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Abstract. In the context of wave propagation in damaged (elastic) solids, an analyt-
ical approach for oblique penetration of a plane wave through a doubly periodic array
of cracks is developed. By using a uniform approximation in one-mode range previously
obtained, we give explicit representations for the wave field throughout the structure and
the relevant parameters. Two figures show the peculiarity of such results.

1. Introduction. Wave propagation through a medium with distributed discontinu-
ities is a concern in many practical problems regarding, for example, composite materials,
protection from earthquakes, or ultrasonic methods for nondestructive testing.

There are principally two different approaches to this subject. The first one considers
randomly distributed discontinuities, and a brief survey of the works devoted to this direc-
tion of research is given in [1]. The second approach assumes well-organized structures,
in which the discontinuities are distributed in a regular periodic manner (typically, in a
two-dimensional configuration).

An exact numerical procedure to solve this type of so-called doubly-periodic problem
was first applied by Achenbach and Li [2] and by Angel and Achenbach [3]. On the
contrary, in our recent paper [4], we have proposed a new analytical method which leads
to explicit results for one-mode penetration into a doubly-periodic lattice, in the normal
incidence case. Assuming an arbitrary (finite) number of vertical arrays, it is shown there
that the wave properties of such well-organized structures are considerably different from
those typical of structures with randomly distributed discontinuities.

In the present paper, we aim to extend this method to the oblique incidence case,
namely, to the case in which penetration occurs with an arbitrary angle of incidence.
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In this connection, we shall use some of our analytical results established in [5] for the
single array of discontinuities.

The paper is especially addressed to wave propagation in an elastic context, so that
the (scalar) wave field and the discontinuities of concern will be interpreted as anti-plane
displacement and cracks in a solid medium, respectively. However, the mathematical
framework can also be applied for similar problems in acoustics or in electromagnetism.

2. Formulation of the problem and reduction to a linear algebraic system.
The formulation is quite classical [2], [4]. We consider a plane scalar wave penetrating in
an elastic medium in which there is a doubly-periodic lattice. This consists of M (> 2)
identical planes, vertically located at x = 0, d, 2d,..., (M — 1 )d, each of them containing
an infinite periodic array of co-planar cracks. The period of a vertical array is 2a, the
opening between two neighbouring cracks is 2b (around \y\ = 0,2a, 4a,...), the distance
between the cracked planes is d (see Fig. 1). We assume that the time dependence is of
harmonic type, so that the wave field ^{x, y) satisfies throughout the Helmholtz equation

(dxx + dyy)tp + K2ip = 0, (2.1)

where k = ui/c is the wave number, u; the angular frequency, and c the (transverse)
wave speed. Of course, ip(x,y)e~lu't gives uz(x,y,t), the only nontrivial component of
the displacement vector (i2 = —1).

The incident wave, of unitary amplitude, has the form

lp0 = e»K(*costf+i/sin«9)^ (2.2)

$ being the angle of incidence (cf. [5], [6]).
The natural symmetry and periodicity of the problem suggest that ip can be written

as

V'(x,j/)=ei^sinM^2/) (2-3)

where ip is a periodic function with respect to y : (p(x, y) = ip(x, y + 2a) Vx, y [6]. By the
same token, the geometrical context of the problem can be restricted to a single layer
\y\ < a with openings \y\ < b, and the wave field <p can be represented in the following
forms along the various regions:

^ = jKX cos0 + Re-iKXCOS0 + ^ Ane(rnx-i^ny/a)^ % < ^

n/0

ipm = B™ cos{«:[x — (m — l)d] cost?} + C™ cos[k(x — md) cos$]

+ ch[rn[x - (to. - 1 )d\] + C™ ch[rn(x - md)]}e~l™y/a,
n^O

(to — 1 )d < x < md, to = 1,2,M — 1; (2.4b)
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Fig. 1. Oblique penetration of a plane incident wave through a
doubly-periodic array of cracks

ipr = TeiK[x-(M~i)dlcostf + Dne-Tn[x-(M-1)d]-inny/a, x > (M - 1 )d- (2.4c)

n^O

where

Tn = [(irn/a — resin??)2 — k2]1/2 (2-5)

in order that each term of such equations, after being multiplied by elKy Slnbe a trivial
solution of Eq. (2.1).

In the above formulas, all capital letters denote unknown constants, ch (or sh) stands
for hyperbolic cosine (or sine), and the symbol means summation Vn e {..., — 2,
—1,1,2,...}. We prefer to let explicitly appear the terms with n = 0; note this in
particular for the constants R = Ao in (2.4a) and T = Do in (2.4c).

The natural traction-free boundary condition on the cracks' faces requires that dip/dx
= 0 for b < \y\ < a and x = (m— l)d, m = 1,..., M. Assuming also a continuity property
of dtp/dx through the openings, i.e., for |j/| < b and x = (m — l)d, m = 1,..., M, we can
introduce some new unknown functions gm(y)j related to the stress components along
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the openings, as follows (cf. [4]):

d<pi jgi(y), \y\<b,
-7T~ = -TT- = < X = 0; (2.6a)
dx dx |o, b < \y\ < a,

dfm-i _ difim _ J 9m(y), \y\ < b, x = (m - l)d,
dx dx j^o, b < \y\ < a, m = 2,...,M-l

difiM-i difir I 9m(v), \y\<b,
dx dx 1^0, b < \y\ < a

By integration of the above equations over \y\ < a, we easily get

(2.6b)

x = (M — 1 )d. (2.6c)

1 fb
in(l — R) cos$ = — / g\{t) dt = kcos^Cq sm(ixdcosd), (2.7a)

2a J~b

1 rb
KCOsflCZ1 sin (nd cost?) = — / gm(t)dt

2a J_b (2.7b)
= —KcosiJB™~1 sin(«;dcos^), m = 2,..., M — 1,

1 fb
inT cos $ = — J gM(t) dt =—kcosABq ^ sm(nd cos d). (2.7c)

Repeating the integration after multiplication by el7r" y/a, n! = ±1, ±2,..., and consid-
ering that

f1 e^n'-n^'ady = 2a8n^
J —a

we also get:

A
An = ~ J gi(t)e™nt/a dt =-TnC„sh{Tnd), (2.8a)

,C™sh(rnd) = £ J gm(t)eim*fa dt = TnB™~1 sh(r„d),

m = 2,3,..,, M — 1, (2.8b)

-TnDn = i J gM(t)e™nt/a dt = TnB„ 1 sh(rnd). (2.8c)

Equations (2.7, 2.8) give all the unknown constants in terms of the functions gm.
A continuity property is of course assumed also for the wave fields through the open-

ings:

<pi = (fi at x = 0,

Vm = Prn-1 at x = (m- 1 )d,

<Pm-i = fr at x = (M — l)d,
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for \y\ < b, so that the following equations are implied from (2.4):

1 + R + Ane~imv,a
n^O

= Bl + Co1 cos(Kdcostf) + ^2iBn + Cn ch{Tnd)]e~l™y/a, (2.9a)
rc.^0

B™ + CZ1 COs(KdcOsti) + J2lBn+ Cn ch{Tnd)}e-"ny/a
n^O

= B™'1 cos(/«icostf) + Co™"1 + ch (rnd) + C™-1]e~i™v'a,
n^O

m = 2,3,..., M — 1. (2.9b)

B™-1 cos{Kdcosti) + C0M"1 + chfod) + C™
n# 0

= T + Yj Dne~i7rny/a. (2.9c)
n^O

After substituting the values of the constants, taken from Eqs. (2.7, 2.8), into these
equalities, the problem is clearly reduced to a system of integral equations for the func-
tions gm (y) (m = 1,2,..., M; |y| < 6), that of course could be solved numerically for
an arbitrary (finite) number of vertical planes and arbitrary values of the physical and
geometrical parameters.

However, in the present paper, we aim to study analytically the properties of the
structure, and to this end we accept only the following fundamental assumptions (cf. [4],
[5]):

a) 0 < Ka < 7r/(l 4- sin$), for given
b) d/a 1.
The first assumption implies that rn > 0 Vn ^ 0, which guarantees the so-called one-

mode regime: this means that at large distance from the structure only plane waves with
the given wave number /t can be present, so as to grant to constants R and T their full
meaning as reflection and transmission coefficients, respectively. The second assumption
implies that the vertical planes are sufficiently distant from each other, with respect to
the width of the layer. Both these assumptions allow us to put ch(rnd) « sh(r„rf) 1
in Eqs. (2.8) and (2.9), so that the terms (to = I,... ,M — I) in the square
brackets of (2.9) become negligible (with respect to the other terms containing ch(rnci)).

Prom a physical standpoint, this approximation implies that all nonhomogeneous
(standing) waves rapidly decay when they move from one vertical array to the following
one (as is assumed in [2], [3]). Actually, it could be shown that this is a good approxi-
mation even when the distance d is of the same order as the width 2a (d/a > 2); see [4].
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So, by substituting the values of the constants, from Eqs. (2.7, 2.8), in the approxi-
mated version (as said above) of Eqs. (2.9), we can finally lay down the following square
system of integral equations for the unknowns pi,..., <7m in the interval \y\ < b:

1
2 a

:cosi)) 1[ctg(ndcos'd) — i] — ̂ (l/rn)el7m^ v^a ^ dt
n^O

rb

j b9iW |(2k<

— [4aKCOsi?sin(K(icos??)]~1 f g<2{t)dt=\\ (2.10a)
J-b

(kcosi?)"1 ctg(/tdcos$) — ^(1 /Tn)el7rn(t~v^a > dt
n^O

rb
[4a/tcos$sin(«;dcos$)] 1 J [gm-\(t) + 9m+\\t)\ dt = 0 (2.10b)

(m = 2, 3,..., M — 1);

dtf 9m(<) < (2kcosi?) J[ctg(«;dcos#) - i] - ^(l/rn)e,7rn(' y)/a
a Jb [ n^O

— [4aKcos'dsm(Kdcos'd)]~1 J gM-i{t)dt = 0. (2.10c)

Note that, on putting d = 0 throughout the above, the formulation of the problem for
the normal incidence case, dealt with in [4], is recovered.

As in [5], let us now consider the auxiliary integral equation:

{dV^} dt = If I < b■ (2-11)

In terms of the new function h, we can derive from system (2.10) (by linearity):

9\{y) = {(4aKCOs$)_1[ctg(Kdcos$) — i]G\

— [4a«;cos?9sin(Kdcos$)]~:1G2 — l}h(y)- (2.12a)

9m{y) = {(2a«;cosi?)_1 ctg(fcdcos$)Gm

— [4a/ccos$sin(Kdcosi?)]-1(Gm_i +Gm +i)}%), (2.12b)

to = 2,..., M — 1;

9m(v) = {(4aKcost9)_1[ctg(K<icos$) — 1}Gm

— [4aKcosi?sin(/tdcosi9)]_1GA,/_i}/i(i/); (2.12c)

where

rb
Gm = J gm(t)dt, to = 1,2,(2.12d)
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Set also
rb

H == [ h(t) dt. (2.13)
J-b

Integrating the above equations over \y\ < b finally yields the following square system
of linear algebraic equations in the unknowns G\,... ,Gm-

{1 — (4aKCOsi?)_1[ctg(Atdcosi?) — i]H}G\

+ {[4aKcos$sin(Kdcos$)]-1ii/}G2 = —H; (2.14a)

{[4aKcos$sin(ftdcosi9)]_1.ff"}Gm_i + {1 — (2a/tcosi?)_1 ctg(Kdcos^)fl"}Gm

+ {[4a«:cosi9sin(«;dcos^)]^1-Hr}Gm+i = 0, m = 2,...,M— 1; (2.14b)

{ [4ok cos d sin(/cd cos $)]~ 1H }Gm-i

+ {1 — (4a/c cos ??)_1[ctg(/cd cost?) — i]H}Gm = 0. (2.14c)

The constant H appearing in this system is an integral measure of the solution h
of Eq. (2.11). A uniformly approximated representation for this function, valid in the
one-mode regime, has been obtained in [5]; for its integral, we obtained (see Sec. 5 of

[5]):

H = {—7r/[(aiia22 + ai2a2i) ln£0]}({l - [1 - 7r/(a<?i)]£o}a22

+ {1 - [1 - 7r/(a7i)]£o}a2i) (ko < 7r/(l + sin??)), (2.15a)

where

£o = sin(7r6/2a),

r/o = cos(7r6/2a),

q\ = r_i = [(7r/a + k sin t?)2 — k2]1^2, (2.15b)

and

on = 1 - [1 - tt/(o9i)](^o - »7o/ln£o),

a12 = 1 — [1 -7r/(oTl)](^o -77o/ln?o),

a2i = 1 - [1 - 7r/(agi)](l - r?o),

a22 = 1 — [1 — 7r/(ari)](l - r^).

(2.15c)

Note that, despite the fact that the solution h of Eq. (2.11) is generally complex-valued,
the constant H, in the considered one-mode regime, is actually real.

Of course, once system (2.14) is solved, the wave field can be explicitly derived by
inserting in Eqs. (2.4) what is calculated from (2.12) and (2.7, 2.8). In particular, the
reflection and transmission coefficients are given by Eqs. (2.7a) and (2.7c) as follows:

R = 1 — (2ai/ccos??)_1Gi, T = (2aire cos??) _1Gm- (2-16)
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3. Solution of the linear system and main results. System (2.14) appears in
the form

/ p c
c (3 c 0

c (3 c
\ 0 c p

f \
0

0
0

where

In =

/3 c
c (3 c 0

(3 c
0 c (3

(3.1a)

(3.1b)

f = ~H,
c = [4ok cos dsin(Kd cos i))]~lH,

(3 — 1 — (2aKCOs$)_1 ctg(ndcosd)H,

p = 1 — (4a« cos ??)_1[ctg(«;(i cost?) — i]H.

Its solution can be obtained by using Cramer's rule as follows:

G\ = (f / Jm)(pIm-2 — c2/m-3)>

Gm = (//Jm)(-c)a/"1, (3.2a)

Gm = U/JM){-c)m-\plM-m-1 " C2/A/-m-2), m = 2, . . . , M — 1,

where we have denoted the full determinant of the system by

Jm = P2Im-i - 2pc2/M_3 + c4/a/_4 (3.2b)

and the determinant of order N by

(3.2c)

We conventionally assume that Iq = 1, /_i = 0, /_2 = — c 2.
It is well known [7] that

IN = (3IN-i - c2IN-2 = (xf+1 - x%+1)/(xx - x2) (3.3)

where X\ and x% are the roots of the quadratic equation

x2 — (3x + c2 =0 (3.4)

and can be represented as

xx = —rela, X2 = —re~la, (3.5a)
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where

r = c = ///[4aftcos$sin(K<icos$)],

cosa = —0/(2c) = cos(ndcos'd) — 2(ndcos$)(Hd/a)~l sm(Kdcosi)). (3.5b)

We note that the argument a can attain real as well as (purely) imaginary values; this
of course depends on the given geometrical and physical parameters according to the
sign—negative or positive, respectively—of the discriminant (01 —4c2). Also, the sign of
r = c in Eq. (3.5b)i is that of H/ sin(ftdcosi9), and this is surely positive for small enough
frequencies (we recall from [5, Sec. 6] that, in the limit na —> 0, H « 7r/(—ln£o)+0(K2a2);
cf. [4, Sec. 3] for the case of normal incidence, in which the constant H(d = 0) is always
positive). Equations (3.5), however, are valid for arbitrary incidence angle and frequency
in the one-mode range.

The complete solution of system (2.14) enables us to give explicit expressions for the
reflection and transmission coefficients. By Eqs. (2.16), (3.2) and some formal transfor-
mations1, we finally arrive at the following formulas:

R = (1 + -———-{1 — emd cos^ [cos a — sinactg(Ma)]}^ (3.6)
\ 2an cos v J

iH
T=^^l'ina/"in(Ma)]R- <3-7)

As can be proved, these equations guarantee that the well-known property of the balance
of rates of energies

\R\2 + \T\2 = 1 (for one-mode case) (3-8)

identically holds, independently of the value of the constant H.

4. Analysis of the wave properties of the structure. As is evident from Eqs.
(3.6, 3.7), the dependence of the parameters R and T on the number M of vertical arrays,
which in some sense represents the distance through the structure, is only determined
by the value of the parameter a. As follows from Eq. (3.5b)2, for small values of the
product ad cos a is real and given approximately as

a « [1 + A(Hd/a)~ 1]1/2(ndcos■&). (4-1)

So, in this case, the reflection and transmission coefficients possess a periodic behaviour
with respect to M.

When the product ndcost? increases, a can become imaginary, and this implies an
exponential decay for T (amounting to a rapid wave attenuation) both with respect to
the frequency and with respect to M (i.e., the distance). Such a property evidently
follows from Eqs. (3.6, 3.7), since sin7 = ish7 and cos7 = ch7 when 7 (= a or Ma) is
imaginary: 7 = i-y, 7 € R.

1For more details about these, see [4, Sec. 4],
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Fig. 2. Dependence of the reflection coefficient |i?| upon the angle
of incidence $ (d/a = 2, M = 5, nd = 3). Full line: b/a = 0.1; dotted
line: b/a = 0.3

Two figures show this interesting feature (both of them for two values of the relative
opening b/a). In Fig. 2 the reflection coefficient is given as a function of the angle of
incidence (at fixed frequency). The frequency parameter is taken so large (nd — 2na = 3)
that, in the case of normal incidence (19 = 0°), even for a relatively small number M = 5,
the structure does not permit transmission of the wave (|i?| ss 1, so that |T| « 0 due
to Eq. (3.8)). When the angle of incidence i) becomes sufficiently large (and so cost}
small enough), the behaviour of the structure changes from attenuating to oscillating,
according to the (real) value of a from Eq. (4.1).

Further, Fig. 3 gives the transmission coefficient as a function of the frequency pa-
rameter na (at fixed d = 30°), and we can see how such a coefficient starts to decay
exponentially when na exceeds certain critical values, namely, when the parameter a
becomes imaginary. This figure can be compared with Fig. 5 of [4], which displays the
same function \T\ vs. na (with the same values of the relevant geometrical parameters)
in the case of normal incidence. It should be noted that an oblique incidence actually
enlarges the range of frequency for periodicity with a good transmission (cf. [6]).

Therefore, there are two different ranges of physical and geometrical parameters to
which correspond quite different physical properties. This fact distinguishes the wave
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1.0 IV       -A V-\ -A-. 7X7

Fig. 3. Dependence of the transmission coefficient |T| upon the
frequency parameter ka (d/a = 2, M = 10, d = 30°). Full line:
b/a = 0.1; dotted line: b/a = 0.3

properties of well-organized structures from those of randomly distributed structures, in
which the wave attenuation always increases with the distance, even for very small values
of the frequency [1]. We recall that, in the present context, the transition from the range
of periodicity to the range of decay is only determined by the sign of (/?2 - 4c2), being
actually independent on the number M of vertical arrays.
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