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Abstract. A classical Cauchy problem for a third-order nonlinear evolution equation
is considered. This equation describes the propagation of weakly nonlinear waves in
relaxing media. The global existence and uniqueness of its solutions is proved and the
solution is constructed in the form of a series in a small parameter present in the initial
conditions. Its long-time asymptotics is calculated, which shows the presence of two
solitary wave pulses traveling in opposite directions and diffusing in space. Each of them
is governed by Burgers’ equation with a transfer.

1. Introduction. In recent years, interest has grown in the study of nonlinear wave
motions in media with dispersion and absorption. A thorough examination of the cor-
responding linear equations often serves as a starting point for such investigations. The
problems arising here are not only of interest as applications, but are also of theoretical
interest since they are, as a rule, unusually distinctive and nonclassical.

An interesting linear third-order hyperbolic equation governing wave propagation in
relaxing media is presented in the monograph [13]

700;(0fu — c}d2u) + O}u — c292u = 0. (1.1)

Here u(z,t) is a pressure, 7y is a relaxation time, c. is the equilibrium sound speed, and
¢r is the so-called “frozen” sound speed. In a relaxing medium the propagation of a wave
disturbs the state of a thermodynamical equilibrium. Having been disturbed, such a
medium tends towards a state of equilibrium, but with new values of parameters. If the
relaxation time is much smaller than the period of oscillations, the propagation of sound
occurs with the same speed ¢, as in the absence of relaxation. If the inverse relation
holds, the relaxation process is “frozen” (not fast enough to follow the oscillations) and
the sound propagates with the “frozen” sound speed ¢ > c.. In fact, for the majority
of relaxing media (mixtures of gases, chemically reacting fluids, water with bubbles,
etc.) the ratio c2/c? is rather close to one [13]. Similar processes occur in “standard”
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viscoelastic materials (see [4], [11]) and in cracked and porous media [10], where wave
propagation disturbs the state of the mechanical equilibrium.

In dimensionless variables t = t/7,. & = x/(ci7y) Eq. (1.1) can be rewritten as (tilde
will be omitted in the sequel):

(i — tpr ) + Uy — Qi = 0, (1.2)

where @ = ¢2/c?, 0 < a < 1. It has been studied from various points of view in the
papers [7,11,12,16-18]. Fundamental solutions and Cauchy problems for (1.2) have been
examined in [11,16,17] and initial boundary value problems in 7,12,18]. Note that in [18]
a singular perturbation problem for Eq. (1.2) with variable-in-space coefficients has been
considered and some aspects of its derivation have been discussed.

It would be interesting to examine Eq. (1.2) with a nonlinear term 8(u?),., 3 = const,
identical to the one present in the classical Boussinesq equation [2, 8]

Ut — QU = —YUypper + ﬁ(u'Z)L“ (13)
where it is responsible for the shape of the wave. Thus, we shall consider
(u{i - uJ'J‘)[ + Ut — AUy = 6(”2).51- (14)

Strictly speaking, this equation was not derived in connection with nonlinear acoustics
or viscoelasticity and therefore can only be considered potentially of applied interest.
Note that (1.4) can be rewritten as (9; + a)(uy — upe) + (1 — @)uyy = B(u?),. and,
after integrating with respect to t, reduced to the nonlinear integrodifferential equation
(with the exponential integral kernel) similar to the ones that describe wave propagation
in materials with exponentially fading memory. Equations of such a type (in a more
general form, but with different nonlinearities) were studied in [4,5,14] from the point
of view of establishing global existence and uniqueness of solutions and deducing some
energy estimates.

In the present paper, long-time behavior of solutions of a classical Cauchy problem for
(1.4) is considered. It is well known that one of the powerful tools for studying initial-
value problems for nonlinear evolution equations is the inverse scattering transform [1,3].
However, many important (for physics) nonlinear dissipative equations are not completely
integrable and this method does not work for them. In his work [6], T.-P. Liu has used
another approach. He has studied a system of viscous conservation laws

up + f(u), = (B(w)ug),.

It is not clear what is the best way of putting (1.4) in this form; moreover, reducing a
higher-order hyperbolic equation to the corresponding system, we can sometimes lose in
our analysis. As far as the author knows, there is no general theory of long-time behavior
of systems of conservation laws with dispersive and dissipative effects. Therefore, we
shall examine (1.4) directly, without this reduction, developing in the process a certain
method for studying higher-order nonlinear dissipative equations. In order to explain
our approach we have to give a bit of history.

In the monograph [9], nonlinear dissipative equations of the first order in time have
been treated. By virtue of the successive application of the spectral and perturbation
theories, the authors succeeded in constructing small solutions of the classical Cauchy
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problems and in calculating their long-time asymptotic representations. The major term
of the asymptotics contained a series in a small parameter present in the initial conditions
and the algorithm for calculating the coefficients of this series involved a special diagram
technique of the perturbation theory, which was rather unwieldy. In [19-22] this method
was developed further and adapted for equations of the second order in time. As well
as in [9], nonnegative real parts of the eigenvalues of the linear operator of the equation
were used for obtaining preliminary time estimates of the solutions in question, while
their imaginary parts played the major role in separating the solitary wave pulses and
in estimating their interaction. The major term of the asymptotics was obtained in the
explicit form convenient for the qualitative description of the physical phenomena. It
must be emphasized that the long-time approximation obtained in [20] for the solution
of the damped Boussinesq equation for the one-dimensional case in space was essentially
nonlinear and described two solitary wave pulses traveling in opposite directions and
diffusing in space. Each of them was governed by Burgers’ equation with a transfer.
Application of this method to solving periodic problems for the damped Boussinesq
equation can be found in [21,22], where the major terms of the long-time asymptotics
were expressed in terms of the Airy functions of a negative argument.

In the present note a small solution of the classical Cauchy problem for Eq. (1.4) is
constructed and its long-time asymptotic expansion is obtained. Although the equation
studied below is of the third order in time and from the first glance looks quite different
from the damped Boussinesq one, the long-time behavior of its solutions is very similar
to the case of [20]. The major term of the asymptotics also contains two solitary wave
pulses governed by Burgers’ equation with a transfer (this effect is described in [6] as well).
The reason for this similarity is explained in the discussion section, where the intuitive
explanation of the method applied is given. So the reader who is more interested in
understanding the basic ideas can skip the rigorous proof of the main results and go
straight to the last section.

We must point out that the way of constructing the classical solution of the problem
in question and calculating its long-time asymptotics requires more subtle considerations
than in [20], and, in our opinion, represents a step forward in the development of the
method described above.

2. Statement of the problem and the main theorem. We pose the following
Cauchy problem:

(Utt - Urz)t + U — QU = /B(uz)uw S Rlv t>0,
u(z,0) =ep(x), u(z,0)=eP(x), un(z,0)=cx(z), z¢€ R!, (2.1)

where a, 3, = const € R', 0 < o < 1, € > 0; ¢(z),9¥(z), and x(z) are real functions.
In the sequel we shall denote [g, by [, a Fourier transform of the function u(x,t) by

u(p,t) = /e'””u(x,t) dz,
an inverse transform by

u(zx,t) = (2m) 7! /e“"rﬂ(p,t) dp = F~1(a(p, 1)),
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and a convolution in p by

f(p.t) * g(p,t /f(p q,t)9(q,t) dq

We shall also use the notation

T

O = 17O =(/|f (.t |dp) ,
1O = vrai sup [£(p,1)
peER!

and denote by c different positive constants not dependent on z,t,p, and €. They may
depend on the coefficients of the equation and the initial data.

DEFINITION. A function f(z) belongs to the class C"(R!) if f(z), f'(x), ..., f™~D(x)
— 0 as |z| — oo, and f(M(x) € L, (R!).
THEOREM. Let

A)1/3<a<;

B) p(z) € C5(RY), ¥(z) € 64<R1> x(x) € CHRY);

C) ¥(0) + X(0) = 0, where $(0) = [ 9(z) dz, %(0) = [ x() da;

/(1 + [z])le(x)| dz, /(1 +[zl)?[v(2)| dz, /(1 +J2*)|x(2)| dz < +o0.

Then there is such ¢y that for 0 < ¢ < ¢; there exists a unique classical solution of
the problem (2.1) that can be represented in the form

o
u(zx,t) = Z eN TN (2, 1), (2.2)
N=0

where the functions u(")(z,t) will be defined in the proof (see (3.14), (3.20)). This
solution has the following asymptotics as t — +oc:

u(z,t) = u_(x,t) + uy(z,t) + Ot~ FI/2) 0<§<1/2,
2
2 fab (1 —gl)exp(—%)

() = 2y o :
=g Wt1+gl+<gl—1>erf<%)
_ (=vat)?
wa(or = 22 (ool (23)
B ”t1+92—(2—1)el‘f( 2\/,)

Ja

9 =exr>{—4§§a $(0) +9(0) — o +§“}},

g2={ e+ 0+ PR }
1—«a 2 *
b= 15 et = /0 exp(—C?) d,

50 = [e@ds, = [av@ = [ex@

and the estimate of the remainder is uniform in z € R!.
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REMARK 1. Assumption A) guarantees the absence of multiple eigenvalues of the
linear operator in (2.1) and thus simplifies considerations. When o = 1, the linear
operator in (2.1) factorizes and becomes (9/0t + 1)(0?/0t? — 8?/0z*). This case is
much simpler than the one considered above, but must be treated separately. The linear
equation has two purely oscillating solutions and one with exponential decay. Dissipation
plays here a secondary role, and the method used for constructing solutions is based on
using their dissipative properties. However, this case is not interesting for applications.

REMARK 2. Assumptions B) secure the fast decay of the Fourier images of the initial
data as [p| — +oco, namely ¢(p) = O(lp|~®), $(p) = O(lp|~*), X(p) = O(Ip|~*), and are
needed to provide the necessary smoothness of the constructed solution (see (2.2)). Note
that we do not calculate the asymptotic form as ¢ — 0 of the solution in question. This
small parameter is needed for the convergence of the series in (2.2) and its derivatives
are included in the equation. The way of estimating &y will be given in the proof.

3. Proof of global existence and construction of small solutions. Applying
the Fourier transform in z to the problem (2.1) we get
Qe + Qo + PPl + ap®l = —PBpPax G, >0,
i(p,0) = (p),  @(p,0) = ed(p), @u(p,0) = ex(p). (3.1)
Integrating by parts in the representations of ¢(p), 1[)(;0), and x(p) and using condition
B) we find that
[e()] < clpl™®, @) <clpl™, k@) < IpI™’, peR. (3:2)

Choosing the fundamental system of solutions of the homogeneous equation in (3.1)
in the form exp(—At) we obtain the following characteristic equation:

A4+ A2=p*(A-a). (3.3)

It is easy to establish that for 1/3 < a < 1 this equation has one positive root A;(p) and
two complex conjugate roots Az 3(p). Rewriting (3.3) as 1 — A = p*(1 — ) /(A% + p?), we
conclude that 0 < A;(p) < 1 and A;(0) = 1. Representing (3.3) as A — a — (1 — A)A?/p?,
we find that A;(p) > o and A;(00) = @. Thus a < A\(p) < 1.

Next we obtain some bounds for the complex roots of (3.3). Setting A = A\ + i\, we
insert it into (3.3) and get a system of equations

A2 = A2, 8A — 1) = A2+ p°A — pPa =0,

Aim(=3A2 + A2, + 2\, — p?) = 0.
Hence Ay, = 0 together with the first of these equations gives us the case of real roots
discussed above. The second possibility is A2 = 3AZ — 2\, + p?. After substituting it

m

into the first equation we find that A, must satisfy
8A3 — 8\ 4+ 2(p® + A, —p*(1—a) =0
whence

Ml@A =12+ p =bp?, b= (1-a)/2. (3.4)
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We deduce from (3.4) that 0 < A, < b and using this bound obtain from (3.4) that
Ar > bp?/(1 + p?). Finally, we have

bp*/(1+p*) < A <b. (3.5)

In what follows we shall also need some asymptotic expansions of the roots of (3.3).
By means of the method of Newton’s diagrams [15] we find for |p| < py with some py < 1

AL =1-2bp*> + O(p*),
A3 = Fivap + bp* + O(p?). (3.6)
By the same method we get for |p| — oo
A =a+2ba’p 2+ 0(p™Y),
Aos=Fip+b+O(p). (3.7)

Setting o (p) = |\im(p)], so that o3 = A, Fic, we notice that o (p) = (3A2 -2\, +p?)!/?
and consequently o(p) < c|p| for all p € R!. We shall denote the major terms of the
expansions (3.6) of the complex roots by

X23(p) = A(p) Fi6(p), M(p) =bp? &(p) = Vaop. (3.8)

We return to the problem (3.1). Integrating the equation in ¢t we find that

a(p,t) = eZ(p,t) - Bp° /Ot K(p,t,7)u(p, 7) * i(p, 7) dr,
Z(p,t) = Ai(p) exp(—A1(p)t) + A2(p) exp(—A2(p)t) + As(p) exp(—As(p)t),
K(p,t,7) = fi(p) exp[-A1(p)(t — )] + fa(p) exp[—A2(p)(t — 7)]
+ f3(p) exp[—=As(p)(t — 7))
A1(p) = (A3 = A2)DaXsd(p) + (As + A2)d(p) + %(p)]/Alp),
Az(p) = (M1 = A3) P ds@(p) + (M + As)P(p) + R(0))/Alp), (3.9)
A3(p) = (A2 = A1) MA@ (p) + (M1 + A2)¥(p) + X(p))/A(p),
filp) = (A3 = A2)/A(p), fa(p) = (M1 = A3)/A(p), f3(p) = (A2 — A1)/ A(p),
A(p) = AT(As = X2) + A3(A1 = Az) + Af(Aa — A1),
We introduce the functions
lpl, Il < po, 1, |pl < po,
= {1, o, DT {lm, ol 2 po.

where pyg is the same as in (3.9). Note that |p| = m(p)M(p).
From (3.2) and (3.5) we find that

|4i(p)] < eM~°(p), i=1,2,3, peR". (3.10)
Setting 2x(p) = bp?/(1 + p?) in (3.8) we note that

26(p) = co(@)p® as|p| <1 (3.11)
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with ¢p(a) = (1 — a)/4 — 0 as & — 1. For the integral kernel in (3.9) we can easily
deduce that for ¢, 7 > 0, p € R!,
|K (p,t,7)| < em™ (p) M ~*(p) exp[~2k(p)(t — 7)] (3.12)

since A\i(p) > a>(1—a)/2> A for e > 1/3.
For solving the integral equation (3.9) we shall use perturbation theory. Representing
u(p, t) as a formal series in ¢,

ieN“ N (p, t), (3.13)

N=0
we substitute this expression into (3.9) and compare coefficients of like powers in €. As
a result, we have

1 (p,t) = Z(p,t);

5 (p, ) = —pp* / K(p,t—7) i D (p,7)x 80" V(p,7), N>1,
Z(p,t) = [(A} +0*)p(p) + —( ) + X(p)] exp(=A1(p)t)/R(p)
N {/\1 Ar (,\1 - ))] + o2 sm{(jcrt) N AlR—(;)A, COS(Jt)} 5(0)
N [(,\2 R/\(;+a smc(rcrt) B 2)\r}(;¢zzs)§at)] o) (3.14)

— Ar) sin(at)  cos(at)
|G-

R(p) = (/\1 - /\r)2 + 027 K(p7t7T) = Kl(pitaT) + KQ(p’taT),

| 5} exp-ron,

- A sm( t)
R( )
Ki(p,t,7) = {exp[—/\l(t — 7)) — cos[o(t — 7)] exp[— A (t — 7)]}/R(p)-
We shall establish the following estimates for N > 0, p € R!, ¢ > 0:
8N (p, £)] < (N +1)7"M>(p) exp[—~r(p/(N + 1)), (3.15)
where k(p) is defined by (3.11). For N = 0, (3.15) follows directly from (3.9), (3.10),
(3.14), and condition C) of the theorem. Indeed, by Taylor’s theorem we have as p — 0
¢(p) = ¢(0) + O(p),
P (p) = ¥(0) — iptr + O(p%), (3.16)
x(p) = x(0) — ipx1 + O(p”),

where the integrals representing the terms in the right-hand sides of these expansions and
the constants in the residual terms converge absolutely, according to C). The assumption
¥(0) + x(0) = 0 allows us to eliminate the singularity as p — 0 in the term A;[A\9)(p) +
x(p)] x sin(ot)/[oR(p)]. Next we use induction on N. Suppose that (3.15) holds for all
) (p,t) with 0 < s < N — 1. We shall show that it is valid for s = N. Since k(p) is

Ki(p,t,7) = exp[—A:(t — 7)],
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a monotonically nondecreasing nonnegative function of p, according to [9], we have for
1<j <N andp,qeR!,
&((p—q)/J) + k(g/(N +1—j)) =2 k(p/(N + 1)), (3.17)
M™(p—q)M™(q) < 2°M>(p)[M~>(q) + M~°(p — q)],
JTINHL=j) <2 N+ )T+ (N+1-5)7T].

Using (3.11) and changing the order of integration in (3.14), we find that

N
PN ()] < emE)(V + 1) (E) Yo N TN + 1= 5) T 457

j=1

X /[]\I_r’(q) + ]\/I_F’(P - q)]SN (pa q7t) dQ7

t
SN(p,q,t)=/ exp[—2k(p)t + Ln(p,q)7] drT,
0

Ln(p,q) =2x(p) — & <p—;—q> K <#1_]> , (3.18)

since [p|*m ™! (p)M~*(p) = m(p).
Now we shall find bounds for a typical term [y in the right-hand side of (3.18). Note
that the following estimate holds [20]:

exp[—+~(p/(N +1))t]
max{x(p),|Ln(p,q)|}

S!\"(pa q, t) S

Thanks to (3.11) we get the following estimate for the denominator of the last fraction

as |q| < 1:
1 (o). q
Zmax{n(p),n (N+ 1 —j)}

_ cole) max{r(p), (9)} . cola)(®* +°)
- 4(N +1—j)? T 8(N+1-j)?

max{r, |Ln|}

v

and for |¢q| > 1,

maxelial) 2 § s+ (5555 )] 2 3 (555 )

Therefore,
» N
L < N 7 / —_ N7 (N)
Iy <" (N+1)"'M™ exp[ (N_I_l)t] JEZI(N+1 7)) 'm(p)G*Y (p),

1 x
G™M(p) = [ (IpP+laP/(N+1= )% "dlal + | lal""[s(a/(N + 1~ j)dlg|. (3.19)
0 1

Since f(: (p? + ¢?)~'dq < ¢/|p| for p € R!, (3.18) holds for Iy with ¢ = ¢(a) — oo as
a — 1. The estimates in question are proved.
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Applying an inverse Fourier transform to (3.13), we find that
oC
w(z,t) = (2m)! / exp(ipz)ilp,t) dp = 3 eV 1uM (2, 1),
N=0
uM(a,t) = 2m) " [ explip)o™) (v, ) dp, (3.20)
where the functions V) (p,t) are defined by (3.14). Here we have integrated the series
in (3.20) termwise, which is possible due to its absolute and uniform convergence for
€ < 1/c, which, in turn, follows from (3.15). By means of (3.15) it can be verified

straightforwardly that (3.20) (and correspondingly (2.2)) is a classical solution of the
problem (2.1) with sufficiently small .

4. Proof of uniqueness. We shall prove the uniqueness of the constructed solution.
We assume the contrary, that is, that there exist two solutions ui(z,t) and us(z,t),
and set w = u; — uz. Thanks to (3.9) and (3.12) its Fourier image w(p, t) satisfies the
following inequality:

lw(p,t)| < 0/0 exp[—2k(p)(t — 7)ldr | |@1(p,q,7) — G2(p — q,7)| |81(q, 7) + u2(q, 7)| dg

<c / exp[—2(p)(t — 7)]lib(p, 7)| * U(p, 7) dr,
0

where U(p,7) = |t1(p, )| + |G2(p, 7)|- Squaring both sides of the last inequality, in-
tegrating in p over R!, using Cauchy-Schwarz’s inequality and changing the order of
integration, we have

2

166,018 < < [ do ([ exvl-2a(p)t ~ o)1+ UGp ) a7
¢ /0 " expl—4n(p)(t — 7)] dr ) /O "Hr)dr,
where H(7) = [([ [&(p — q), 7|U(q, 7) dg)? dp. We can write that
A = [ dp [ ot - a0 dar [ 16 - g2,V (02,7) dae
~ [ @U@ [ davir) [ dplot- a.nllo6- e )
<101 [ Ular,)dar [ Ula ) da

sl ([ Utam) dq)g.

The convergence of the integral [U(q,7)dg follows from (3.13), (3.16). Thus, we con-
clude that for some T7 > 0 and ¢ € [0,T}],

<

[ @I < [l — exp(—4x(p)D)/x(@)lloe sup [b(1)]2 / ( / U(q,T)dq) dr,

te[0,Ty]
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and therefore,

sup [l@(t)[3 < e(T) sup [l@(t)]3,
tel0.1y) te(0.11]
where the constant ¢(Ty) — 0 as T} — 0. Making ¢(T)) less than one by means of
the appropriate choice of T, we come to the contradiction, which allows us to complete
the proof of the uniqueness of solutions for ¢ € [0,7}]. Continuing this process for the
segments [T, To], [T, T3), . .., with {T},} — +00 we obtain the same result for each ¢ > 0.

5. Long-time asymptotics. We pass to the calculation of the asymptotics as t —
+o0 of the constructed solution (see (3.13), (3.20)). For this purpose we shall expand
9" (p, t) and single out the major terms of 2V (p,t), N > 1, as p — 0 in (3.13).

(a) Estimate of the linear part of the solution. First we shall calculate the long-time
asymptotics of eu(") (z, t), which corresponds to the solution of the linear Cauchy problem.
We can write that

u(”)(x,t) = i: Ji(z,t),
j=1
Jy = (2m)"! / exp(ipz) A (p) exp(~ A (p)t) dp,

3
= em) [ explip) 3 A0) expl-e(p)0) dp
[pI<po k=2

3
Js = (27r)‘1/ exp(ipz) Y _ Aw(p)lexp(—Ai(p)t) — exp(—Ax(p)t)] dp,
[PI<po k=2

3
Ji=n) [ explipe) 3 [Aue) - AO)]exp(=ulp)0) d
[pI<po k=2

3
Js = (2m)-) / exp(ipz) Y A(p) exp(=Ai(p)t) dp,
[pI=po k=2

where

A>(0) = lim A (p) = 5 | (0) + $(0) -

AR

Ja

["(O)+z/3(0)+ b ”‘1} .

11314‘)21]

A3(0) = lim As(p) =

p—0

|~

Ja

Since A (p) > a > 1/3, we find easily that for all ¢t > 0, |J;| < cexp(—at). The
integral J, makes its contribution to the major term of the asymptotic formula (3.3),
while all the other integrals contribute only to the remainder. Noting that J, = O(¢t~1/2)
as t — +oo we leave it temporarily in order to combine it later with the main part of
the series > n_; eVt 1uM(2,¢).
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For estimating J3 we shall use the inequalities
|exp(—® + 10) — exp(— + i)
< 2{exp[~(® + 3)/2]| sinh((® — B)/2]| + exp(—®)|sin[(¥ — ¥)/2]|}
< cf{exp[—(® + 9)/2]|® — B| + exp(—®)|¥ — ¥|} as |® — B| < ¢ < o0;
98,0, R
Since [Ar(p) — Ar(p)] < clpl?, [Aim(P) = Xim(P)] < clpl® and (A + Ac)t/2 > [co(a) +Blp%t/2,
Ar > bp?/2 as |p| < po, we deduce that
sl < ct [ [e-strtnlodp+ [ exp(-brte/Dlpl dp| < ettt 4o

where c(a) — 00 as a — 1.
Noting that |Agx(p) — Ax(0)] < c|p|, k = 1,2, as |p| < po, and taking into account
(3.11) we obtain

g<e [  expl-tpolpldpl =0t st +os.
[pI<po
Finally, using (3.14) and (3.15) we find that for ¢t > 0

sl < ¢ / exp(= M (P)8)lp| % dp < cexp(~bpdt/2).
|p|>po

Thus, we have singled out the major term in u(®)(z,t) and estimated the remainder as
O(t™'), t = +oo uniformly in z € R'. It remains to obtain a long-time estimate of the
series 3% _, eV T1u(N)(z,t), which corresponds to the nonlinear contribution in (3.23).

(b) Estimate of the nonlinear part of the solution. We set

M (p,t) = VN (p,t) + WV (p,1), N>1,

where V(™) (p, t) and W@ (p,t) are solutions of the equations

P (p,t) = —pp? / Ki(p,t,7) 3" 697D (p,7) +9Dpr) dr,

Jj=1

t N
WM (p,t) = —ﬁpz/ Ky(p,t, 7)Y 007D (p,7) x 8NV (p, ) dr, (5.1)
0 ':

and the integral kernels K o are defined by (3.14). It is easy to show that the functions
V) (p, t) have the same bounds (3.18) as #(V)(p,t). Using these estimates we can find
that

t N
W) < o) [ drexpl-nlp)(t =) @16 TV +1- )7
=1

x /M_S(p — )M ~°(q) exp|—~((p — 9)/§)7] exp[—r(q/(N + 1 — 5))7] dg.
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By virtue of the same procedure as for deducing (3.18) we obtain for ¢ > 0, N > 1,
pER!,

W (p,)] < V(N + 1)~ "m(p) M~ exp[—k(p/(N + 1))]. (5.2)

Consequently, the contribution of the series containing ww )(p,t) to the asymptotics in
question can be estimated as O(t~!/2) as t — +oo0.
Next we rewrite the first equation in (4.1) as

f}(N)(p,) —-Bp? / K,(p,t,7) Z[V(] D PIN=1) 4 o G=1) 4 P(N=3)
ij=1
+WUD S WN-D]dr

and note that only the term containing E;.Vzl V0= « PW=1) must be left in the inte-
grand for obtaining the major term of the asymptotic formula of the solution of (2.1).
Conducting the same arguments as in [20] we can prove that the contribution of the
other terms in the integrand to the asymptotics as t — 400 is O(t~!*") with some small
v > 0.

Thus, for finding the major term of the asymptotics we can consider the solutions of
the integral equation

N
VN (p,t) = —ﬂp2 K1 (p,t,T) Z VU« YWN-D(p rydr, N2>1.
Next we shall expand the kernel K, as p — 0. We can represent it as follows:

Ki(p,t,7) = K(p,t,7 +ZK (p,t,7),

where
K = exp[-A:(t — 7)) sin[5(t — 7)] /5,
Ko = (222 - 2 exploa - =g
Ky = e—xp[;z/t;()t&— 7)] {sin[e(t — 7)] = sin[a(t — 7)]},

sin[o(t — 7)]
R(p)o

W ]exp[ it - 2P =T

By virtue of (3.9) and (3.11), the following estimates can be established:
|Ks| < em(p)M > (p) exp[=A:(t = 7)],

Ks5 = {exp[~A:(t = 7)] — exp[-Ac(t — 7)]}

- |

Ipl3t, Ipl < po,
1» |p| > Do, '
|Ks| < em(p)M ™" (p) exp[—2x(p)(t — 7)].

|Ky5| <cM™3 p) exp[—2k(p)(t — 7)] {
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Taking K5 as an example we shall show that eliminating K, 5 in the above written
integral equation will cause an O(t™!) as t — +oo perturbation of the solution of (2.1).
Set VM (p,¢) = i (p,t) + Y™ (p,t), N > 1, where ™ and Y™ are the solutions of
the equations

PU-1 L P9 gy,

M=

t
3™ (p, 8) = —pp? /0 Kui(p,t,7)

1

VD VN9 dr K =Ky +Ks.  (54)

M= 5

t
Y(N)(pv t) = _ﬂp2/ KS(patyT)
0

j=1

Next, using the upper line in (4.3) and the (3.15)-type estimates for V) we deduce
that for |p| < pg, N > 1,¢ >0,

N
|?<N><p,t>|3c|p|5t/ dr expl—26(p)(t — 7)] Z SINSLT(N 41— )T

x/dqexp[—n( >T (NH_]) ] - M ™>(q)

< Mp|*t(N +1)""M ™~ (p) exp[—~k(p/(N + 1))i]
< N(N +1)75|p|? exp[—k(p/(N + 1))t/2],

where we have used the inequality exp[—& (N+1 t] < clr(J57)t) " exp[—r(§E7)t/2]. The
lower line in (4.3) together with (3.15) for V™) allows us to establish the (3.15)-type
estimates for Y(V) as |p| > po. Thus, for all p € R!, N > 1, ¢t > 0 we have

) t/2] . (5.5)

PN (p, )] < N (N +1)7m? (p) M5 (p) exp |+ (
N+1
Rewriting the sum in the integrand of the first equation in (4.4) as

N
ST[GUD # gD 4 250D 5 PIV=I) L PUD 4 PN-))
j=1
and estimating the terms containing the convolutions with Y N-3) by means of (4.5), we
can conclude that the contribution of the corresponding series to the asymptotic formula
will be O(t71) as t — +o0.
If we eliminate the kernels K3 and K¢ in the integral equation, we shall make the
error O(t~17) with some small v > 0 in the asymptotics as t — +00 of the solution.
It remains to study the equation

9™ (p,¢ =—ﬁp/Kp,tr S gu- JND(p,7)dr, N> 1,

j=1
where
K(p,t,7) = {exp[-bp*(t — ) + iv/ap(t — 7)]
— exp[-bp*(t — 7) — ivap(t — 7)]}/[1/(2ivap)).
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The analysis of its solution has been done in [20]. Its major part has been singled out, and
it has been shown that the residual term gives a contribution O(t~(1+6)/2) 0 < § < 1/2,
as t — +oo to the solution of (2.1). Now everything is ready to present the main results.

(c) Combining the long-time estimates. Recalling the integral J, representing the ma-
jor term of the linear part of the solution and the estimates of its nonlinear part, we can
summarize our results. The solution of the problem (2.1) has the following asymptotics
as t — +oo:

u(z,t) = F~'(g(p, 1)) + Ot~ +0/%), 0 <6< 1/2,
Z 5N+1 N)(p t)

~ N
y(N)(p,t)=y1 'io,t) + 35" (p,t), N >0,

3 (p, 1) = A2(0) exp(—Xa (D)),
33 (p,t) = A3(0) exp(—As(p)t),
N
g}N)(p,t)=21B7% i exp[—Aa(p)(t — 7)] ;A“ Yip, 1)+ 9N (p,7) dr,
i l -
35" (p,t) = —ﬁ exp[ Xs(p)(t — 7) Z +95"  (p,7) dr

We can represent the Fourier image of the major term of the asymptotics in another way
by setting §(p,t) = 91(p,t) + 2(p,t), where §; and §» are the solutions of the Cauchy
problems

_ _ iBp . . L . iBp . .
o091 + X2(P)h1 = W%yl * Y1, 0102 + A3(P)Y2 = _2157%?!2 * Y2,
0 (P, 0) = €A2(O)7 g)z(p,O) = EAJ(O)

Introducing the new variable ¢; = \/at and setting b = b/\/a, 81 = B8/\/a, we obtain
the following problems for the pre-images y; o(x,t) = F~1(§1.2(p, t)):

Ony1 — Boyn — b02y1 = —(81/2)0:(y1), O,y + Ory2 — b102y2 = (B1/2)0:(y3),

y1(z,0) = €A2(0)6(x),  ya(z,0) = eA3(0)6(),

where §(x) is the usual Dirac function.

These Cauchy problems for Burgers’ equation with a transfer can be solved by the
well-known procedure. For example, to find y; we put £ = x + t;, keeping the sec-

ond variable unchanged and applying the Hopf-Cole transformation [23] y,(&,t) =
—2(b1/61)0¢ In f(&,t1). Solving the reduced problem we find that

J (€ —n) exp[—(€ — n)?/(4b1¢1)] f(n,0) dn

i) = y
Y& ) = G T expl=(€ — )2/ (Abyt )1, 0) dy
where f(n,0) = exp[—QﬂT’1 _"x y1(¢,0)d¢]. Analogously, we can set p = = — t; and

deduce the expression for y»(p,t;). Returning to the original variables and renaming
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the functions u_(xz,t) = y1(&,t1), us(z,t) = y2(p,t1), we obtain the major term of the
asymptotic formula (2.3). The proof of the theorem is complete.

6. Discussion. Now we shall give an intuitive explanation of the method applied and
will clarify the reason for the similarity of the long-time behavior of solutions of (1.4)
and the damped version of (1.3) examined in [20]. We shall consider both equations in
parallel:

Uttt — Uggt + Ut — QUgy = lg(uQ)zz, 1/3 <a<l, (6'1)

Ugzzr — Uzt + Ut — QUgy = IB(UQ)Ixa a >0, (62)

with the initial conditions (2.1) for (6.1) and u(z,0) = ep(z), ui(x,0) = eyp(z) for (6.2).
Applying the Fourier transform in x and factoring the differential operators in ¢, we
get

(8 + A1(P)) (8¢ + A2(p))(8: + As(p))&s = —Bpt x @, (6.3)
(8¢ + A2 (p)) (0 + As(p))a = —Bp*a + 4, (6.4)

where A;(p), Ai(p) are the roots of the cubic equation (3.3) and the quadratic equation
A? — p?A + ap? + p* = 0, respectively. It is easy to see that Ao 3(p) = % Fipy/3p* +a.

Since the limit as p — 0 is responsible for the long-time behavior of solutions we shall
use the following asymptotic formulas:

A(p) =1-(1-a)p®+O0(p%),
Ma@)=¢hfb+lﬂ—am2+0@ﬂ, (6.5)
Ar3(p) = Fivap+ 5 p* +O0(p*). (6.6)

Solving (6.3) we obtain

3

a(p,t) = 3 {eA;(p) exp(~ X (p)) — By / £3(p) expl=X; (p)(t — ))(@ * @)(p, 7) dr}
= (6.7)

where A;(p), fj(p) are defined by (3.9). An analogous formula (only with the sum of two
terms corresponding to Az 3(p)) is valid for the solution of (6.4). The main idea consists
in extracting the long-time asymptotics of @(p,t) uniformly in p for |p| < ct=!/2. For
this purpose we must obtain the asymptotics as p — 0 of the functions A;(p), f;(p).
Assuming that the initial data have good enough decay for (3.16) to be valid we have:

A(p) = 2ivap + O(p°),

filp) =1+00),  fp) = +0(1),  fs(p) = +0(1),

2f' J%
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Aafp) = 57 l0(0)+ %(0)] + ZOXO - BT o)
A30) = 5= l(0) + x(0)) + FEE) L BN o)

Define Uj, j = 1,2, to satisfy

@“%0:€[¢®);X@)¢¢é;§1

—ﬂp2/0 2\/_ exp [il\/'P(t—T)—é(l—a) (t—T)] (U« 0)(p, 7)dr,

exp [:i:i\/apt - %(1 - a)p2t]

where we have used the upper sign when j = 2 and the lower sign when j = 3. We
obtained these equations by substituting the leading-order expressions for f;(p) and
Aj(p) into (6.7). It is not hard to see that the U; satisfy Burgers’ equations with a
transfer. U, is a solitary wave pulse, and Us is another one traveling in the opposite
direction. The leading—order terms of A;(p) lead us to consider

h0.1) = 5 500) + KO exp | 51~ )| {expliv/apt] - expl-iv/ap).

We note that h(z,t) is the antiderivative of the difference of two solutions of two heat
equations with opposite drift. The support of h spreads linearly with time, and therefore
overlaps sufficiently with the supports of both Us and Us. If present, this h term will
couple with U; through the nonlinearity @ * @, at least through the cross terms h x U
For this reason the simplifying assumption 'zp(O) + x(0) = 0 is made, so that we do not
have to contend with this problem. We can reduce (2.1) to the following system:

U +u = v, u(zx,0) = ep(x),
Vt = Wy, ’U(iL‘,O) = E[(p(.’l,‘) + ’(/)(23)],

Wy — QUy — (1 - a)wzr + (1 — Q) Ugqt = ﬂ(u2)x7 w(:z?,O) = SZ-Z [w(y) + X(y)] dy

This system also makes the assumption made above seem natural.

We have already shown that for all p, @ < A;(p) < 1; hence, we expect the term with
j = 1 in the sum in (6.7) to be small for large ¢ (the factor of p? tames the integral part).
Therefore, it follows from (6.7) that

a(p,t) = Us(p, t) + Us(p,t) + o(1), |p| < ct™V/2.

The cross term (72 * 173 is quite small because of the positioning of the supports of the
solitary wave pulses and the fact that they have opposite drifts. On these intuitive
grounds one should expect a result like

u(zx,t) = Up(x,t) + Us(x,t) + O(t™/?) ast — +oo.

A very similar situation arises in the study of the long-time behavior of solutions of
(6.2). There one is lead to the simplifying assumption 1(0) = 0. This assumption is
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appropriate for the following system form of (6.2) considered in [20]:

Uy = g, u(z,0) = ep(z),
Vt — QUg — VUzz + Ugrxr = ﬂ(u2)z, 'U(I', 0) = E/ w(y) dy7

where as before u;(z,0) = e¢(z). Thus, the new analytical challenge of Eq. (6.1) over
(6.2) is to deal with the terms arising from A;(p), fi(p), and A;(p) and to develop the
method of studying the higher-order semilinear dissipative evolution equations in the
process (without reducing them to systems).

Although the estimate of the residual term in the long-time asymptotics (2.3) is uni-
form in space, due to the presence of the exponential multipliers, the asymptotic formula
is effective only in the regions |z++/at| < cy/tInt surrounding the wave fronts z = +/at.
Outside these zones, (2.3) gives a rough estimate of the long-time behavior of the solution
in question, that is, u = O(t~(179)/2) as t — 4o0.

The parameter a accounts for both dispersion and dissipation. As a increases and
approaches one, the wave pulses become steeper on the front side (with respect to the
direction of the movement) and smoother on the rear one. With the decrease of o the
pulses turn smoother and more symmetric. Such a behavior is typical of the weak shock
waves governed by Burgers’ equation (see [23]). Taking the limit & — 1 in (2.3) is
impossible since the constant in the estimate of the remainder tends to infinity in this
case. Consequently, (2.3) does not describe the discontinuity jumps. The expressions
% [3(0) +4(0) T %i] play the role of the Reynolds number in the theory of viscous
fluids showing the dependence on dispersion, diffusion, nonlinearity, and the initial data.

Passing to the limit 8 — 0 is quite possible and yields

e[2(0) +4(0) — (¥1 + X1)/va] (z + Vat)?
u_(z,t) — 2\/%_1 p[ bt ],
w (2, 1) — e[p(0) + (0 )\/%H'Xl /ﬂ [ I;\/\;_;t) ]

while the estimate of the remainder improves and becomes O(t™!) as t — +o0o. Here the
fundamental solutions of the heat equation can be recognized easily.

The author expresses his profound gratitude to the referee for his valuable remarks
and suggestions.
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