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Abstract. A parameter range for which the ordinary differential equations governing
the FitzHugh nerve system have a unique nontrivial closed orbit is given. It is wider
than those already known.

1. Introduction. We consider the following two-dimensional autonomous system of
ordinary differential equations:

(x = y - {^x3+ r)x2 + (r]2-rj$)x},

[y = -^{x3 + 377a;2 + 3(r/2 + | - l)x},

where the dot (') denotes differentiation, b, p and rjo are constants such that 0 < b < 1,
0 < p < 1/6, and r/o = \/l — pb, and 77 is some real parameter. The system (1) is called
the FitzHugh nerve system and is obtained by transforming the well-known FitzHugh-
Nagumo system (see [Fi] and [Na]). It was studied in such papers as [HI], [K-S], [Su],
and [T-V]. We shall prove the following

Theorem. The system (1) has a unique nontrivial closed orbit if -q2 < t]q.

This result improves those given in [HI] and [K-S]. In fact, the result that "If either
r)2 < 4~1?7o or {pb2 — 76 + 6 < 0 and rj2 < t/q}, then the system (1) has a unique nontrivial
closed orbit" was given in [K-S]. In [HI] the result that "There is a positive constant
Vi < Vo such that the system (1) has a unique nontrivial closed orbit for |?7| < r/i' was
given. Therefore, the result of the above theorem is clearly stronger than those in [K-S]
and [HI] (it was shown in [HI] that the result in [HI] is not included in that of [K-S]).
In Sec. 4 it will be shown that there is a concrete case that can be treated by the above
theorem, but not by the results in [K-S] and [HI].

Received April 20, 1998.
2000 Mathematics Subject Classification. Primary 34C07, 34C25, 34C26, 34D20.
E-mail address: mhayashiSpenta.ge.cst.nihon-u.ac.jp

©2000 Brown University
171



172 MAKOTO HAYASHI

2. Lemmas. In this section we prepare some lemmas to be used in the next section
to prove the Theorem. We consider the Lienard system of the following form:

x = y-F(x),
y = -g{x),

where F is continuously differentiate and g is continuous. We assume the following
conditions for the system (2):

[CI] xg{x) > 0 if x 7^ 0;
[C2] there exist a\ < 0 and a-2 > 0 such that F(ai) = Ffa) = 0, xF{x) < 0 for

a\ < xci2, F(x) is nondecreasing for x < a\ and x > ao\
[C3] lim:1._±oc fg{F'(£) + |s(OI}«£ = ±°°-

To prove the Theorem we shall use the following three lemmas.

Lemma 1. Assume that the system (2) satisfies the conditions [CI], [C2], [C3] and besides
[C4] G(a\) > G(a,2) and there exists a constant a > 0 such that is nondecreasing

for x e (ai,xi) U (a2,+oo); moreover, there exists a constant 5 > 0 such that
is strictly increasing in x with 0 < |x| <5,

where G(x) = J* g(£) d£ and x\ < 0 is a number satisfying the equation G(a2) = G(xi).
Then the system (2) has a unique nontrivial closed orbit.

Proof of Lemma 1. Under the conditions [CI], [C2], and [C3] the system (2) has at
least one nontrivial closed orbit. See [HI] or [H2]. Moreover, by [Ze-1] or [Ze-2], under the
conditions [CI], [C2], and [C4] the system (2) has at most one nontrivial closed orbit. □

Suppose that the condition rj2 < in the Theorem holds with rj > 0 (the proof for
the case 77 < 0 is essentially the same).

Lemma 2. Let

T(x) = + 3 ̂  - A1 x2 + i? (2(7^ - n2) + 3 ̂ 0 + ^ - 1 j

Then T(e(ri — rjo)) > 0 if rj2 < t]q, where

3(^7 + 770) {y2 + 1)

2% {2{Vo ~ V2) + 3 {Vo + i - 1)} '
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Proof of Lemma 2. If rj2 < t)q , we have

r(e(J7 - m)) = £2{V ~ Vo)2 |2??o + 3 Q - 1J |

+ |2(»?o " V2) + 3 (vo + \ - 1) j (V ~ Vo) - 3(r/2 - rj'o) (v2 + \ ~ l)

= £2{V~ Vo)2 |2r?o + 3 Q - 1^ |

+3(^-1)h2-'»)(',2 + i-1)>0- n

Lemma 3. Let

g(x) = y {z3 + 3r]x2 + 3 (?72 + i - i) xj and G{x) = J g(£)d£.

Then G(a) — G(—a) > 0 for every a > 0.

Proof of Lemma 3. Since G(a) — G(—a) = \pb-qa3 > 0, the proof is completed. □

3. Proof of Theorem. We shall prove the Theorem by using the above three lem-
mas. We set F(x) = (l/3)x3 + rjx2 + (rj2 — r/o)x. Then, if rj2 < rfc, we see easily that
the system (2) satisfies the conditions [CI], [C2], and [C3]. We shall check the condition
[C4] in Lemma 1. We have for ry2 < t/q,

-3t? - V12i1q ~ V ^ n j ~3r? + \/12r?o ~ 3?72ai = —   < 0 and a2 = —   > 0.

Then we get

G(ai) ~ G(a2) = ^ jV + 2rfi + 6 Q - 1^ | yj 12r/g - 3rj2 > 0.

If rj2 < riq, since 0 < e < 1, we have a2 > §(??o — r/) > e(rjo — 77). Let xi < 0 be a
number satisfying the equation G(a2) = G(xi). From the above fact, the monotonicity
of G and Lemma 3, it follows that

G(x 1) = G(a2) > G(e(r)o - 17)) > G(e(ij - 7]0)).

Using the fact that «i < x\ < e(r] — 770) < 0, we shall show that F(x)/Ga(x) is nonde-
creasing for x e (ai,s(r/ — 770)) U (a2, +00). This means that F'{x)G(x) — aF(x)g(x) > 0
for x € (ai,e(j7 - %)) U (a2,+oo).
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From the calculation in [HI] (see [HI], p. 333), we see that the above claim means
that

$(x, a) = (3 — 4a)x4 + 677(3 — 4 a)xs

+ 3 15(3 - 4a)r,2 - (1 - 4a)»jg + 2(3 - 2a) (j ~ } ~2

+ 127? |2(2 - 3a)if - (1 - 3a)772 + 3(1 - a) Q - l) J

+ 18(V2 - Vo) (v2 + \ - l) (1 - 2a)

> 0

for x e (ai,e(i/ - 770)) U (a2, +00).
3
4

$ (*.!)

Let a = |. Thus we get the following expression, which is of degree 2 in x:

2r,2° + 3 (I ~ x) } x2 + v {2^° ~ ̂  + 3 + I ~ 0 }a

-3(7?2 - 7/g) (V + i - 1

= 3r(x).

If rj2 < ?7q , from the fact that F is a function of degree 2, the inequality F(0) > 0 and
Lemma 2, we conclude that $(x, |) > 0 for x € (ai,e(r) — 770)) U (a2,+oo). Therefore,
the condition [C4] in Lemma 1 is satisfied. □

4. A numerical example. We shall present the phase portrait of the following
system as an example illustrating the application of the Theorem. We consider the
system (1) with b — 1/2, p = 1, and rj2 = 3/8:

/1 3 76 2 1 \x = y-l-x* + —x --x\,

(3)
1 ( , 3\/6 , 33 \+ + ~8xj'

In this case, since t/q = 1 — pb = 1/2 > rj2, the system (3) satisfies the condition in
the Theorem. Thus we see that the system (3) has a unique nontrivial closed orbit; see
Figure 1. We note that this system does not satisfy the condition in [HI] nor that of
[K-S], either.

Remark. In [Su] it was shown that the system (1) has no nontrivial closed orbits if
it satisfies the conditions

772 > 770 and rj4 - Atj2^ + 77^ + 2(± - 1)t?2 - 4(± - 1)77^ + 4(± - l)2 > 0

or

2{^ + (i-l)}3<r?2{772 + 3(i-l)}2.
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After that, Treskov and Volokitin improved the result of [Su] by applying bifurcation
theory. It is difficult to give the condition by the explicit formulas (see [T-V]).

We do not know yet what happens in the region in the (77, ?7o)-plane in which rf > t]q,
but the condition of [Su] or [T-V] is not satisfied. But some numerical experiments tell
us that the system may have two (or more) nontrivial closed orbits if (77,770) is in the
above-mentioned region. For instance, consider the system (1) with b = |,p = ^, and
V2 — Jo- ^ satisfies neither the condition [Su] nor [T-V]. From the phase portrait of
the system it seems that it has several nontrivial closed orbits. We hope to show this
mathematically in the future.

Fig. 1
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