check that system (1.12) admits the following entropy-entropy flux
pair: (n(u,v),q(u,v)) = (u* + Suv? + Lo, 2o + 8u30? + dup?) with

5 5 5
12 1
) = (P05 ) 20
So n(u,v) is a convex entropy and hence (2.8) follows from a standard energy estimate.
O
COROLLARY 2.6. Under the assumptions of Theorem 2, we have
e%ui, 8%112 are uniformly bounded in L2 (R, x R). (2.9)

Proof. Let K C Ry xR, p € C(R4+ xR), ¢lxk =1, ¢ > 0, and G = supp{p}.
Since

[3(u)? + 3(0%)%)e + [(u%)® + (uF)*0%]s = ewug, + eviog,
= 3e((w)? + (v°))aw — ((u3)® + (5)°),
we may multiply (2.10) by ¢ and integrate over R, x R to get

6/0 /_Oc[(ui)2+(v;)2]gpdxdt =/0 /_oo[%<ua)2+ %(ve)Q]% do dt

[T e dear

(2.10)

+ %&‘/ / [(u®)? + (v°)%]pur dz dt
0 —oc
S C(lu sy + 1V Laay)s

where C depends on ¢. Therefore, we get that eéui,sévi are uniformly bounded in
L?(K), and hence complete the proof. O

3. Young measures, compensated compactness, entropies and ngcl condi-
tions.

3.1. Young measures and compensated compactness. The Young measures represen-
tation for sequences of bounded functions in an appropriate space is an efficient tool for
studying the limit behavior of the approximate solutions of nonlinear problems, espe-
cially for conservation laws because of the lack of regularity of the limit problems. By
combining the Young measures representation with the compensated compactness first
introduced by Tartar and Murat [46, 47, 33], one can transfer the singular limit problem
to the problem of solving some functional equations for the corresponding Young mea-
sures, that is, to studying the structure of the Young measures satisfying the functional
equations. If one can solve these functional equations to clarify the structure of the
Young measures, the limit behavior of corresponding sequences can be well understood.
Therefore, the essential difficulty is how to solve these functional equations for the Young
measures. This difficulty is overcome for some important systems in conservation laws
(cf. [3, 10, 11, 12, 13, 16, 17, 24, 28, 29, 32, 35, 38, 39, 42, 56]). In this section we review
some results on Young measures and compensated compactness for our subsequent use.

First we give the representation theorem of Young measures (cf. [2, 7, 28, 38, 46, 47]).
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THEOREM 3.1. Let Q C R? be measurable. Suppose that u(t,z): @ C R" = R"U{oo}
is a sequence of measurable functions. Then there exists a subsequence u®* (¢, z) of u®(t, )
and a family of positive measures ;. € M(R"), depending measurably on (¢,z) € Q,
such that for any f € Cy(R")

£ = W) = [ f N in (0. (3.1)
A direct corollary of Theorem 3.1 is (cf. [2, 28, 38]) the following.

COROLLARY 3.2. Suppose that u®(t,z) is bounded in L} (R? R"), where 1 < p < oo.
Then there exists a subsequence u®*(¢,x) of u®(¢,z) and a family of positive measures

e € M(R™), (t,z) € R", such that for any bounded set A C R"

fu*) = (f(N), pur)  in L'(A), (32)
whenever f € C(R") satisfies

fA)

im —— =0. 3.3
IAl=se |A[P (33)
Furthermore, if p > 2, then we have that the sequence u®* (¢, ) converges strongly to
u(t,z) in L] (R?) for p > ¢ > 1 if and only if py.» = dy(1.0) a-€. in (t,z) € Q.

We now describe Murat and Tartar’s Div-Curl Lemma, which is the prototype for the
theory of compensated compactness (cf. [7, 11, 28, 33, 38, 46, 47]).

Div-CURL LEMMA. Let Q C R? be an open bounded set. Let {uf(¢,z)} be a sequence in
L?(9) for each i = 1,2,3,4. Suppose that us(¢,z) — w;(¢,z) in L*(Q), i =1,2,3,4, and
Oyu§ + 0,u§ and yu§ + O,u§ are compact in H~'(£2). Then u§u§ — u§u§ — ujus — uoug
in the sense of distributions.

In order to check the H~!(Q) condition stated in the Div-Curl Lemma, it is often
useful to use the following result obtained by Ding, Chen and Luo in [10], which is
related to an earlier result of Murat (cf. [7, 33, 46, 47]).

EMBEDDING THEOREM. Let Q2 C R? be an open bounded set, and let 1 < ¢ < 2 <
r < 00. Assume that {f.} is bounded in W~1"(§) and relatively compact in W~1-9().
Then {f.} is relatively compact in H~1(Q).

3.2. Entropies and H, ! conditions. In this subsection, we construct some special
types of entropy-entropy flux pairs and consider their entropy rate, i.e., the Hl(_)j condi-
tions. We recall that a pair of smooth mappings (n(u,v), ¢(u,v)), where n(u,v), g(u,v):
R? — R, is called an entropy-entropy flux pair if

Vq=Vn-dF (3.4)

for all u,v € R.
In terms of Riemann invariants, it is well known that (3.4) can be rewritten as

Qv = )\277'11"
q. = )\1772.

(3.5)
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Eliminating ¢ in (3.5) we see that 7 satisfies

1
wz + ——— A2z — A1uenz) = 0. .
77,+)\2_)\1(z77 1e?z) =0 (3.6)
Now from (1.7), (1.7)', we have
A =324 w, Ao =3w+ 2. (3.7)
So (3.6) becomes

1

2
wz w — T]z) = VY. .8
Moz + (e = 1:) = 0 (38)

Equation (3.8) is the Euler-Poisson-Darboux (EPD) equation [6, 12, 16, 17, 39, 45].
We only consider the EPD equation (3.8) in the quadrant w > 0 > z, where our Riemann
invariants take their values. We consider the Goursat problem for (3.8), which consists
in solving it subject to the conditions

n(w,z") = 61(w), w >0,
n(w*,z) =6:(z), z<0,

where 61,05 are given smooth functions, w* > 0 > 2* are fixed constants, and we impose
the compatibility conditions 8; (w*) = 02(z*).
The solution for (3.8), (3.9), obtained using Riemann’s method, is given by [6]

n(w,z):Hl(w*)G(w*,z*,w,z)+/TG(t,z*,w,z)[9;(t) + 2(z* —t)7'01(t)] dt

(3.9)

z (3.10)
+ / G(w*, 1, w, 2)[05(1) — %(T —w*)"10y(7)] d,
where G is the Riemann function, which in our case is
_ 3
Glorenaan) = (222 Hio), (3.11)
o — I
where
(3 — 1) (x4 — T2)
= = 12
o 0’(.’[1,.’1}2,l’3,$4) (xQ _(171)(1'4 —273) (3 )
and

def
H(o) = F(3,-%;1,0)
is a hypergeometric function.
The constants w* and z* are called limits of the entropy.
From Wang and Guo [49], we know that H(c) has the following Barnes integral
representation:

H(o) =

(1) 1 /+ioc L3 +s)I(s— %)F(—s)(—a)s ds, (3.13)

rGr(-4em Ji.e  T+s)

where |arg(—o)| < m, the integral contour is chosen such that the poles of I'(—s) are on
its right side while the poles of I'(s + £)I'(s — 1) are on its left side.

From this we have that H(c) is smooth on the interval (—oo,1) and H(o), H' (o),
H"(0),H" (0) are bounded in (—o0,7)] for each fixed n < 1.
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For our purposes, following Serre [39], we consider four types of special entropies,
solutions of (3.10)—(3.12), namely east, west, south, and north.

North. Tt is defined by choosing z* < 0, 6;(w) =0, 02(2) =0if z < z* and 62(2) =0
if —0 < z<0foragiven 0 < § < —z*. By (3.10)—(3.12) we have that a north type of
entropy 7 is given by

n(w,z) = (w—z)? / H(o)0'(t) dt (3.14)
where
0(t) " (w* — )" 20,(t), (3.15)

H satisfies (3.13), and o are defined in (3.12).

From (3.15) we immediately have that the support of 7 is contained in {z > 2*} and
we see that the term contributing to the singularities of 7 is the hypergeometric function
when o — 1 and the point (u,v) at which w(u,v) — z(u,v) = 0.

In (3.14) we have
=Z:2§+Z*;, 27 <t<-0<0<w, w >0,2<0.

So
c=1&z=w".

This is impossible since z(u,v) < 0, w* > 0. Consequently, the singularity of 7 is
concentrated on the point at which w(u,v) = z(u,v), i.e., (u,v) = (0,0), away from
which 7 is smooth.

The other types of entropies are defined as follows:

South. w* >0, z* <0, 6;(w) =0, O2(z) =0if z > 2%

East. z* <0, w* >0,602(2) =0, ;(w) =0if 0 < w < w

West. z* <0, w* >0, 02(2)=0,0,(w)=0if 0 <w <Jand 0;(w) =0if w>w".

All these entropies have integral representations similar to (3.14) and suitable vanish-
ing properties: east is supported to the right of the line w = w*; west is supported to the
left of the line w = w*; south is supported below the line z = z*; and north is supported
above the line z = z*. Similarly, we can see that the singularity of the west entropies is
concentrated on the axis w = 0.

We observe that the EPD equation (3.8) is invariant under the transformation
(w—a,z — a), where a = w* or z*. So we can restrict our analyses to the case w* =0
or z* =0 in the following.

To control the singularity of the north entropies on the axis z = 0, we make use of the
following two lemmas due to P. T. Kan [24]. The proofs can be found in (24, 3].

LEMMA 3.3. Given a north entropy 7, consider the operator

() /_o(-)0’(t) dt. (3.16)

*

Suppose that for some n € N, n > 1,
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l=1,2,...,n—1. Then in some small box 0 < —z, w < € < § we have
n=0(rz"1),
Tws Nz = O(T%(zn-l))y
Nwwy Nzzy Nwz = O(T%(Qn_—:i)),

where r = ||(u, V)| = w — z.

LEMMA 3.4. Let n(u,v) be a north entropy on the (u,v)-space. Suppose that (3.17)
holds for some n > 3. Then for each fixed constant M > 0, n, V5, V27 are bounded on
[—M, M] x [0, M] (or [-M, M] x [-M,0]).

Similar results hold for west entropies. The east and south types are regular, since
they vanish on the singular point (u,v) = (0,0), and so if we assume that % (=)~ 20, (t)]
has compact support, then the results of Lemma 3.4 also hold for such entropies.

Although the entropies constructed above are smooth and bounded up to the second
derivatives on each bounded interval, since (u(¢,z),v%(t,z)) just belongs to L*(R x
R,R?), in order to apply the Div-Curl Lemma to derive the Tartar-Murat’s func-
tional equation, we still need to estimate the growth conditions of such entropies as
r = Vu?+v? — oco. In what follows, we will concentrate on the north (or south)
entropy-entropy flux pairs. Similar results hold for the other entropy-entropy flux pairs.

First, we give the following results, which are quite helpful to verify the H, Igcl conditions
needed in the Div-Curl Lemma.

LEMMA 3.5. Suppose that {(u®(t,z),v°(t,z))} is the sequence of the viscosity solution
given in Theorem 2.4. Then we have that for each (1, q) € L,
ne(u (¢, 2),v° (¢, 2)) + ¢ (u® (¢, @), v° (¢, ¢)) is relatively compact in H ;! (R4 x R).
(3.18)
Here L is defined as in the following:
L={(n,9): (n,q) € C*(R*,R?), Vg = V- dF,|V?y| < C, (3.19)
IVl + Inl + gl < C(L+ [ul™ + [v]*),0 < a < 2} '

Proof. To prove Lemma 3.5, we only need to prove that for each bounded open set
QC R, xR,
Nt (u®, v%) + gz (u®, v°) is relatively compact in H~1(Q). (3.20)
Noticing
e (u®,v%) + g (us, v°) = €[V - (ug,
= I{ + 15,

)]z — €[Nun u§2+2nuvuiv§+ v foQ
e = &[muu(us) Now (v3)°] (3.21)

and

|V2n| < C,

we have from Corollary 2.6,

//sz ] d dt < C//Q‘E[(ufc)2 + (v5)%]drdt < C,
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where C is independent of e. (For simplicity we may use the same C as various constants
independent of €.) Therefore, I§ is bounded in M (), the dual space of Cy(£2), and hence,
by the Schauder Theorem (cf. Yosida [50])

I§ is relatively compact in W™ 1%(Q), 1< g < 2. (3.22)

Furthermore, because of the definition of L and Lemma 2.5, we have that for each
v € C5 ()

| / /Q “odudi] < e / /Q(InuUiHInuvil)l%ldwdt

SC//6(1+Iula+Ivl")(luil+|vi|)|901,-|ditdt
Q

< Ce: (5//9[(1@)2 + (v3)?] da:dt) (//S2 loa|? dzdt)%

1 1 1 c
+ Cez(llezugllr2(a) + lle2villLz)) (lu T o) + v 1 Zs ) lpallLa

— 0, ase—0,

=

where q = ﬁ > 2. This implies that I{ — 0 in W14 and % + é = 1. Combining the
above with (3.22) we get
e (u®, v%) + g (u®,v%) is relatively compact in W_l‘q/(Q). (3.23)

On the other hand, for any € € C3°(Q2),
£ £ € €
‘ [ [t ) + o dadt) < CClnl, 2 g + a3 ) 1991, 5,

<O 4w Fag) + UE||Cli4(sz))”V<P||L-4—j;, @’

which means that 7, (uf, v°)+¢ (uf, v°) is bounded in W~ (Q). Since 1 < 2, combining
the above with (3.23) we can apply the Embedding Theorem of Sec. 3.1 to get (3.20),

which completes the proof. O
Having obtained the above results, we have the following main results of this subsec-
tion.

LEMMA 3.6. The entropy-entropy flux pairs (n(u,v),q(u,v)) (i.e., the so-called east,
west, north, and south entropies with their corresponding flux pairs) belong to L and
hence, for such (n(u,v),q(u,v)) we have

m(uf,v°) + g, (u, v°) is relatively compact in H ! (R} x R), (3.24)
and the following Tartar-Murat’s functional equation

(e, mg2 = n2q1) = (R M)ty @2) = (Beas 12) Bty @1) (3.25)
holds for each (7;,¢;) (i = 1,2) constructed above.

Before proving Lemma 3.6, we first give the following results.
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LEMMA 3.7. Suppose that 62(z) is a smooth function with compact support and
supp 02(z) = [z*,0] (or [B,2*]). If (=) satisfies the conditions stated in Lemma 3.4
(for the south entropy-entropy flux pairs, such a requirement is unnecessary), then for
z > B (or z < (3), the north (or south) entropy-entropy flux pairs satisfy the following
estimates:

In(w,2)| < Clw - 2)2, (3.26)

lg(w, 2)| < C(1 + (w — 2)?). (3.27)

Proof. The north (or south) entropies have the following integral representation:

n(w,2) = (w — 2)} / H <%) 0'(t) dt, (3.28)

and the corresponding entropy flux pairs are

q(w, 2) = (w + 32)(w — 2)? /ZH ((z—t)w) 0'(t) dt

. (z —w)t

- /;(w—t) /t H (g:i};ﬁ) o' (s) ds dt.

Having obtained (3.28) and (3.29), then (3.26) and (3.27) follow immediately. This
completes the proof of Lemma 3.7. O

(3.29)

D=

LEMMA 3.8. Under the same conditions as stated in Lemma 3.6, we have

Inw(w, 2)| < C((w = 2)7% + |2lw™ (w - 2)7 %), (3.30)

I (w, 2)| < C((w — 2)7% +wlz| ™ (w - 2)7%), (3.31)

[how(w, 2)] < C((w—2)7% + |zlw™ (w— 2) 7 + [2lw™>(w — 2)73), (3.32)
= (w, 2)] < C((w = 2)72 + wlz| ™ (w — 2)72 + |2] M (w — 2)77 + [zlw™ (w - 2)7 %),
(3.33)

N2z (w, 2)| < C((w - z)_% + w|z|'l(w — z)'% + wz‘2(w — z)‘%). (3.34)

Proof. We only prove (3.30); the rest is similar.
Noticing z > 3 (or z < 3), we have

n(w,2) = (w—2)? /ﬁH <(Z_—t)“’> 9'(t) dt.

(z —w)t

z
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So

N (w, 2) = %(w-z)_% /ﬁH (Z:Z;‘;) 0'(t)dt
+z(w—z)_%/jH’(gi_i)};l;) t_ '(t) dt

(w—2z)"2 /q H (%) 0'(t) dt
2w - 2)" ) e
(3.35)

Lo (=
i e
:%(w_z)% (=)o
—Z(w—z)‘%/jH’Gz:g;‘t’) 0'(t) dt
g [ () Sy

Similarly, noticing z > 3 (or z < ) and using integration by parts, we have

/jH (gi:—g;";) o'(t)dt

N =

(S5}

[SE

e (,2) = 5 (w - )

3
-3 o (=tw\
+ w(w — 2) /z H ((z—w)t)e(t)dt (3.36)
P (Gt d
+wz (w - 2) -/Z*H((z_w)» <0/ (0) at

Nww(w, 2) = —}l(w — )3 /B H (‘Z - t’“;) 0'(t) dt

(z —w)

toa(w—2)"} /B o ((Z - t)w) o'(t)dt

(z —w)

t
+22w—2)73 /B H" (g - Z;‘;) o' (t) dt

+ 222w (w—2)7 8 /ﬂ H <(z - t)“’) (t0'())’ dt

(z —w)t

(3.37)

+ 2w i (w—z)"2 /;H <E§ — u);)t> (t0'(t)) d

2 4 3 -
+ w2 / H (( DY )Y dt,

(z—w)t




NONSTRICTLY HYPERBOLIC CONSERVATION LAW 645

A G
et [ ()
rwiw—2)"% [ H” (i:i))“t’ '(¢) dt
b2 l(w—z{z% / ?<;'(Ej))2;‘;)(t0'<t>)'dt o
—ws Q(w-zr%/jﬂ(g;:g;;)wa»fdt
+ 2w [T (22 Geryy a
and
Tz (w, 2) = —(w—z)_%/jH (E:Z’)‘;) o' (t) dt
e [ (=B
wya et [ (0 oy w
o= [ (G255 o
—wslw-2)F | % (=) vwa (3.39)
~sw-at [ ’ (E0) woya
vt [ (0 oy a
Jww-at [ (B2 oy a
~utw-27 [ (22 oy a
-t [T () iy a

Having obtained (3.35)—(3.39), we can easily deduce that (3.30)—(3.34) hold. This
completes the proof of Lemma 3.8. O
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LEMMA 3.9. For u? +v% > 0, we have

wy, = w(w —2z)7!

k)
w, = %v(w—z)_l,
2y = —2z(w —2)7

2y = —3v(w — z)7 1,

Wy = 2wz(w — 2) 73,
Wy = —%uv(w —2)73,
Wy = %u2(w —2)73,
Zuw = —2wz(w — 2) 73,
Zuo = Suv(w — 2)73,

Zyy = —%uz(w —2)78
Now we turn to prove Lemma 3.6. Without loss of generality, we only prove Lemma
3.6 is true for south entropy-entropy flux pairs. From Lemma 3.5, we only need to verify

that such entropy-entropy flux pairs belong to the class L, i.e., we only need to get the
following estimates:

In(u,v)| < C(lul? + [v]%),

. . (3.40)

lg(u,v)| < C(1 + [ul? + |v] ),
17 (1, )| + |7 (u, v)] < C, (3.41)
7w (45 0) | + 7 (w, 0)| + |70 (w, )| < C. (3.42)

Equation (3.40) follows immediately from (3.26), (3.27). Now we turn to prove (3.41),
(3.42) under the additional condition z(u,v) < 3. The case f < z(u,v) < 0 is less
complicated and hence we omit the details.

First notice that when z(u,v) < (3, from the integral representation of n(u,v) and the
arguments used in the proof of Lemma 3.8, one can easily deduce further that

N

|nu7(w7 Z)I + |77z(w72)| < C(w - Z) ’ (343)

(10, 2) sc( ) ,

|nwz<wz>|<0mm{( )m—a-i(u%)(w—zr%}, (3.44)

xal...

L
2

el <0 (14 2 ) w2

||
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From Lemma 3.8, Lemma 3.9, we have
|nu(u7 ’U)l = |nwwu + nzzul

£

w
< Nl + (7]
w—2z w—2z

<C.

(NS

To estimate 7, (u,v), three subcases must be taken into consideration.
Case I: As Vu? +v? — 400, w(u,v) — 400, 2(u,v) — —oco. Consequently, there
exists a constant a € (0,1) such that

7%? <a. (3.46)
Thus
Iw7| + %I <c, (3.47)
and from (3.47), (3.30), (3.31), we get
7 (w, 2)| + [1:(w, 2)] < Clw = 2)72, (3.48)
Notice also
o] + |70 = ;I;B}—I” <1 (3.49)
We thus have
70 (u, )| = [Nwwy +n22,| < C. (3.50)

Case 1I: As Vu? +v? — +o00, w(u,v) — +o0o while z(u,v) remains bounded, i.e.,
there exists a positive constant C such that

—C < 3(u— vVu2+v?) <0.

The above information implies that u — 400 and as u — +o00,

,02

<c. (3.51)

u
From (3.42), (3.48), and Lemma 3.9, we can deduce

Clv|
(4 02)1
Case III: As vVu? + v — +00, z(u,v) — —oo while w(u,v) remains bounded. Such a

case can be tackled similar to that of Case II. Thus we omit the details.
From the above three cases, we have

Iﬂv(uv U)l = |nwwv + nzzvl =< (3.52)

im0 (w,v)] < C. (3.53)

and (3.41) follows from (3.45) and (3.53).
Now we turn to (3.42).
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By employing (3.32)—(3.34), (3.43), and Lemma 3.9, one can easily get
7 (,0)]| < C. (3.54)
As to the estimate of n,,(u,v), we have from (3.44) and Lemma 3.9 that
Nuw (4, V)] = [MwwWus + Nw:Wuze + NwWay

F MWy 2y + N2z2u20 + 772211v|

<C <1 + %‘) Jvjw(w — 2)~2
w ) (3.55)
<C <1 + —> lvz|(w — 2)2
|2l
< Cluv|(w — z)—%
<C.

The estimate of n,,(u,v) can be obtained completely similar to that of n,(u,v) and
hence we omit the details. This completes the proof of Lemma 3.6.

Before concluding this section, we give the following results, which will be useful in
our next section.

LEMMA 3.10. For each fixed a € (—o0,0), we can find § < 0 such that o < § < 0, and
let 0 < & < (6 — @). Suppose that (n1(w,z), q1(w,z)) and (n2(w, 2), g2(w, 2)) are a
south and a north entropy-entropy flux pair, with limits o + ¢ and a — €, respectively,
where the Goursat data satisfy 6i(z) def m(w, 2)|w=0 > 0, 62(2) def Ma(w, 2)|w=0 < 0 if
z € (a—¢e,a+e¢)and 62(z) = 0 if z € (6,0). Under the above conditions, on the strip

a—eg<z<a+e w>0, we have

M (w, 2)g2(w,2) = ma(w, 2)qr (w,2) = == p%(2) + (w = )7 (2)0(e).  (3.56)
Here
pf(2) = 01(2) / 03(t) dt — 02(z) /+ 65 (t) dt. (3.57)
Proof. From (3.28), (3.29), we have after some integration by parts [16, 17, 39]
ni(w, 2) = I(w, 2)05(z) + /Z L J(t,w, 2)05(t) dt, i=1,2, (3.58)
a—(-1)ie
and
¢i(w, 2) = K(w, 2)05(z2) + /z - L(t,w,2)05(t)dt, i=1,2. (3.59)
a—(-1)ie
Here
I(w,z) = (Z;wy, (3.60)

J(t,w,2) = we H <(z - ”“’) , (3.61)

C(w—2)12(=)7527 \(w - 2)t
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K(w,2) = M(w,2)I(w, 2) = (w + 32) (z_zwf ,

L(t,w,z) = —§(3t +w)w(w — )72 (—t)"2 — 3w — )2 (—t)"2

o e (=)

1 (3s + w)sw(=t)=5"* (

s—thw

(
(s—w)t

2 (w—s5)3/2

LBt w)swi(t —w) ., <(3 - t)“’> } ds.

(=t)7/2(w — s)5/2 (s —w)t
Since
aJ 5 wz ,(z—tw
E N o T iz ((z— >t>
w?2z? g ((z—tw
- (6o
a—f(t w,z) = —%w(w - t)_i(—t)_% - g(3t + w)w(w — t)_%(—t)_%
8
(

+ /tz {g(3s+w)w(—t)—%(w —s)"iH' <(S - t)w)

(s —w)t

— (35 + w)w?s(—t)" 2 (w —s)" 2 H" ((s - t)w>
)

5 _z R
—Z(3s+w)sw(—t) (w—38) 2H (
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(3.62)

(3.63)

(3.64)

(3.65)
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We have fora—e<z2<a+ec,w>0,a—ec<t<a+e¢,

‘M <Clw-2)?, (3.66)
ot
‘%—j;’-(t,w,z) SC(1+(w—z)%). (3.67)
So
ni(w, z) = I(w, 2)05(2) + J(z,w,z)/ 05 (t) dt
a—(—1)ie
z oJ ;
+/ — (0t + (1 —0)z,w,2)(t — 2)05(t)dt (0 € (0,1))
am(-v'e O (3.68)
= I(w, 2)05(2) + J(z,w,z)/ 05 (t) dt
a—(-1)'e
+ (w— z)%O(e)/ gi(t)dt, i=1,2.
a—(-1)ie
Similarly
gi(w, z) = K(w, 2)05(z) + L(z,w,z)/ _ 05(t) dt
| e (3.69)
+ (14 (w- z)%)O(e)/ 0i(t)dt, i=1,2.
a—(—1)ie
Noticing
L(z,w,2) — M (w,2)J(2,w, 2) = — (Z ; w) ’ , (3.70)

(w,2)] < C(w - 2)%, (3.71)
K (w,2)] < C(w - 2)3, (3.72)
J(z,w,2)| < Clw - 2)%, (3.73)
|L(z,w,2)] < C((w = 2)% +1), (3.74)

we have fora—e < z<a-+e, w >0,
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T (wa Z)QQ('UJ, Z) -2 (’UJ, Z)ql (w’ Z)

:(um@@uyhnzm@/q9ama+w—@h%aLz@amg

a4+ +e
(KW@%@+L@wz/ 02(t) m+a+(—@%mq/2@ma)

1

—((wz)@Q()+szz/ 03 (t)dt + (w — 2)20 / 02t)dt)
x<(w@%U+szz/ 03 (t m+u+(-@)m)aﬁ%mm>
= w, 2 Z, W, z2) — w, 2 Z,Ww ! 2 — 2 1
— 2L, 2) = Ko, ) 2) (046) [ Boa-6) [ oloar)
+ (1 + (w = 2)H)(w,2) — K (w, 2)(w - 2)F)0(e)
< 04) [ a2 / C b))
+ (14 (w—2)? +L(t,w,2)(w—2)% + (1 + (w— 2)%)J(2,w,2))O(€)

x / 02(t)dt o;(t)dt)
a—¢ a+te

- (F21) F @+ - 906

z

This is (3.57) and completes the proof of Lemma 3.10. O

4. Reduction of measures. In this section, we prove our main result, Theorem 2.
From Corollary 3.2, we only need to prove that the representation generalized Young
measures j; . are indeed Dirac ones. The reduction process is divided into two parts:
First, we prove that ;. is supported on at most four points; secondly, we prove that
He. are indeed Dirac measures. Such a method is a slight improvement of the method
of Denis Serre [39] and is motivated by the works of Frid and Santos [17, 18] and Kan
[24]. Roughly speaking, this method consists in showing that

supp . N{w=a} =2, Vae (w,wth), (4.1)
and

supputz N{z=a} =9, Vace (z7,z), (4.2)

where w~ and wt (or z~ and 27) are the infimum and supremum of the projection of
supp gt on the axis z = 0 (or w = 0, respectively). This means that the rectangle R
whose vertices are (w™,27), (w™,z"), (wt,27), and (w™, z") is the minimal rectangle
in (w, z)-space containing the support of p; 5, where 0 < w~ < wt,z7 < 27 <0, and
the case wt = +o0 or the case z~ = —o0 is also allowed.
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After the proof of (4.1) and (4.2) we can conclude that there exist points A;, i =
1,2, 3,4, belonging to the quadrant z < 0 < w and constants 8; > 0, i = 1,2,3,4, such
that Z?:l B; =1 and

4
Hix = Z,Bi(SAi- (43)
i=1

By Theorem 6.1 in [39], (4.3) implies that there exists at least one 5; = 0. Having
concentrated supp p; ; in three points, we show how to reduce it to a unique point in the
(w, z)-space. Noticing that in the positively invariant region ¥ (or £7), the map

(u,v) = (w,z) (4.4)
is one to one, we have that u, , is also a point mass in the (u,v)-space and
Htx = 5(u(t,x).v(t,r))’ a.e. (t, 3:) € R+ x R, (45)

and from Corollary 3.2, we get our strong convergence results.

We assume that R contains the umbilic point w = z = 0, i.e., w~ = z+ = 0. The
other case is similar and less complicated. We prove (4.2) by employing north and south
entropy-entropy flux pairs described in Sec. 3. Analogously one can show (4.1) by using
the east and west entropy-entropy flux pairs described in Sec. 3.

Before proving (4.2), we first give the following lemmas. The first lemma is due to
Kan [24].

LEMMA 4.1. For every z* € (27,0), there is a south entropy 7j(w, z) with limit z* such
that

(1.2, M(w, 2)) # 0. (4.6)

LEMMA 4.2. Suppose that there exists a north entropy-entropy flux pair (n(w, z), ¢(w, 2))
with limit @ € (27, 0] and (u¢ ., n(w, 2)) # 0 and let a* = inf{a}. For each a € (27, a*),
if we choose a < 6 <0,0< e < %min{dist(a, {27,0}),6 — a}, then for any C%-entropy-
entropy flux pairs (n;(w, z), ¢;(w, 2)) (¢ = 1,2) with
supp(m (w, 2), 1 (w, z)) = supp(m (w, z)) Usupp(q1 (w, 2)) C [0,00) x [&1,0],
supp(n2(w, 2), g2(w, 2)) = supp(n2(w, 2)) Usupp(gz(w, 2)) C [0,00) x (—00, ],
i.e., for each C%-north entropy-entropy flux pair (n;(w, z),q:(w,2)) with limit @, and
each C?-south entropy-entropy flux pair (n2(w, z), g2(w, 2)) with limit @3, we have

(e m(w, 2)g2(w, 2) = ma(w, 2)q1 (w, 2)) = 0. (4.7)
Hereaj, oo € I =(a—¢,a+¢) C (z7,a").

Proof. We first prove the following assertion.
For each north entropy-entropy flux pair (n, (w, 2),q1(w, z)) with limit &;, we have
that there exists a constant C such that

(B> p(w, 2)) = Clp s m (w; 2)).- (4.8)
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In fact, taking z* = @; —e < 0, we have from Lemma 4.1 that there is a south entropy
7(w, z) with limit z* such that

(b, M(w, 2)) # 0. (4.9)

Since supp(7j(w, z),g(w, z)) Nsupp(n (w, z), ¢1(w, z)) = &, we have from Tartar-Murat’s
functional equation (3.25) that

<'u't¢7 m (w» Z)) <ut,2: q(w) z)> - </‘Li,r) ﬁ(w7 Z))(.ut,lv q1 (w7 Z))
= (pt.z,m(w, 2)g(w, z) — T(w, 2)g1 (w, z)) = 0.
So

(b, (W, 2)) (pr 20 1 (w, 2)) = (B2 M (W, 2)) (Bt 2y (W, 2))-
Since (s ., (w, 2)) # 0, we have

_ </"‘t,2yq(wvz)> w. 2
(.U't,x?ql(wvz)) = <,Uft,a:y7_7(w,z)> (ﬂt,:mnl( ) ))

This is (4.8) with C = (p¢ 2, g(w, 2))/{pt .z, M(w, z)) and completes the proof of the above
assertion.

Now we turn to prove Lemma 4.2. Without loss of generality, we assume @; < @
(the case @; > @y is trivial). We prove the lemma by considering the following cases:

Case I: o* = 0.

From the definition of a*, we have that for each north entropy-entropy flux pair
(m(w, 2), q1(w, z)) with limit @; < 0,

(tt .2y m(w, z)) = 0. (4.10)
Combining (4.10) with (4.8), we have
(bt,2, q1(w, 2)) = 0. (4.11)

Hence, from Tartar-Murat’s functional equation, we have
(Btes M (w, 2)g2(w, 2) — M2(w, 2)q1(w, 2))
= </‘1't.,l‘7 m (UJ, Z))(.u’t,x7 qQ(w’ Z)> - </~Lt,x$ 772(71)» Z)> (ut@? q1 (U), Z)>
=0.

Thus (4.9) holds.
Case 1I: o* < 0.
Since z* = @1 — ¢ < @ < @2 < @, we have supp(n(w, z), ¢(w, z)) N supp(n2(w, z),

32(w, z)) = @, supp(n(w, 2), q(w, z)) N supp(7N(w, 2),§(w, z)) = & and so one gets from

Tartar-Murat’s functional equation that

(/‘t,a:v ﬁ(wa Z)><;u't,aca q(w’ Z)> = <P‘t,a:a 6(“’7 Z))(:U't,x» n(wv Z)>v
(bt ,orm(w, 2)) (Bt 22 G2 (w, 2)) = (B2, AW, 2)) (Bt 25 M2(w, 2)).-

Noticing (u¢ o, n(w, 2)) # 0, (pe,z,7(w, 2)) # 0, we have from (4.12) that

(4.12)

(.01 4210, 2)) = %w,m(w,z» (4.13)
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and
</~"L..rvg(w7 Z)> _ <,LLL$,(](’U},Z)). (414)
<Nt.a:777(w’z)> (Nt.wyn(w,z»
So
</Lt.:m QQ(w»Z» = C(Nt,:mﬂ?(w’z))‘ (415)
Having obtained (4.8), (4.15), we can easily get (4.7) by employing Tartar-Murat’s
functional equation. This completes the proof of Lemma 4.2. |

Proof of (4.2). We first prove the following assertion. If a* is defined as in Lemma
4.2, then we have

suppur . N{z=a} =@, Yae (z7,a"). (4.16)

In fact, for each a € (27, a*), if we choose 4, ¢, and (n;(w, 2), ¢;(w, 2)) (1 = 1,2) as in
Lemma 4.2, then we have supp(n; (w, z)g2(w, 2) —n2(w, 2)q1 (w, 2)) C [0,00) X (a—¢, a+e).
Letting x. denote the characteristic function of [0, 00) x (& —¢, a+¢€), we have from (3.52)
that

M (w, 2)g2(w, 2) = ma(w, 2)a1 (w, 2) = (1 (w, 2)a2(w, 2) = 2w, )1 (w, 2))xe
_ (_ ( - “’) p(2) + (w— a)2pf(z>0<e>) Xe-

a
(4.17)
Combining (4.7) with (4.17), one gets
0 = (t,zs h(w)p* (2)(w = a)*Xe) + (Ho.zs p°(2) (w — @) x) O(e), (4.18)
where
1
Suppose that (4.16) does not hold. Then
(Hi.20 0% (2)(w = @)’x) >0, Ve >0; (4.20)

so we can define a well-defined probability measure fi; , on the half-line w > 0, z = a as
in the following:

(the.z, Ep° (2)(w — a)x:)

e e P w = 0P (421
Since
(w—a)? = 0(r?) (4.22)
when r = Va2 +v2 — o0, we have
(t,2y (w — a)?) < o0. (4.23)

From (4.21) we have i , — 7, ., where [i, , is a certain probability measure on w > 0,
z = a, which we call the trace of y; . Then, by (4.18) we have

<ﬁm, - (wl a)> 0. (4.24)

This is a contradiction since a7 < 0. This completes the proof of (4.16).

a(uv
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Secondly, we prove that (4.2) is true. To prove this result, from assertion (4.16), we
only need to prove the following result.

For each north entropy-entropy flux pair (n(w, z), g(w, z)) with limit z* € (27,0), we
have

(Ht.arn(w, 2)) = (pea, q(w, 2)) = 0. (4.25)

In fact, when (4.25) holds, for each fixed @ € (z7,0), if we choose a < § < 0,
0 < & < imin{é — a,dist(a,{z7,0})}, @1,02 € [ = (@ — €, + ) C (27,0), then
for any north entropy-entropy flux pairs (;(w, z), ¢ (w, z)) with limits @; and any south
entropy-entropy flux pairs (n2(w, z), g2 (u, z)) with limits @., we have from Tartar-Murat’s
functional equation (3.25) and (4.25) that

(e, m(w, 2)g2(w, 2) — m2(w, 2)q1 (w, 2)) = 0. (4.26)
Having obtained (4.26), similar to the arguments used above, we can prove
supppur. N{z=a} =0, Vae (z7,0).

This is (4.2).

Now we turn to prove (4.25).

Suppose that there exists a north entropy-entropy flux pair (n(w, 2), g(w, z)) with limit
z* =Z such that 2~ < Z < 0 and {; ., n(w, 2)) # 0.

By the definition of z~, there exists —co < a € [z7,%) such that p;,({w > 0,a <
z < a+e}) >0, V0 < e <« 1. (Without loss of generality, we may assume € <
smin{|z —al, |z~ —al}).

Letting (m (w, 2), ¢1(w, z)) be south entropy-entropy flux pairs with limits z* = a +
€, (n2(w, z), ¢2(w, z)) be north entropy-entropy flux pairs with limits z* = a — ¢, since
supp(n(w, 2), g(w, z)) Nsupp(m (w, z), q1 (w, z)) = @ and (p;.o, N(w, z)) # 0, we have from
Tartar-Murat’s functional equation (3.25) that

(bt .z, g(w, 2))

(l‘tm‘h(w Z)) (,Ut%xvﬂ( )) (:u’t,:mnl (w,z)). (427)

On the other hand, from Lemma 4.1, we can choose a south entropy-entropy flux pair
(M(w, 2),g(w, z)) with limit z* = a — 2e > z~ such that

(e, M(w, 2)) # 0. (4.28)

Since supp(7(w, 2),q(w, z)) N supp(n2(w, 2), ¢2(w, 2)) = @, supp(Ti(w, 2),g(w, 2)) N
supp(n(w, 2), g(w, 2)) = @ and (pq,N(w, 2)) # 0, (pea,n(w,2)) # 0, we have from
Tartar-Murat’s functional equation (3.25) that

(e2,q(w, 2))
</it.zaQQ(w»Z)> <‘u ﬁ(w,2)> </J't,r) nQ(w,Z)>, (4 29)
<’J’txv (’LU Z)) < Ht.xzyq (UJ,Z)> =d '
(e, (w,2))  (przyn(w,2))
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From (4.27), (4.29), and Tartar-Murat’s functional equation (3.25), we have

<,U't,:m m (w, Z)q2 (w7 Z) -2 (w7 Z)‘]l (w> z))
= <Nt‘z7 T (w, Z)></~Lt.<r7 QQ(w7 Z)) - (:ut.lfv 772(7-”7 Z)><V't-rv q1 (w» Z)>
= (B, M (w, 2))d{ .oy M2 (w, 2)) = (e, M2 (w, 2)) Atz m (W), 2))
=0.

(4.30)

Having obtained (4.30) and by employing the arguments used above, we can also get
a contradiction. This completes the proof of (4.25) and, hence, completes the proof of
(4.2).

Similarly, by employing east and west entropy-entropy flux pairs, we can also prove
that (4.1) holds.

Thus, we have shown that (4.3) holds. Let A; = (0,0), A2 = (0,27), A3 = (wt,0),
and Ay = (w*,27), where 2= < 0 < w*. If we denote f; to be f(A;) for any function
f, then from (4.3) and Tartar-Murat’s functional equation (3.25) we have that

4
(B; — ,8]2‘)(77]‘6]' - ﬁij) = Z ﬁzﬂj(ﬂiq]‘ = 7:95)- (4.31)
1 ij=1
%
From Theorem 6.1 in [39], at least one 3; = 0.
When 84 = 0, if we let (n(w, 2), ¢(w, 2)) and ((w, z),g(w, 2)) in (4.31) be arbitrarily
chosen east entropy-entropy flux pairs with limits w* = %w*’, z* =0, we have

M-

J

M=qQ =T =¢=m=q@=7,=30,=0 (4.32)
From (4.31) and (4.32), we deduce that
(Bs — B3) (035 — T3q) = 0. (4.33)
Since
Az
0= a(49) = [ gu(w,0)du
A
A
= / Wy (w, 0)dw
Ay
w+
= / wny, (w, 0)dw
0
'lU+
=whn —/ n(w,0)dw
0
and
'IU+
% =a(4s) = wmy - [ (w,0)du,
0
we have

+

m%-%%=/ (Mg (w, 0) — nai(w, 0))dw.
0
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Since n(w,0),7(w,0) are arbitrary on the segment A; A3, it follows from (4.33) that
B3=0 or B3=1. (4.34)
When g3 = 0, we can choose (n(w, z),q(w, z)) and (f(w, 2),q(w, 2)) in (4.31) to be
arbitrary east entropy-entropy flux pairs with limits w* = %
(Bs — B3) (04 — Myqs) = 0. (4.35)

w™,2z* = z7. Then we have

Then similarly

Bis=0 or fB4=1.
If B, = 0, analogously we have 34 = 0 by employing south entropy-entropy flux pairs

with limits w* = wt,2z* = 27.

Now suppose 31 = 0. Here the arguments above do not apply with west and north
entropy-entropy flux pairs because in this case the Gousat data must satisfy (3.17) and
hence one may have 1, = 0 (for west entropies) or n3 = 0 (for north entropies). However,
we can combine the east and south entropy-entropy flux pairs to get the desired results as

in the following. Let (n(w, z), ¢(w, z)) be east entropy-entropy flux pairs with limits w* =

def

swh, z* =0 and 6;(w) = n(w,0) € Co(3wh,wt), (M(w, 2),g(w, z)) be south entropy-
entropy flux pairs with limits w* = 0, z* = 327, and 6,(z2) def 7(0,2) € Co(z7, %z‘).
Then from (3.58)—(3.63), we have

N3 = 1(A3) = 61 (w™) =0,

+

g = q(Ay) = / e,

E'LU

wt (4.36)
m=na)= [ Jut 00,

Fw

'LU+
qq = q(A4) = / L(t,w+,z_)01 (t) dt

Lo+

2
and

My =T(A2) = 02(27) =0,

z

5 =q(A2) = | 6at)dt,

R

" (4.37)
Ny =N(Ag) = 1 J(t,wh, 27)0(t) dt,

227

Since f;(t) can be arbitrarily chosen, we can choose 63(z) € Co(z7, 327) such that
M, # 0. Substituting the entropy-entropy flux pairs (7j(w, z), G(w, 2)), (n(w, z), g(w, z))
constructed above into (4.31) and noticing (4.36), (4.37), we have

Ba(14Gy — M494) = (Bsns + Bana)(B2Ty + Baly) — (8393 + B194) (BT, + BaTly).  (4.38)




658 HULJIANG ZHAO

That is,

((Bs— B3)qy — B284G2)1a — ((Ba = B7)714)qa + (B3B47i4)gs = 0. (4.39)
Substituting (4.36) into (4.39), we have for each 6, (w) € Co(Fw ™, wt),

[ 48804 151808, BoB101 1 0%, 27) = (B4 = B0 L, 27} n 1)t =0,
’ (4.40)
So

BsBamly + {(Bs — B1)as — BeBa@u} I (t,w™,27) — (Bs — B)AL(t,wh,27) = 0. (4.41)

Since the set of functions {J(-,w",z7), L(-,w",z7),1} is linearly independent [16,
17], we have from (4.41) that

B3Ba7y = 0,
(81 — B, = 0, (4.42)
(B4 — B7)q4 — B2B47, = 0.
Noticing 74 # 0, we have B4 =0 or 5, = 1.

In all cases, we conclude that g, , is the sum of at most two delta functions. So
without loss of generality, we can assume

K = p10(0.0) + P20(w+ 2-)s

where p; + p2 = 1, p1, p2 > 0, and |wt| + |27| > 0. The other cases are similar.
If wh > 0, we can take east entropy-entropy flux pairs (n;(w, 2),q(w,2)) (i = 1,2)

with limits w* = Jw™, 2* = 0 and substitute them into (4.31) to obtain

(p2 = P3)(m(w™, 27 )g2(w,27) —mp(w, 27 )qu (w*,27)) = 0.
Since the values of n;(w, z),q:(w, z) (1 = 1,2) at (w™*,z7) can be arbitrarily chosen, we
can assume (1192 — 12q1)(w™, 27) # 0 and prove that y, . is a delta function.
If wh =0, since |[wt| + |27| > 0, we have 2~ < 0. We can also conclude, by taking
south entropy-entropy flux pairs with limits w* = 0, z* = %z‘, that p; ., is a delta
function. This completes the proof of Theorem 2. O
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