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Abstract. A general closed expression is given for the isothermal minimum free
energy of a linear viscoelastic material in terms of Fourier-transformed quantities. A one-
parameter family of free energies is constructed, ranging continuously from the maximum
to the minimum free energies.

The simplest case of single component stress and strain tensors and a single viscoelastic
function is considered in this paper. Explicit formulae are given for the particular case
of a discrete spectrum model material response.

1. Introduction. We address the problem of finding general, explicit forms for the
free energy of a viscoelastic solid. The investigation of this issue has a long history.

Early work on the determination of the free energy of a linear viscoelastic solid by
Staverman and Schwarzl [1] involved arguments based on mechanical models. These
authors perceived the problem of non-uniqueness and used detailed model assumptions
to deal with the issue. Their results were given independently by others (for example

[2, 3]).
Breuer and Onat [4] consider the question: what is the maximum amount of work

recoverable from a body that has undergone a specified strain history? They find that the

answer is in general provided by the solution of an integral equation of the Wiener-Hopf
type, but give a detailed solution by elementary means for a material with relaxation
function in the form of a finite sum of decaying exponentials. This response, with or
without a constant term (there was no constant in the Breuer-Onat relaxation function)
will be referred to below as a discrete spectrum model. The resulting quantity was found
to be greater than or equal to the free energy given in [1, 2, 3]. The non-uniqueness
problem was also explicitly exposed by Breuer and Onat [5] by first proposing a general
form for the free energy of a linear viscoelastic non-aging solid as a quadratic functional
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of the strain history and then imposing isothermal thermodynamic constraints upon it,
which are investigated for discrete spectrum models.

In the general nonlinear, non-isothermal theory of Coleman [6] and Coleman and
Mizel [7], a free energy (and other) functionals are assumed to have certain differentia-
bility properties for histories within a specified normed function space. The constitutive
equations and a dissipation inequality then follow from the second law of thermodynam-
ics. Certain properties of the free energy functional derived within this general context
were used by various later authors to characterise a free energy. These are stated in Sec.
3 and used in this paper.

Coleman and Owen [8, 9] present a general, axiomatic formulation of thermodynamics,
in which the existence of the free energy and entropy are deduced from more fundamen-
tal considerations rather than assumed a priori. They show that for an elastic-plastic
material element, there are an infinity of free energies.

Day [10] presents an alternative formulation of the thermodynamics of materials with
memory and, in particular, revisits the problem considered in [4] within a more rigorous
framework. In [11] he introduces the concept of a (time) reversible extension and gives
an expression for the maximum recoverable work and the associated free energy in terms
of this concept. An expression for the minimum free energy of a standard linear solid is
given in [12].

Fabrizio and Morro [13, 14] examine the implications of thermodynamics for the
Fourier transform of the relaxation function derivative. They deduce simple necessary
and sufficient conditions for the validity of the second law in isothermal linear viscoelas-
ticity. It follows from these considerations that the Fourier sine transform must be
negative definite. This approach provides a very simple demonstration of the symmetry
and positivity of the instantaneous and equilibrium elasticity tensors and the relationship
between them. The positivity properties will be used later.

Graffi and Fabrizio [15, 16] consider expressions for the free energy of discrete spec-
trum models. They define a state in terms of a finite number of functions evaluated
at the current time and seek an expression for the free energy as a quadratic form in
these quantities. Non-uniqueness of this form is demonstrated. Morro and Vianello [17]
establish, within a general framework [12], the existence of a minimum and maximum
free energy.

A concise presentation of and references to many earlier results is contained in [18],
including references to the original work on the positivity and symmetry of the limiting
elasticity tensors.

Frequency domain representations of linear viscoelastic quantities are systematically
presented in [19, 20]. A class of free energies is constructed, with elements labelled by
a weight function. Special cases are the maximum free energy and the Graffi-Volterra
form [18]. This latter form, for the case of discrete spectrum models, also emerges from
the considerations in [15].

The problems that arise in interpreting the "internal dissipation function" in isother-
mal linear viscoelasticity given that it is not unique and is in fact zero for the maximum
free energy, are discussed in [21, 22], They also extend the developments of [16] for
discrete spectrum models where states are represented as a finite number of functions at
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the current time. It emerges that the most general free energy that can be constructed
as a quadratic function of these variables does not include the maximum free energy. For
the case of a single exponential, the state may be represented by the current values of
stress and strain.

More recent work by Del Piero and Deseri [23, 24] examines related issues in depth.
Based on the general formulation of Coleman and Owen [8, 9], they argue that a valid free
energy must be a function of state and that, in agreement with [21], the current values of
stress and strain define a state for a relaxation function consisting of a single exponential
function. They show that different histories of strain can give the same current values of
stress and strain but different values of certain functions that obey the requirements of
a free energy function. They show this for two cases: the maximum free energy and the
single-integral form proposed by Gurtin and Hrusa [25]. Thus, according to their line
of argument, these may not be valid free energies because they may not be functions of
state. They also explore the applicability of their definition for several other standard
forms.

These are deep issues which will not be resolved in the present work. We adopt here
the traditional approach that a state is defined by the current strain and the strain
history. However, some further remarks on this topic are made at the end of Sec. 6.

While the existence of a minimum free energy has been established [12, 18], the
only case for which an explicit form has been given is the standard linear model. A
more general result is implicit in Breuer and Onat [4], In this paper, a general closed
expression is given for the isothermal minimum free energy of a linear viscoelastic material
in terms of Fourier-transformed quantities. A one-parameter family of free energies
is constructed, ranging continuously from the maximum to the minimum free energies.

The simplest case of single component stress and strain tensors and a single viscoelastic
function is considered. The full tensor problem will be treated in a separate paper.

Detailed, explicit formulae are given for the particular material response of the discrete
spectrum model. The result of Day [12] is reproduced and the connection with [4] is made
explicit. A more complete exploration of the set of free energies associated with a discrete
spectrum material is presented in a forthcoming paper.

The layout of the paper is as follows. In Sec. 2, fundamental relationships are written
down and a factorisation result required in Sec. 4 is proved. In Sec. 3, the defining prop-
erties of a free energy are given and general quadratic functional forms of free energies,
both in the time and frequency domains, are discussed. In Sec. 4, the general expression
for the minimum free energy is derived and a family of free energies is constructed. In
Sec. 5, these are shown to be special cases of the general quadratic form in the frequency
domain, considered in Sec. 3. Finally, the results for discrete spectrum materials are
presented in Sec. 6.

2. Basic relationships. We consider a linear viscoelastic solid, subject to stress in
such a way that there is only one nonzero component of stress T(t) and strain E(t)
related by

rOC

T(t) = G0E(t) + / dsG'{s)Et(s),
Jo (2.1)

E'is) = E(t — s), s e R,
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where both Et and G' € L1(R+) flL2(i?+) flC,1(R+) using the notation here and below:
R is the set of reals, R+ the positive reals, and R++ the strictly positive reals; similarly
R~ ,R~~ are the negative and strictly negative reals. The relaxation function G(s) may
be defined by integrating G'(u) from u = 0 to give G(s) — Go, with Go identified as G(0).
The quantity G^ = lim^oo G(s) is well-defined and we take it to be positive so that
the body is a solid. The quantity Go is positive. This follows, in fact, in the general
three-dimensional case, from application of arguments based on thermodynamics [18].

For any / € L2(R), we denote its Fourier transform by

fF(u) = r d£f(S)es~iuJZ, fF £ L2(R). (2.2)
J — OO

If / is a real-valued function—which will be the case for all functions of interest here,
in the time domain—then fF{oj) = fF(—uj) where the bar denotes complex conjugate.
Functions on R that vanish identically on R are defined as functions on R+. For such
quantities, fF = fc — ifs where fc , fs are the Fourier cosine and sine transforms:

n oo

fc{uj) = / d£f{Q cosw£ = /c(-w),
JO

roo

fs(w)= d£f(Z)smu£ = -fs{-v).
Jo

(2.3)

Thus
r oo

G'f M= / dsG\s)es-iLVS = G'c(w)-iG's{u). (2.4)
Jo

Properties of G's(u) include [18]

(2.5)
G'a(u) < 0, Vw G R++,

Gi(-w) = -G», VW e R,
the first relation being a consequence of the second law of thermodynamics and the

second being a particular case of (2.3). It follows that G^(0) = 0. We also have [18]
1 f00 C (ui)

Goo - G0 = - / < 0 (2.6)
J — OO ^

so that G's(lu)/lo £ Ll(R).
Let be the complex w-plane and let

Q.+ = {w e Q | S R+},
f2<+) = {lo e n | e R++}.

These define the upper half-plane including and excluding the real axis. Similarly, SI-,
are the lower half-planes including and excluding the real axis, respectively.

The function G'F(u>) given by (2.4) is analytic on This is a consequence of the
fact that G' vanishes on R , which is essentially the requirement of Causality [26]. For
a discrete spectrum model (see Sec. 6), the singularity structure of G'F consists of isolated
poles on the positive imaginary axis, while for a continuous spectrum (where G(t) is an
integral over a positive function with a decaying exponential factor), there is a cut along
a subset of the positive imaginary axis.
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It is assumed that G'f{uj) is analytic on R and therefore on fl~. For uj e Q<+>, relation
(2.4) cannot in general be used to define G'f{uj). Instead, it is defined by analytic
continuation from the region of analyticity, namely fi~, and possibly a strip of
Analyticity at infinity is assumed.

The quantity GF(—uj) = G'F(tu) is analytic in f2+, a mirror image, in the real axis, of
the structure of G'f{uj). Thus, G's(co) has singularities in both and that are
mirror images of one another. Similarly, its zeros will be mirror images of one another.
We will be interested in the singularity structure of

H(u) = -uG's(u) = H(-lo) > 0, w e R . .
= Hi(uj2). (2"8)

This latter relation is a consequence of the even signature and analyticity of H(uj) on
the real axis. It follows that H(ui) goes to zero at least quadratically at the origin. It
will be assumed that the behaviour is no stronger than quadratic. This is equivalent to
the assumption that dsG'(s)s is finite and not zero, as can be seen by considering
lim^o H(lu)/lu2. It will be required in later developments that H(uj) can be written in
the form

H(oj) = H+{w)H.{w) (2.9)

where H+(uj) has no singularities and zeros in f!!_) and is thus analytic in f2~. Similarly,
H^{uj) is analytic in f!+ with no zeros in fi-+'. We show that it is always possible to do
this, given the assumed structure of The argument is similar to those used in the
solution of Hilbert problems [27].

By considering the inverse sine transform of G's(u>) ([18] for example) one can show
that

Hoc = lim H(uj)

, , (2-10)= - lim uG'Aw) = —G (0) >0.
UJ—>OG

The sign of G'(0) has been deduced by various authors from thermodynamic constraints
in the general three-dimensional case [28, 10, 18]. We assume for present purposes that
G"(0) is nonzero so that Hx is a finite, positive number. Then H(oj) e R++ Vu €
R, cu / 0. The function

K(u,)=log[H(u>)T(w)],

T( \ 1 1 (2'n^T(W) = 7J- + "2
H0 UJ

is a well-defined analytic function on R, vanishing as u> 2 for large values of uj. Consider
the quantity

M{z) = r du2 e n\R,
J-oo w « (2.12)

M{z) — » 0
I * HOC
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For z € M(z) = M+(z) is a function analytic in while for z € M(z) =
M~(z), which is analytic in The Plemelj formulae give that

M+{u>) - M~(u>) = K(u>), u> e R, (2.13)

where M±(ui) are the limiting values of Al±(z) as 2 approaches the real axis from
above/below. Then if we put

H+M =
UJ ZiXqq

H_ (uj) = wh<*> e+M+H (2.14)
uj "I- ih^

1
h — H2uoo — iJoc?

it follows that H+(z) is analytic and free of zeros in and similarly for H_(z) in
Also (2.9) is obeyed. Noting that M±(u;) = M±(—lo) = we see that

H±{uj) =
H(u) = \H±{u)\2.

There arises the issue of the uniqueness of the factorization, since expressions for free
energies developed later depend on the individual factors. Consider two different fac-
torizations and take the ratios of corresponding factors. These ratios can be shown to
be analytic everywhere and constant at infinity. Invoking Liouville's theorem, we see
that the factorization is unique up to constant multipliers. This residual arbitrariness is
eliminated by adopting the specific relations given by (2.14) and obeying (2.15).

Consider now the strain function El. Define
rOO

Et+{u)= / dsEt(s)es~iuJS, El+ e L2(R). (2.16)
J o

It is analytic in a property which will be assumed to extend to Fl~. It is defined
in all or part of by analytic continuation.

We allow the possibility, for later applications, that a finite discontinuity occurs in El
at s = 0. Also, it will not be assumed that Et(—oo) is zero. However, defining

E[(s) = Et(s)-Eoc, s e R~,
Eoc = E'i-oo),

we assume that E{ : R~ —> R 6 Ll(R~) C\L2(R~) n Cl(R~). Let

El (w) = El{uj) + Ex [ dses ~ iuJS = Efo) -
J — OO

(2.17)

£» = f dsE\{s)es~iuJS, (2'18)
J — DC

uj = lim (<jj + ia).
Q—>0 +

We have assigned a definite meaning to the right-most integral by giving u> a small
positive imaginary part. The limit a —► 0 is to be taken after any integration involving
the quantity (o;+)_1. Under a similar assumption to that for E*+, we may conclude that
El is analytic in 0+. It therefore follows that El(ui) is analytic in fi+. The method just
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described of assigning meaning to the Fourier transforms of functions that do not belong
to spaces with sufficient integrability properties will be used later to assign meaning to
the transforms of constant histories.

We write
EUw) = E+fa) + Eliu)

(2.19)

where
/OO

dsEt(s)es ~ iuJS = EF(tu)e~lut
-OO

Ef{uj) = f dsE{s)es ~ius. (2.20)
J —OO

Of course, E{s) does not belong to Ll(R) n L2(R) if Eoo ^ 0 with the consequence that
Ep(uj) manifests singular behaviour at the origin. Analyticity at infinity is assumed for
E±(u>). Note that

dE\(ijj)
dt

dEUw)

—iu>E^_(uj) -|- £/(i),
(2.21)

dt —iwEt_(w) - E(t+),

where we have allowed for the possibility of a discontinuity in Et(s) at s = 0. The
left-hand limit is simply denoted by E(t) for convenience. The second relation of (2.21)
holds only if Et(s) = E(t — s), s < 0. For the problem considered in Sec. 4, it will emerge
that this is not the case.

Note also that T(t), given by (2.1), is independent of El(s), s £ Ii . For the
remainder of this section, it will be assumed that E^ = 0.

Plancherel's theorem for the Fourier transform [29, 30] gives that for any two real-
valued functions g, h £ L'2(R) we have

/oo ^ r00<%9(Z)h(0 = 7T / dojgF(u)hF(uj). (2.22)
-OO J — OO

Therefore, we have that
roc -i rOO

yo ^G"(0^(0 = — I dwG'pM&Fiu) (2.23)
where Ep is given by the complex conjugate of the first equation of (2.1) in which
the function -E'L(w) may be arbitrarily chosen. One can see in fact, by virtue of the
singularity structure of G'f(lj) and -E'L(w) = iJi(-w), that by closing the contour on

the term G'i?(o;)£,t_(u;), in the right-hand integrand of (2.23) will give a vanishing
contribution. For this conclusion to be valid, it is necessary that this product, integrated
over the infinite portion of the contour, gives zero. The product must therefore vanish
as co~a, a > 1 at large lo. This is true because both G'f(lj) and E^ui) e L2(R).

However, it is convenient to retain El_(u) in (2.23). Let us choose El(s), s £ R such
that Et(s), s £ R is an odd function. This is equivalent to choosing El_ (w) = -E\ (w).
Then (2.1) becomes

1 r°°T(t) = G0E(t) -—J dwG»[£*.(w) - EK-uj)}. (2.24)
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This form is more convenient in the present context than the equivalent real form on R+,
given in [19, 20].

Let

T1(t) = T(t)-G0E(t). (2.25)

The derivative of this quantity, which will be required later, can be determined from
(2.21) and (2.24) to be

1 r°°^(0 = -—y dw/f(w)(4(w) + <(-u)). (2.26)

3. Free energies. Let ip(t) be a free energy functional for the system under consid-
eration. Then the Clausius-Duhem inequality requires, by virtue of standard arguments
[6, 7] adapted to the isothermal case, that

™ - f§ <31>
and

T(t)E{t) = +
D(t) > 0, (3.2)
xp(t) > 0,

provided that ip(t) has certain differentiability properties. The quantity D(t) is the
internal dissipation function. It must be nonnegative as a consequence of the second law.
Certain other properties of ip(t) can be proved within a general framework.

An alternative approach, in the isothermal case ([18] for example), is simply to define
a free energy as a functional obeying certain conditions. These express the content of
(3.2) and include the other properties referred to above.

The functional ip(t) is a free energy for the system under consideration if it obeys (3.1)
and the following conditions:

CI: It is equal to the elastic free energy for static histories of strain.
C2: For any history of strain, it is not less than the elastic free energy.
C3: The work done by the straining process over any time interval dominates the

change in ip(t) over that interval—the integrated dissipation inequality [6].
The positivity of ip(t) follows from C2 since the elastic free energy is conventionally taken
to be positive. The first two relations of (3.2) and C3 are essentially equivalent if ip(t) is
differentiate. The key requirement is that D(t) is nonnegative.

We will follow the second approach, but will explore the validity of C3 by deciding
whether D(t) is nonnegative or not.

The most general quadratic form for ip(t), corresponding to a linear non-aging material
and a differentiable history, is the well-known functional [5]

i roc noc

VK<) = ~ / ds2Et(si)G(si,s2)Et{s2),
Jo Jo (3.3)

where Et(s) is defined by (2.1). Also, G € C3(R+ xR+). This function and its derivatives
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are assumed to have integrability properties on R+ x R+ as required. It can be taken to
be symmetric in its arguments. The functional ip(t) obeys the first relation of (3.2) if

m = -2
-i nOC n CO

- / dsx / ds2Et(s1)K(s1,s2)Et(s2),
1 Jo Jo

K(si,s2) = Gi(si, s2) + G2(s\, s2), (3-4)

G(0, s) = G(s, 0) = G(s),

where subscripts 1,2 indicate differentiation with respect to the first and second argu-
ment, respectively. Both tp{t) and D(t) must be nonnegative for all nonzero histories so
that G(s\, S2) and — K(si,s2) must be positive operators.

It will be perceived that there is a potential arbitrariness in the choice of G(si,s2). If
it is replaced by

Gn(si, s2) = G(si, s2) -I- r(si, S2);

r(o,s) = r(s,o) = 0, (3'5)

where Gn and the negative sum of its first derivatives retain the positivity property, then
ip(t) and D{t) still obey (3.2). This points to the well-known non-uniqueness of the free
energy for materials with memory. One of the aims of the present work is to explore this
non-uniqueness.

We can write (3.3),(3.4) in the alternative forms that do not require differentiability
of El:

1 noo /»00

m = m + dSll ds^Et^~E^G^s^EtM-E^

4>(t) = IG^E2^), (3.6)

provided that

Goo " G(s, 00) = G{00, s) = G{00),

Gi(s, 00) = G2(oo, s) = 0,

so that Goo is the same quantity as defined after (2.1). The quantity cj)(t) is the elastic
free energy. Also,

1 nOO rOO

D(i) = --Jo dSlJI ds2[Et(s1)-E(t)]K12(s1,a2)[Et(a2)-E(t)]. (3.8)

Condition CI is clearly satisfied for (3.6). Condition C2 requires that Gi2(-Si, s-j) must
be a positive operator. Since D(t) is nonnegative, it also follows that — i^i2(si,S2) must
be a positive operator.

It is of interest to write (3.6) in the form
1 r OO rOO

ip(t) = S{t) + - dsi ds2Et(si)Gx2(si,s2)Et(s2),
2 Jo Jo (3.9)

S(t) = T{t)E{t)-\G0E2(t),

and (3.8) as
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1 roo r-oc

D(t) = -U(t)~- dsi ds2Et(s1)K12(s1,s2)Et(s2)J
z Jo J0

i . r°°
U(t) = Td(t)E(t) - -K0E (t) = [Ti(t) + / dsG12(0,3)Et(a)]E(t),

z J 0

Td{t) = K0E(t) + f dsK'(s)Et(s) (3'10)
J 0

= T1(t) + G'{0)E(t) + [ dsG12(0,s)Et(s),
J o

K{s) = K(0,s) = K{s, 0); K{oo,s) = K{s,oo) = 0; K0 = K{0) = 2G"(0),

where Ti(f) is defined by (2.25). We shall now seek to express these relations in the
frequency domain. Let G\2 : R+ x R+ —» R G L1(R+ x _R+) fl L2(R+ x i?+). The
definition of G is extended to R by

G(sus2) = G(|si|, |s2|), si,s2 £ R- (3-11)

Derivatives of this quantity are discontinuous at si,s2 = 0. Define

N{ojuu2)= [ dsJ ds2e~i(UJlSl ~ W2S2)Gi2(si, s2) G L2(R x R) (3.12)
J— oo J — oo

and apply Plancherel's theorem to (3.6) and (3.9) to obtain
2 n oc nOC

1p(t) = + ^2 / diJi /
*/ OO " oc

EUui) E(t)
zu;l J

N(uji,uj2) E\ (cj2 )
£(*)

-j /»OC /»OC

= 5(t) + —-2 / dwi / dw2^+(o;i)Ar(a;1,a;2)^+(u)2)
J — oc J — OC

(3.13)
where w+ is defined by (2.18) and = limQ_»o(w —'jQ;)- Similarly, from (3.8) and (3.10),

pOC rOO

D(t) = — ——j / dui\ / du2
J —oo J —oc8tt2

2 /»oc

87T

where

A-/ (wj, W2)
lid.2 J

(3.14)
= -U{t) - ^3 / dwi / dw2i?^(wi)M(a;i,w2)i?+(a;2)

M(Wl,u;2)= r ds! r ds2e-i^-UJ^K12(s1,s2)
J —oc J —oc

= ?'(<^i — w2)./V(u;i, u>2) — 2(P(wi) + P(u>2)), (3.15)

P(w)= [ dses~iuJSG12{s,0+).
' —OO

One can show that (3.2) is obeyed by differentiating, for example, the second form of
(3.13). The second form of U(t) from (3.10) is required and also Fourier's integral theorem
at points of discontinuity, giving

/OO pOC

di0\N{L0i,L0) = / dui2N(LU, w2) = 0 VwGfl,

(3-16)
/ dtoE^to) = 7xE{t).
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Note that M(uii,u>2) m&y not belong to L2(R x R) and the integral in (3.14) may exist
only as a principal value. This is a feature that we will encounter in Sec. 4 also, as a
result of time differentiation of integrals over frequency space, because of the worsening
of convergence by a factor u.

It is of interest to ask what is the statement corresponding to (3.5) in frequency space.
Using the equivalence of the two forms of (3.13), we see that if replaces
N(lj 1,^2) where Ni and the corresponding —M\ are positive operators and where

Nd{ui,ui2) = N1(w1,w2) - N(wi,u2) (3.17)

obeys

/OO J /*00 1—irNd(oJi,oj) = / —— Nd(u>,w2) = 0 Vu> & R, (3.18)
-00 J—00 ^2

the new free energy has the desired properties. Strictly, this condition corresponds not
to (3.5) but to a similar statement referring to (3.6).

4. A family of free energies. Consider, to begin with, the well-known form [17, 21]
of the maximum free energy

= f dt'T(t')E(t'). (4.1)
J — OO

It follows from (3.2) that, for this choice of ip(t) the dissipation function D(t) vanishes.
We can write in the form (3.3):

1 /»00 f> OO

= - / dsi / ds2Et(si)G(\si - s2\)Et{s2). (4.2)
* Jo Jo

However, there are difficulties with the forms (3.6) and (3.9) in that G(|si — S2I) is not
differentiable at si = s2. In order to derive the form (3.13) in this case, we proceed
in a different manner. Applying a partial integration to (4.1) and separating out the
instantaneous contribution to the stress, we find that

r°° dtM{t) = S(t) - JI ds-T{{s)E\s)

= Sit) - £ du^TfMEUw), (4'3)
Tt1(s) = T1(t-s),

on applying Plancherel's theorem and using notation introduced in (2.25). The well-
known form of the Fourier transform of a convolution product gives with the aid of
(2.19) that

TiVM = G'f(w)£fM = (4.4)
where Et{(^), which can be chosen arbitrarily, has been put to zero. It follows from

(2.26) that

jfiF (w) = iwG'FM^.( w) + G'F(u)E(t). (4.5)

We now substitute this form back into (4.3). The second term of (4.5) gives a zero
contribution because both G'f(<j) and E+(u) are analytic on and the product
vanishes on the infinite boundary. Therefore,
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i r°°vM(t) = S(t) + —J c^#M|^M|2 (4.6)

where the symmetry properties of G'c(cj), G's(lo) have been used. This corresponds to the
second form of (3.13). We can also write it in the form

E(t)ipM(t) = f dioH(tjj)
J — OO lid (4.7)

with the aid of (2.6) and (2.24). The single frequency form corresponds to the case where
N(u 1,(^2) in (3.13) is a diagonal operator that can be formally represented in terms of
a delta-function. In this case, there is no freedom of the kind expressed by (3.17) and
(3.18). Relation (4.7) on R+ has been given in [19, 20].

Note that since H(w) vanishes quadratically at ui = 0, the quantity w~ in (4.7) can
be replaced simply by u>.

We now wish to establish an expression for the minimum free energy, and do so by
following a procedure analagous to that of Breuer and Onat [4], but in the frequency
domain.

We shall use t henceforth in the special sense of the current time at which an expression
for the minimum free energy is sought. Consider iPm{u), u > t, given by (4.6). The limit
as u —> 00 gives

/OO

dtT{t)E{t)
-OO

= S( 00) + r dwff(w)|E*.(w) + EL Ml2, (4-8)
^ J — 00

S(oo) = GooEl - \G0El = cf>(00) - i(G0 - G^E^,
which may be shown by considering the limit for large u of £"(w), u > t. We have
allowed that iptM(00) may depend on t. This will be so if there is a discontinuity in the
strain Et(s) at s = 0.

We assume that EL(w) is given and wish to find the choice of EL(u>) that maximizes
the recoverable work

/OO

dt'T(t')E(t')

= 5(oo)+/ dt'T(t')E(t') — ( dt'T(t')E(t') = il>M(.t)-ipt, (4.9)
J — 00 J — OO

1 c°°/ = iPU00) - 5(00) = — J cLuH^IEKuj) + EL(w)|2.

The term S(00) in Wr will be justified later. Now, ipM(t) is given, and so we seek the
choice of EL{u) that minimizes ip1. Let E^lj) be that choice, which implies that if we
replace it by £yu(a;)+/c(w) where k(cu) is arbitrary, apart from the fact that k(u>) = k(—u),
that it behaves as uj~1 at large frequencies and that it is analytic in Q+ (any choice of
EL (w) must have these properties) and the resulting integral must not be smaller. It is
easy to show that this is assured if

fJ —(
duH{w)^[k{-u}){E\{uj) + E^oj))} = 0. (4.10)

Let us impose the equivalent condition that
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/oo m(#(-w)[4h + £Lhi = o
-oo

/oo dwH+{u)k(-u)[H-{u)E\ (w) + 11 (4.11)
-OO

Note that k(—ui), H+(u>), and E+(u>) are analytic in while H-(lo) and E^u) are
analytic in fi+. Let

= fl_(w)£*_(w)
= 9-M - g+M> (4.12)

where

(4.i3)
27TZ y„oc UJ - Z

and ql_ (u>) is the limit of ^(z) on the real axis from above. It is analytic in fl^+\
Also, <7+(w) is the limit from below and is analytic in This inverted notational
convention is adopted to retain conformity with other notation introduced earlier. The
function Q1(uj) is analytic on the real axis. Closing the contour in (4.13) on the half-plane
not containing z, we pick up the singularities of Q'(w) in that half-plane and see that
q± are both analytic on R. We have q±(w) = ui G R. The definitions of these
functions are extended to by analytic continuation.

The product H+(cu)k(— a>)</+(a;) vanishes as o>~2 for large u since k(—u>) and q\(u)
vanish as co~1. Therefore, the integral of this function over the real axis can be extended
to an infinite contour on without altering its value. The result is zero because of
the analyticity of the integrand on Therefore, (4.11) becomes

fJ —C
dwi/+(w)fc(-w)[gi(w) + H-^E^lj)] = 0. (4-14)

This will be true for arbitrary k{-ui) only if the expression in brackets is a function
that is analytic in f^-'. However, E^ui) must be analytic in 17+. Remembering that
q^ioj) and are also analytic in J7+, we see that the expression in brackets must
be analyic in both the upper and lower half-planes and on the real axis. Thus, it is
analytic over the entire complex plane. Now qLico) clearly vanishes as a;-1 at infinity, as
also must E^lo) if the strain function is to be finite at s = 0. Therefore, the function
is analytic everywhere, zero at infinity, and consequently must vanish everywhere by
Liouville's theorem. Thus,

pt (lA_ _0-M
H- M
i i r dJH-^')EW)

27ri H- (uj) /J —c

Observe that the pole at the origin due to (ui) in the denominator must be shifted to
i.e., [i/_(w)]_:l behaves as (w+)_1 near the origin. Closing the contour on

we see that the integral picks out the singularities of i/_(<j). It is shown in Sec. 6 that
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this formula gives results in agreement with Breuer and Onat [4] for the particular type
of material response considered by them.

Note that the method used to derive (4.15) has similarities in certain aspects to the
method of solution of Hilbert problems [27] and to the Wiener-Hopf method that Breuer
and Onat [4] and Day [11] refer to. An elementary discussion of this latter technique
may be found in [31].

Substituting (4.15) into (4.9), we see that the minimum value of tp1 is given by

1 r°°
^ = 2n J duJ^+^2- (4'16)

Also, from (4.6)
1 f°°ipM(t) = S(t) + — J dw|g^(w) - g?_M|2

i r°°
= £(*) + -/ M |^H|2 + |dMI2

(4.17)

since the cross-term

q-(-u)q+{^) + glMg+(-w)
consists of terms that are analytic in and respectively, and that vanish as ui~2
on the infinite boundary. By closing the contour on the half-plane over which a given
term is analytic, one obtains zero.

It is clear on physical grounds that any recovered work is a lower bound on any free
energy. Thus, if the maximum recoverable work has the properties of a free energy, it
must be the minimum free energy. We will make this identification and show that the
desired properties hold.

The minimum free energy is put equal to the quantity Wr evaluated for ip = tp.m ">
giving

i r°°= s{t) + — J cM?-MI2 < (4.18)
We can write (4.18) in alternative forms:

i r°°
= S(t) + — / duiH(u))\Eln(u))\2

2 (4.19)i r°° Fit)
= Ht)+ dwH{uj) E^u) + •

2tt J_x iuj^

The latter form follows by the same manipulation as was used to relate (4.7) to (4.6),
and is true provided that

/OO
dwG'^lE^) + &M] = 0. (4.20)

-oo

This condition is a special case of (4.10) obtained by taking k(—uj) = (itu-)"1. The
restriction to the imaginary part may be removed by symmetry. The resulting relation
may be proved directly with the aid of (4.12) and (4.15), by showing that the integrand
has the form H+(uj)qt+(w)/w. It is interesting to connect (4.20) with the result in [11]
identifying the history associated with maximum energy recovery with the concept of a
reversible extension, which gives a condition similar to the integral equation derived in
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[4]. Equation (4.20) is equivalent to this condition at time t (taken to be zero in [11]),
as may be established with the aid of (2.24).

Relation (3.1) is clearly obeyed by VmW given by the first form of (4.19). Also,
condition C2 is manifestly satisfied by the second form of (4.19).

For a static history, i?+(w) is given by E(t)/(iu~). Substituting this form into the
second relation of (4.15) and closing the contour over we obtain for a static history

EM = ~^T (4-21)

so that the integral in the second form of (4.19) vanishes. Thus, the condition CI is
obeyed. Note that CI implies that the maximum recoverable energy from a constant
history El = E(oo) is (j>(oo). From a physical standpoint, it is clearly an upper bound
of the recoverable energy, which can be approached as closely as desired by releasing the
stored energy sufficiently slowly. It justifies the inclusion of S(oo) in (4.9).

The method of defining the maximum recoverable energy adopted here differs from
that of Day [11, 12] (see also [18]). In particular, cf>(t) is not added to it to form tpm(t).

In order to verify C3, we must show that

Dm(t) = T{t)E(t)-j>m{t) (4.22)

is positive. From the third relation of (4.9) and (4.16) we see that

Dr
d lf 1 d f°° , . , . ,M ^ ^ ■ (4-23)

Note that the first form of (4.9) appears to give a different result. This is because, as
we shall see below, there is a discontinuity in the history at time t. Before proceeding
further, we derive certain auxiliary results, which will be required for this and other
purposes. Using (2.21) in (4.13), we find that

^ , E(t) r
dt =-iojqM - Ko(t) + ~ J

that

i ,00 (4-24)
K0{t) = — J dioH-(uj)Et+(u>) = K0(t),

= ~WhM - Kit),

= -W-M - K(t) + h (uj)E(t),dt (4.25)
K{t) = K0{t) + \hooE{t)

1 f°°
iui

These results follow from contour integration of the integral in the first relation of (4.24)
over This integral and K0(t) exist in the sense of limits or principal values. They are
conveniently evaluated by closing the contour, remembering that there is a contribution
from the infinite portion of the contour. The comment after (3.16) will be recalled in
this connection. For a static history, K(t) vanishes.

We also require the integrals of (?+(w) and q^ico) over the real axis. These can once
again be evaluated using the analyticity of the functions over and fl+, respectively,
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and the technique mentioned in the previous paragraph. The forms of q±(oj) at large uj
must be evaluated with care. We write

1 f°°
M=m w' — w?

+ ® H-W)
(426)

2iri J_oc (a/ — u>^)iu>'~

The last integral vanishes for <7+(w) and gives E{t)H-{u>)/(iu>) for q'_ (ui). Thus

lim ujq^u) = iK(t),
|u;|—»oc

and

lim Loq^ioj) = i{K(t) — h^Eit)),
|cj|—*oo

i f°° i i r°°— J dwq\(-u) = -- K(t) = — J dwqXi w),
i r°° 1 1 r°°

duql_{-oj) = ~(K{t) - hooEit)) = — J dwq^uj).

(4.27)

(4.28)

The complex conjugates of relations (4.25) are easily established and one deduces from
(4.23) that

Dm(t) = K2(t), (4.29)

which is clearly positive so that C3 is satisfied by VmM-
Relation (4.29) can also be deduced from the second form of (4.19) with the aid of

(2.6), (4.20), and (4.28); and from the first form of (4.19) using (2.26) and the relation

/OO POO
dwH(uj) [E+ (u) + Elm M] = - / dwtf+Mfl+M = *h°oK{t), (4.30)

-oo J — oo

which is related to the derivative of (4.20) (without the restriction to the imaginary part).
The derivative of (4.20) can be shown to vanish without any convergence difficulties aris-
ing, by using the fact that -^ql+(io) (and JjgL(w)) go to zero as a;-1 at large frequencies.
This follows from (4.25) and (4.27). It also allows a direct demonstration of the fact that
the time derivative of the cross-terms after (4.17) gives a vanishing contribution, when
integrated over R. This means that we can use the second form of (4.17) with confidence,
for purposes of differentiation.

Prom (4.15) and (4.27), it follows that

u>—> oo IUJ

Let us denote the optimal deformation as El(s), where

EM= f dsEKsy ~iu>s. (4.32)
J — OO

The quantity E^s) cannot be written in the form E0(t — s) as may be deduced by
comparing (2.21) and the derivative of E^u) as deduced from (4.15) and (4.25). We
can determine the form of Et0(s)) s E R~~ from E^ui) by the formula

1 r°°
du&Me™', aeRT, (4.33)
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evaluated by closing on For s e R+, we close on to get zero.
It follows from (4.31) and (4.32) that

MmEt0(a)=E{t)-K(t)/h00. (4.34)
s—> 0

Thus, as mentioned earlier, the optimal deformation involves a sudden discontinuity at
time t, of magnitude K(t)/h00 [4, 10].

Also, putting

k(w) = (4.35)
U)

we have
1 r°°*<*»—L

which gives, on considering (2.18),

1 r°°£o(-°o) = J ^ du//c(u/)£+0A (4.37)

This quantity is in general nonzero, in agreement with the observations in [10]. The fact
that the optimal deformation does not go to zero at large times is also implicit in the
results of [4],

Consider the generalisation of (4.7) and (4.19)
2

(4.38)
1 f°° , t , s t \ t i \ iH-(u)E(t)ip{t) = 4>(t) + — dui gi(w) - a(w)^(w) + 

271" J — oo w

■u € R. (4.39)

where a(w) is an arbitrary complex function constrained by the requirements that it is
analytic in (as is qi_(ui)) and

l«MI2 < i
a(—u>) = a(w)

Note that u;* has been replaced by ui since the zero in /f_ (w) cancels this singularity.
Condition C2 is clearly met. Also, for a static history, ql+ (a;) vanishes (see (4.26)) and

ql_(uj) cancels the term proportional to E(t) in (4.31), by virtue of (4.21). Thus, CI is
also obeyed. We can write (4.38) in the form

1 r°°
V(t)=S(t) + — j M |dM|2 + |aH|2|^(a;)|2]. (4.40)

In order to show this, the only new result required is that the cross-term

E(t) f
J — C

du-
a(-w)^(-w)//_(w)

U)

and its complex conjugate vanish. The integrand is analytic in fl+ and behaves as ui~2
at large w, so that the result follows. An immediate conclusion from (4.40) is that (3.1)
is obeyed.

It remains to consider C3. Differentiating (4.40) with the aid of (4.25) and using (4.28)
and (4.29), we find that difficulties arise unless |a(w)|2 is chosen to be a constant which
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will be denoted by ct2, where a is real and |a| < 1. With this restriction, it emerges that

D(t) = (l-a2)K\t), (4.41)

which is positive for a2 < 1.
We have therefore a one-parameter family of free energies connecting ipAi(t) and i

given by

1
2?r

ipa(t) = S(t) + — I em<7f—(w)|2 + a2|^(w)|2], 0 < q2 < 1. (4.42)

The free energy corresponding to (—a) is equal to that corresponding to a. This is
apparent from (4.42) though not immediately so from (4.38) with a(uj) replaced by a.
Equation (4.42) may be cast as

ipa(t) = a2ipM{t) + (1 - a2)i>m{t) (4.43)

compatible with the general convexity property of free energy functions [18].

5. Two frequency form. The family (4.42) is expressed as an integral over a single
frequency. However, except for the limiting case of the maximum free energy (a = 1),
it is not diagonal when expressed in terms of the strain histories up to time t. In other
words, if expressed in the form (3.13), N(ui\,u>2) is not diagonal. It is of interest to write
down the form of JV(wi,a/2) for this family. Interchanging integrations, one finds that

(M)
^ J -oo I w ~ wl u — LU2 W-W] w- CO2 J

where uj\, u>2 are moved slightly off the real axis, rather than u>. The ui integration can
be carried out by closing on either half-plane and we obtain

Na{wi,w2) = 2iH+(u>i)H-(ui2) ( —^ 1 .
— U>2 UJi — U>2 J (5.2)

One can show that the second term vanishes under the operations specified in (3.18), as
might be expected. Using the Plemelj formulae, we find that

(!+q2) r rq>i)qim
U) 1 - U>2

(5.3)

=S(t)+ (lH~Q -1 [ diulQ'^l2 +i^ A " ]P [ dio1dcj2i
J — oo J — oo

where Q^w) is defined by (4.12) and the "P" in the last term indicates that the first
integral evaluated is a principal value. For a = 1 this form is clearly diagonal. With the
aid of (4.6), it can be rewritten as

ipa(t) = ^ ^ ^ A>

A = — f dcolQ1 {u)\2 + -P j dujiduj2— ^ (5.4)
J-oo f J-oo W1-W2

/OO
dcj\q'+

-OO
Ml2.
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6. A particular model. We now consider the results of Sec. 4 for a particular class
of response functions, namely discrete spectrum models.

Let the relaxation function G{t) have the form

n

G(*) = Goc + (6-1)
i=i

where n is a positive integer, the inverse decay times aj € R+, i = 1,2,n, and the
coefficients Gi are also generally assumed to be positive. We arrange that ai < a-i <
ct3 < • ■ •. We have

n

G'(t) = Y,9,r-~ 0it, gl = ~alGi< 0 (6.2)
i= 1

and

G'f (w) =
9i

1=1
OLi + iw'

G» = Y.^fb' (6-3)i=1 "» ^

g'm = "Y,
recalling (2.4). Thus

2 i 2 '■ i ai + w
i=i 1

H{w) = -J1 V , ^ 9 > 0 (6.4)
2=1 L

and (2.10) can easily be checked. Observe that f(z) = H(cj), z = -u,2 has simple poles
at a?, i = 1, 2,..., n. It will therefore have zeros at 7?, i = 2,3,..., n where

a? < 72 < a2 < 73 < """ ■ (6-5)

The function f(z) also vanishes at 71 = 0. Therefore,

2 2 ^

HM = Be | | i ^5 \ (6.6)
rn

i=l ^

and either by inspection or by applying the general formula (2.14), one can show that

' u - iiiH+(u) = K n{
1=1 K

u) — taj

AJ: {uJ + iati J
1=1 V

(6.7)
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We have

H_(w) = h0
n „i+'E

. u + ion%— 1

Ri = (7i - an)nfe}-
H+(u) = H-{w),

(6.8)

j=
j¥=i

t t \ -7 -"-j-^+V '"i,/ (a n\q_{u;)=ih00)  . (6.9)
' w + icti

The quantity qt_(u>) defined by (4.12) may be evaluated by closing on f2( \ giving

RiE^-iai)

i= 1

Also,
q\{u) = ql_{u) - H-{uj)E1+(u;)

,L ^RilEU-iaJ-E*.M] t (6.10)
— thcc / . hooE+(uj),

f-f UJ + lOLi1=1

which has singularities at those of E+(uj) in Prom (4.15) and (6.7),
n

Mu)RiEt+(~iai)>

YE=1(w + iaj) n ^ (6-11}
JiH ~ U°n • v - X]n"=i(w+Hj)

where

so that

n?=i(-yi -
ffi, =  r (6.12)

1Ij=i(7j - W

71 JDt

{r[u + in'

B\ = YJRiKuEt+(-iai).
1=1

We conclude that the optimal deformation as defined in (4.33) has the form
n

Et0(s) = -Y^B\cll% s< 0,
/ = 1

-b\-Y,b^is-

(6.13)

(6.14)

1=2

Note that

Eti-oo) = -B\, (6.15)

which is a special case of (4.37)
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By considering u)Ji{u>) for large ui, it can be deduced that

X>; = 1 (6.16)
1=1

so that
n n

= J2R*E+(-ia^
1=1 i=1

= -K(o).
Prom (4.24), the second to last relation of (4.25), and (6.8) we have

(6.17)

K(t) = h0
i=1

(6.18)

so that the discontinuity at time t is K(t)/hoo, as determined in the general case. Prom
(6.8) we conclude that

= <«»>
i—1

giving

K(t) =hocY/— h^("^) - EV)\ . (6-20)
1 ^1=1

which also follows from the last relation of (4.25). The quantity K(t)/hoo given by (6.20)
may be related without difficulty to the jump discontinuity term in [4],

Using (4.21) and the static form of E+(w), namely E(t)/(iw~), in (6.13) gives that

R (6-21)y; —Kg = 0, / = 2,3,... ,n,

so that

B{ = ^2 [aiE+(—iati) - E{t)\ - E(t),
»-i ai

(6-22)
B\ = •

1=1

The quantities "yiBf, I = 2,3,..., n, given by (6.22) can be shown to agree with corre-
sponding quantities in [4].
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We deduce from (6.9) that

1 f°° n R R
— / mm\2 = hocj2
Z7r <j oc i,j=l J

-1 /"OC /»oo

= x/ dai / 52)^(52), (6.23)
* Jo Jo/o

F(Sl)S2) = 2i/00 V -^i^e~a's^s2
,/r,n'+

and the minimum free energy is given by (4.18). The second relation is cast in the form
(3.9), where

^(si> s2) = Gi2(si, S2). (6-24)

The solution of this partial differential equation compatible with (3.7) is

G(S1,S2) = G00 + 2H0Q ± R,R:> e-ociS1-OLjS2 _ (6 25)
. . - \OLi "H OLj)OtiOLji,3 = l J J

The last relation of (3.4) can be confirmed with the aid of the identity

Y"   = il  (6.26)
p-J («j + aj)aj 2i?i//oc '

which follows from (6.19) and the identity

ER] _ I i /« o-rN
~ _1 + ^r~^' (6'27)j=i

which in turn can be deduced by comparing the product H+(oj)H^(oj) given by (6.8)
near poles of H+{ui) with H(u) given by (6.4).

Comparing (6.4) and (6.6), we deduce that
2

RiSi = i = 1,2,..., n, (6.28)
oo

where R{ is defined by (6.8) and

Si = (7*+n {} ■ (6,29)
i¥=i

Using (6.28) we can write G(si,s2) in the form

<*»,«)-am +-2-Y. sZZZLs <M0>. . 1 SiSj(ai + cxj)
i,3 = l J J

which can be seen to be equivalent to the formula of Breuer and Onat [4] (who put
Goo = 0), on perceiving that Si has an extra factor a* on the products used in [4].
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Noting (3.8), (6.24), and (6.20) we see that (4.29) is obeyed, giving

Dm(t) = H0 X! 7T [(XiE+i-iai) - E{t)] |
i= l ai J

2

(6.31)
roo ,L

/ ds R,e~a
Jo i=1

= HX{ dsTRle-^s[Et(s)-E(t))

Equation (3.2) can be verified directly from (6.23) with the aid of (6.27) and (6.31).
For n = 1,

ipm{t) = S(t) + {J^1 dsEt(s)e~as}2

= S{t) + Ji/ooal^Ha)!2 (6-32)

= (/>(£) + {/0°° ds [-E4(s) - E(t)] e~as}2 ,

which can be shown to agree with the result of Day [12]; see also [18, 24]. Also,

Dm(t) = H^aE^-ia) - E{t)|2

= Hn |q jf (s) — £?(«)]
2 (6.33)

In this case, ipm(t) coincides with the free energy given in [1, 2, 3] as may be seen from
the results of [4]; see also [21]. It can also be shown to be equal to the GrafH-Volterra
free energy [18, 15].

All of these free energies can be expressed, for general values of n, as quadratic forms of
a vector consisting essentially of E{t) and £"+(—iQi), i = 1, 2,..., n [21, 15]. This means
that they are free energies in the restricted sense of Del Piero and Deseri [23, 24], who
in fact prove that for n = 1 the free energy is unique, a result implying the observations
of the previous paragraph. The analysis of [23, 24] is for exponential forms of a very
general kind.

The maximum free energy ipMit) is not a free energy in the restricted sense of [23, 24]
for discrete spectrum models. This is consistent with (4.17), (6.9), and (6.10), from
which we see that qt(u) depends only on E\{-iai), i = 1,2,..., n while (/+(u;) depends
also on El+(lo). It follows that none of the family of free energies defined at the end of
Sec. 4, except ipm{t) itself, is a free energy in the restricted sense, for discrete spectrum
models, since, from (4.43), they will depend on
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