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Abstract. We study low-speed flows of a highly compressible, single-phase fluid in
the presence of gravity, for example, in a regime appropriate for modeling recent space-
shuttle experiments on fluids near the liquid-vapor critical point. In the equations of
motion, we include forces due to capillary stresses that arise from a contribution made
by strong density gradients to the free energy. We derive formally simplified sets of
equations in a low-speed limit analogous to the zero Mach number limit in combustion
theory.

When viscosity is neglected and gravity is weak, the simplified system includes: a hy-
perbolic equation for velocity, a parabolic equation for temperature, an elliptic equation
related to volume expansion, an integro-differential equation for mean pressure, and an
algebraic equation (the equation of state). Solutions are determined by initial values for
the mean pressure, the temperature field, and the divergence-free part of the velocity
field. To model multi-dimensional flows with strong gravity, we offer an alternative to
the anelastic approximation, one which admits stratified fluids in thermodynamic equi-
librium, as well as gravity waves but not acoustic waves.

1. Introduction. Near the liquid-vapor critical point, many of the thermophysical
properties of a fluid exhibit a singular behavior. For instance, the isothermal compress-
ibility and the isobaric thermal expansion coefficients, as well as the isobaric specific
heat, all diverge strongly at the critical point. Critical enhancement effects are also en-
countered in the behavior of the thermal conductivity and the viscosity in the vicinity of
the critical point, while the thermal diffusivity approaches zero. These singularities play
a major role in the thermal equilibration of near-critical fluids.

Understanding the effect of singular fluid properties on dynamics is not always straight-
forward. For example, it has been shown that even though thermal diffusivity is small,
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temperature changes in a near-critical fluid can occur rapidly via a mechanism that causes
adiabatic pressure changes in the bulk of the fluid [24, 25]. This adiabatic mechanism
creates a strong coupling between temperature changes occurring at the fluid boundaries
and the temperature response in the interior of the fluid. It works as follows. A temper-
ature perturbation applied at the boundary of a fluid causes an expansion in the fluid
near the boundary. Through the medium of sound waves, this produces an adiabatic
pressure change in the interior of the fluid, and a consequent change in the tempera-
ture, much more rapidly than could be accomplished by thermal diffusion acting alone.
Near the critical point, where the fluid becomes highly expandable and compressible,
the adiabatic mechanism dominates the early thermal response and creates a "critical
speeding-up" phenomenon. This critical speeding-up has been observed in earth-bound
and low-gravity experiments [4, 6].

In contrast to the short time scale of the thermal response, experimenters have ob-
served a much longer time scale for the equilibration of density variations [36, 15]. Near
the critical point, the divergence of the compressibility and the influence of gravity can
create strong macroscopic density gradients (upon which microscopic density fluctuations
are superimposed). Although early adiabatic processes act rapidly (within seconds) to
accomplish most of the temperature changes, most of the relaxation of the density dis-
tribution to a new equilibrium state is a nonadiabatic process driven by the much slower
(hours-long) process of heat diffusion.

Recently, Boukari, Pego, and Gammon [5] studied the combined effects of the adia-
batic mechanism and earth's gravity on the equilibration process in near-critical xenon,
using a system of equations that includes not only the adiabatic effect, but also one-
dimensional fluid motion and heat advection. In numerical simulations of a temperature
step experiment, they found that the onset of a transient diffusive regime occurs about
ten times sooner than estimated by Onuki, Hao, and Ferrell [25] in the zero-gravity case,
due to the generation of a small temperature gradient by the adiabatic pressure quench
in the presence of gravity. Boukari et al. also observed that over periods of many hours,
no single, exponentially-decaying mode was ever observed to dominate the diffusive equi-
libration process. This conclusion is consistent with measurements and computations of
Zhong and Meyer [36] and Kogan, Zhong, and Meyer [17].

The conclusions drawn in these works were based on results derived from one-dimen-
sional systems of equations that do not account for multi-dimensional flows. It is not
yet clear how multi-dimensional flows affect equilibration under gravity Zappoli et. al.
[35] have performed computations of two-dimensional buoyant flow for a van der Waals
fluid fairly near the critical point (1A' above critical) where stratification effects are not
yet very large, using an "acoustic filtering" technique resembling the approach taken
in this paper, and have observed an unusual convection pattern. In the zero-gravity
situation, R. F. Berg [3] has pointed out certain differences between one-dimensional and
corresponding three-dimensional results regarding the late diffusive regime.

The purpose of this paper is to systematically derive systems of multi-dimensional
equations that govern the dynamics of a low-speed, highly compressible, single-phase
fluid in the presence of gravity. We shall include forces due to capillary stresses that
arise from a contribution made to the energy by strong density gradients. Although
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there are no sharp interfaces between phases in equilibrium in the one-phase regime just
above the critical temperature, strong gradients can be generated as transients [14]. We
anticipate that nonlocal effects related to the energy of "diffuse interfaces" could play
a big role in generating transient flows in certain circumstances that are accessible to
experimental observation.

Our starting point is the general hydrodynamic equations expressing the conservation
of mass, linear momentum, and energy for a compressible fluid with heat conduction and
gravity. We suppose that the equation of state is appropriate for conditions near the
critical point, and presume that the fluid is in local equilibrium. This implies that the
time scale of interest is longer than a local relaxation time and that the critical point is
not so near that the correlation length is macroscopic. These assumptions appear to be
reasonable for describing the regimes studied in recent experiments.

To account for the influence of steep density gradients on energy, we adopt a constitu-
tive structure compatible with that described in the work of J. E. Dunn and J. Serrin [9].
Dunn and Serrin permit the constitutive quantities (such as the Cauchy stress tensor)
to depend upon the gradient of the density as well as upon density and temperature, so
that capillary effects can now be included in the equations. We account for such effects
in the simplest way, adding a squared gradient term to the Helmholtz free energy den-
sity. The resulting system of equations in Sec. 2 can be used to study the influence of
hydrodynamics on heat transfer on a time scale appropriate for resolving sound waves.

Here, however, we are interested in relaxation and flow phenomena that occur very
slowly compared to the time it takes for sound waves to cross the spatial domain. A
systematic procedure for obtaining simplified equations for compressible flows on long
time scales was introduced by Rehm and Baum [27] and by Majda and Sethian [21] in
the context of combustion theory. In Sec. 3 we apply this procedure to the system at
hand. We non-dimensionalize the equations and estimate the size of the various terms,
taking parameters appropriate to a typical experiment of interest. To obtain a simplified
set of equations, we neglect terms that make the smallest contribution compared to the
other terms.

When the effect of gravity is weak, the result is a simplified model in which the
leading-order pressure is spatially constant, and which accounts for multi-dimensional
fluid motions influenced by the effects of thermal expansion and contraction, gravitational
compression, thermal diffusion, viscosity and capillarity. With viscosity included, this
simplified model consists of Eqs. (3.12)-(3.16) below, plus the equation of state.

When viscosity is neglected, the simplified system includes a hyperbolic equation
(for velocity), a parabolic equation (for temperature), an elliptic equation (related to
volume expansion), an ordinary integro-differential equation (for mean pressure), and an
algebraic equation (the equation of state). In a forthcoming work [8], we prove that the
simplified model equations are evolutionary; i.e., we show that solutions are determined
by suitable initial data. The initial data required to determine the solution consist of the
temperature field, the mean pressure, and the divergence-free part of the velocity field.
The density is determined from the temperature and mean pressure via the equation of
state.



106 D. L. DENNY and R. L. PEGO

Earth's gravity creates a strongly nonlinear density profile in equilibrium when tem-
perature is close to the critical point, due to the high compressibility This is not well-
modelled by the system (3.12)-(3.16). In Sec. 4 we study how to model multi-dimensional
flows with strong gravity. If we enforce hydrostatic balance at leading order, as was done
for the one-dimensional case in [5], we find that generally the flow must remain strictly
stratified, and any vertical fluid motions are due only to horizontally uniform density
changes.

In order to admit nontrivial convective flows or gravity waves, one can assume that
entropy is constant at leading order and neglect heat conduction. This corresponds to
the assumptions made by Ogura and Phillips [23] in deriving "anelastic" equations for
atmospheric circulations. Here we obtain anelastic equations valid for a general equation
of state. The assumption of approximately constant entropy may not be compatible with
thermodynamic equilibrium near the critical point, but this assumption may be relevant
for describing some experiments that have been performed at near-constant entropy
in order to reduce the effect of density gradients [4, 22], Because heat conduction is
neglected, though, the anelastic equations do not contain the fast adiabatic heat-transfer
mechanism mentioned above.

We find a better alternative if we return to the weak-gravity scaling and make a simple
modification of the momentum equation. We retain the effect of the pressure correction
on density in the gravity force term, in the spirit of the Boussinesq approximation.
This modification does not change the formal validity of the approximation. But the
new system, consisting of Eqs. (4.18)-(4.20) below, correctly captures strongly stratified
thermodynamic equilibria, admits multi-dimensional flow including gravity waves but
not acoustic waves, and includes heat conduction and the adiabatic mechanism.

2. Basic hydrodynamic equations. To start, we consider the general hydrody-
namic equations expressing the conservation of mass, linear momentum, and energy for
a compressible fluid with heat conduction and gravity:

§="PV.v, (2.1,

Dv
p~m = v'T ~ ps' (2'2)

P^| = T:Vv-V-q. (2-3)

Here T is the Cauchy stress tensor, p is the density, v is the velocity, e is the specific
internal energy density, -g is the gravitational acceleration, q is the heat flux, and
D/Dt = d/dt + v- V.

To account for the influence of density gradients on energy in a manner compatible
with the second law of thermodynamics, we apply a theory for Korteweg-type fluids
described by J. E. Dunn and J. Serrin [9]. A recent review of related theories and their
applications to diffuse-interface modeling has been given by Anderson, McFadden, and
Wheeler [1], Dunn and Serrin replace the energy balance equation with

p^ =T: Vv- V-q + V u (2.4)
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where V ■ u represents a contribution made to the power by capillary effects due to
the strong density gradients. They then postulate that e, T, q, u, as well as ip, the
specific Helmholtz free energy density, and s, the specific entropy density, are given by
constitutive relations that depend only on the pointwise values of p, T, X7p, VVp, VT,
and Vv, where T is the temperature.

In order to guarantee that the equations of motion are compatible with the second
law of thermodynamics as expressed by the Clausius-Duhem inequality, Dunn and Serrin
deduce that the constitutive relations must be such that

^ = Vi(p,T,|Vp|2), s = -||, e = i,-T(2.5)

and

u = -p(V • v)toV/9 + u, (2.6)

where m = 2p(dijj/dM)(p} T, M) with M = |Vp|2. Furthermore, in the case without
viscosity, the stress must take the form

T = + PV ' (m^P)^ 1 ~~ mVp <g> Vp. (2.7)

In (2.6), the quantity u> measures the "static" part of the capillary work flux u. For a
class of materials including those we shall consider, V • u> = 0; so oj has no effect on the
energy balance equation and can be ignored.

We choose the simplest possible form for the specific Helmholtz free energy density ip
that is consistent with Dunn and Serrin's theory. Namely, we suppose that m is constant,
and that

= 4>{P,T) + ^|V/>|2. (2.8)2 p

This yields an expression for total free energy that appears in van der Waals' theory of
capillarity [28], for example. From (2.5) it follows that

e = £(p,T) + g|VP|2, s = -||(p,T), (2.9)

where £ = ^ — T(dijj/dT). We assume that the heat flux is given by q = —kVT, with
thermal conductivity coefficient n = k(p, T). We suppose that the stress is given by (2.7)
with the addition of Newtonian viscosity terms, so that

T = p + ~|Vp|2 + mpAp^J 1 — mWp® Vp + A(V • v)l + 2pD, (2-10)

where the pressure p is given by

p=p(p,T)=p2^(p,T), (2.11)

D = i(Vv + VvT) is the symmetric part of Vv, and the viscosity coefficients have the
form A = A(p, T), p — fi(p,T). For compatibility with the Clausius-Duhem inequality
[9], one requires that A + |/ii > 0.
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When Eqs. (2.6), (2.10), (2.8), and (2.9) are substituted into the balance laws (2.1),
(2.2), (2.4), the result is the following system of equations for a viscous, heat-conducting
fluid with capillary stresses:

Dv
p— + Vp = - pg + mpVAp + V(AV • v) + V • (2//D), (2-12)

f '{l-C£)^TTt + ̂ ^.^T) (2.13)
+ {pCpr\2pB-. D + A(V-v)2),

Dp DT
KTD~t=ap-^~^V- (2"14)

Here Kq- = p~x(dp/dp)j■ is the isothermal compressibility, ap = —p~1(dp/dT)p is the
isobaric thermal expansion coefficient, and

di „ _, dp
i CP = cp\PiT) = Cv + p Qfp

are the specific heat capacities at constant volume and at constant pressure, respectively.
The system (2.12)—(2.14) differs from the standard system for a viscous, heat-conducting
fluid by the addition of the single term mpVAp in the momentum equation.

3. Equations for slow flows with weak gravity.
3.1. Scaling for the flow regime. In order to see how the system of equations (2.12)-

(2.14) can be appropriately simplified, we non-dimensionalize and scale the variables in
a manner appropriate to a typical experiment, as follows. The critical density, critical
pressure, and critical temperature are denoted pc, pc, and Tc, respectively. Let xa be a
characteristic length, ta a characteristic time, and va = xa/ta■ Let cPa, cVa be character-
istic specific heat capacities at constant pressure and at constant volume, respectively,
and let T = cPa/cVa. Let na be a characteristic thermal conductivity, and let Aa, p,a be
characteristic viscosity coefficients (for convenience we assume Aa = pa). Let ga = xa/t
and introduce the following non-dimensional variables and constants (non-dimensional
quantities are indicated by an asterisk, *):

p = pcp*, P = Pcil+PaP*), T = Tc(l + TaT*),

x = xax*, t = tat*, v = i>av*, g = gag*,

C-v CVqCvj Cp CPaCp, K , A = AaA , p = pap ,

k*=L(W.\ n' = -l (^L
T p* \dp* JT, ' p p* \dT*

Here, pa and Ta are non-dimensional scales characterizing the deviation of the pressure
and temperature from critical. One tries to choose the scales so that the dimensionless
variables p*, T*, v* and their derivatives are of the order of 1 in the flow regime of
interest .
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The non-dimensional equations corresponding to Eqs. (2.12)-(2.14) for a viscous fluid
are

Dv*
p* ~dF = ~ M~2'Vp*+ °p*vap* ~

+ Re-1(V(A*V • v*) + V • (2/i*D*)), (3.1)

Dt* \ c*J a* Dt* p*c*

+ s(^D*: D* + 4^(V-v*)2V (3.2)
\p*c* p*c*p J

Dp* DT*
K*-J- = a*v— V-v*. (3.3)1 Dt* p Dt* y '

where the gradient and the divergence are taken with respect to the non-dimensional
spatial variable, and D/Dt* = d/dt* + v* • V.

The dimensionless constants M2, Dt, c, Re-1, and S are defined by

A ̂ 2 _ PcV2a n _ Kata _ mpct2a , _ Hata c __ Ma
J- ' T 2 ' ^ 4 ' 2 ' t T -i-PcPa PcCPaXa %a Pc^a P c^-p ̂cXoX a

The parameter M is proportional to the Mach number va/cs, where the sound speed
is given by c2 = (dp/dp)s = cp/{cvpKr)- Re is the Reynolds number, Dt is a non-
dimensional diffusivity, and c is a non-dimensional coefficient of capillarity.

A typical flow regime in which we are interested is one considered in the paper by
Boukari, Pego, and Gammon [5]. The fluid is xenon, with critical parameters

pc = 1.11 x 103^|, pc = 5.84 x 106 Pa, Tc = 289.72 K.
mJ

A typical experimental cell is about half a centimeter in radius; so we choose xa = 10-3
m. The time scale of interest ranges from a fraction of a second to hours. For now we take
ta = 1 s and postpone further discussion. The effect of earth's gravity tends to become
important within about 30 mK of T*; so we take Ta = 1CT4. In this temperature range
and near the critical density, an appropriate model equation of state is the restricted
cubic model, with coefficients for xenon (see [22] and the references therein). Prom this
model, as in [5] we find it appropriate to take

J
kg • -ft"

We have not introduced a separate scale for deviations of the density from critical because
these can be rather large, of the order of 10%.

We estimate a characteristic value for thermal conductivity as in [5], using the ap-
proach described in [31, 29] to calculate the background term and divergent part near
the critical point. To estimate the viscosity, we use the results of [31, Table III], also see
[26]. As a result we find it appropriate to take

Ka « 2.5 x 10_1  , (ia«5x 10"5 Pa ■ s.
s • m • K

Finally, we estimate the constant capillarity coefficient m using the power law rep-
resentation m ~ £2/xt derived by Rowlinson and Widom [28], where the correlation

Pa = 6Ta, cPa « 3.3 x lO6^--^:, r-1 « 1.8x10-
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length £ and susceptibility \T = P2Kt at the critical density are given [30] by the power
laws

£~£o|AT*\~\ XT~ M^|ATT7- (3-4)
Pc

Here AT* = (T — Tc)/Tc = TaT* « 10~4, and we use from [30] the critical exponents
7 = 1.19 and v = 0.63, and for xenon in the range T > Tc approximately £o = 1-9 x 10—10,
C = .0813. Using these values we obtain the estimate

(5.84 X 10»)(1.9 x 10-'°)' 07 8
"* (1.11 x 103)2(.0813) ' ~4xiu •

From the estimates above, we obtain the following estimates for the dimensionless
parameters:

M2 «3x 10~7, Dt ~6x 10~5, c«4.4xl0"3,

Re"1 « 4.5 x 10~2, 5«5xl0"13,

and we find

= 9.81X10=, |~1, (gl] ~1.

The second speed cs « 80 m/s.
Regarding these parameters, several points are worthy of comment. First, note the

effect of considering longer time scales. As ta increases, S decreases and M2 decreases
quadratically, Dt and Re-1 increase, and c and g* increase quadratically. Second,
experiments performed in low earth orbit are reported to experience typical accelerations
of 10~4 to 10-6 times earth's gravity [22]; this would make g* of order 1. (Another way
to obtain g* of order 1 is to consider a faster time scale like ta = .01 s.) Also, we
note that the value of c becomes of order 1 when the characteristic length is replaced
by a capillary length xcap for which 1 = t2ampc/:r4ap. For our flow regime, we estimate
xcap ~ xa(4.4 x 10"3)1/4 ~ 260 microns. In the recent ZENO experiment, observations
were performed using light scattering through a fluid layer 100 microns thick [13].

We should also comment on the effect of proximity to the critical temperature. As Ta
approaches zero, we have seen that the capillary coefficient diverges very weakly, with
exponent 7 — 2v « —0.07. The viscosity and the sound speed also diverge at a very
slow rate, changing only modestly over the experimental range of interest. The specific
heat cv also diverges weakly, with exponent —a « —0.11. The compressibility, thermal
expansivity, and specific heat cp = cv + \tTp~3 (dp/dT)2 diverge strongly, all with
exponent —7 « —1.19. The thermal conductivity diverges less strongly, like cp/^p [30, p.
22], with approximately the exponent —(7 — ̂ ) ~ —0.56. So we see that as Ta approaches
zero, none of the non-dimensional constants above has a very strong dependence on Ta,
though we can expect the non-dimensional diffusivity Dt and S to decrease.

3.2. Reduced equations for slow flows. To obtain simplified equations for compressible
flows, we proceed formally in a manner motivated by the treatments of Rehm and Baum
[27] and Majda and Sethian [21]. Since we are interested in longer time scales, we regard
M2 and S as small and let po> To, vo denote assumed asymptotic limits of p*, T*, v*,
respectively, as M2 and S are taken to zero. In this process we regard g* as fixed and of
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order one, corresponding to a low-gravity environment for our flow regime. Multiplying
the momentum equation (3.1) by M2 and taking M2 to 0, we require

Vpo(xV) = 0, (3.5)
and therefore po = Po(t*) is constant in space. From (3.2)—(3.3), the asymptotic equations
for temperature and pressure are

DT0 ( Kto dpo Dt1 - T —  — + V • (kqVTo), (3.6)Dt y (~p<) J OipQ dt p{) Cpo
dp0 DT0 , .

°~dt* =ap0~Dt* ()i (3-7)
Here the asymptotic density po(x*, t*) = p* (po(t*) ,T0(x.* ,t*)) from the equation of state,
and elsewhere the subscript 0 indicates a non-dimensional coefficient that is evaluated at
(/°o,7b), e.g., ko(x*,£*) = K*(p0,T0). Equation (3.7) implies the mass continuity equation
Dp0/Dt* + p0V ■ v0 = 0.

Next we derive a reduced momentum equation. We suppose that the flow occurs in
a bounded domain Q with v = 0 on the boundary dfl. We use the fact that every
square-integrable vector field v has a unique orthogonal decomposition of the form

v = w + V</>, where V • w = 0 and w ■ n|an = 0 (3.8)

(n is the outward unit normal to 9f2). We write Px = w; so P denotes the orthogonal
projection of square-integrable vector fields onto solenoidal vector fields. Observe that if
Pi = 0, then f = V/i for some function h, and conversely. Applying P to the momentum
equation (3.1), then, eliminates the term of order M~ 2. Taking M2 to 0 produces

0 = P ~ PoS* + C/OoVApo + ^-(V • (mo(Vv0 + Vv0r)) + V(A0V • v0))

where p,0 = p*(p0,T0), A0 = A*(p0,T0).
Prom this we infer that there must be a scalar function p\ = pi(x*,t*) such that the

expression above in brackets equals Vpi, that is,

Po15r + Vpi = _Pog* + c^oVAp0 + ' (mo(Vv0 + Vv„ )) + V(A0V ■ v0)). (3.9)

Note that at this point we do not presume that the pressure p* « p0 + M2pi to order M2.
Klainerman and Majda [16] have found that at order M2 there is an acoustic correction
to pressure that depends on fast time and space scales.

Equations (3.6), (3.7), and (3.9) are the simplified equations for a viscous fluid. In
order that our approximations be self-consistent, we must require that at the initial time,
as M2 and S tend to zero we have

P*(x*, 0) —> po(0), T"*(x*,0) —> To(x*,0), v*(x*,0) —> vo(x*,0).

3.3. Reformulation. The full system (2.12)—(2.14) is appropriate for describing com-
pressible fluid flow on acoustic time scales. In the flow regime for xenon that we have
described, such time scales are short, since the sound speed is of the order of tens of me-
ters per second. The simplified system (3.6), (3.7), (3.9) represents an "acoustic filtering"
of the full system that describes flow on time scales that are long compared to acoustic.
The pressure is maintained spatially constant through a process mediated by sound wave
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propagation. (An asymptotic description of this process for a near-critical van der Waals
fluid was given by Zappoli and Carles [34] in one dimension with no viscosity.)

As is easy to check, both the full system and the simplified system are compatible
with the Clausius-Duhem inequality

^ + v.(3)i0.
We next reformulate the simplified system (3.6), (3.7), (3.9) into an equivalent form

which better reveals its evolutionary character. This reformulation will be necessary for
our future purpose of analyzing the initial-value problem. We will omit the subscripts
and superscripts and return to dimensional quantities for notational convenience, writing

P = PcPo, p = pc(l +PaPo), T = Tc(l + TnT0), v = vav0.

We employ the decomposition v = w + V(j> described in (3.8). Substituting the
temperature equation (3.6) into the pressure equation (3.7) and solving for V • v, we
obtain

V-v = A 0 = -^I^ + -^V-(kVT). (3.10)
Cp dt pCp

This elliptic equation has a solution with V0-n = v- n = Oon dfl (and then W(f> is
uniquely determined), if and only if a solvability condition holds, namely

— | + ^V-(kVT))& = 0. (3.11)
fa. \ cp dt pCp J

Solving this equation for dp/dt, we get
/Jn

dp _ . _ fn(gp/pcp)V ■ (KVT))dx
dt Ja(cvKr/cp) dx ' 1 '

This integro-differential equation is the pressure evolution equation. The remaining
equations of the system can be written as

DT (_ cVl\ Kr 1
n = 1 - - —H{t) + —V • (kVT), (3.13)Dt y Cp J Q,p pCp

Dw D(V<£)
p— = - Vtt - pg + cpVAp - p m

+ V ■ (//(V(w + V<t>) + V(w + V0)T)) + V(AA^), (3.14)

A</, = - • (kVT), (3.15)
Cp pCp

V ■ w = 0, (3.16)

along with the equation of state p = p(p, T). (Here 7r = pcpaM2pi.)
Prom (3.15) evaluated at time t = 0, we obtain the compatibility condition

A.<j)\t=o = TT/-L\ ifrm +-s-v ■ (kVT)
pcp (3.17)

t=o
This equation imposes a constraint on the gradient part V0(x, 0) of the initial velocity
field v(x, 0), and leaves freedom for the choice of the initial solenoidal component w(x, 0),
as long as V • w(x, 0) = 0.
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As we show in [8], to solve the initial-value problem for these equations, it is appropri-
ate to specify initial data for the leading-order pressure, temperature, and divergence-free
part of the velocity field:

P(0)=P0, T(x,0) = To(x), w(x,0)=wo(x) (3.18)

where V • Wo = 0. Initial data for the velocity will take the form

v(x, 0) = v0(x) = w0(x) + V0o(x), (3.19)

where V</>o is determined by the compatibility condition (3.17).
3.4. The adiabatic time scale. We conclude this section by indicating how the sim-

plified equations (3.12)—(3.16), in non-dimensional form, can be used to very roughly
estimate the time scale t\ for the adiabatic mechanism described in the introduction to
produce a rapid bulk temperature response to boundary heating.

The non-dimensional form of (3.12) is

dpo = r^r/n(ttpo/(poCp0))V • (K0\7T0))dx
dt J'q^vo-^to/^po) dx

We consider a homogeneous fluid initially at equilibrium, whose boundary temperature
is raised rapidly. As the boundary temperature is changed, a thin thermal boundary
layer is created next to the wall. The width of this layer increases with time through
heat diffusion, so is roughly given by iJt*Dr using (3.6). In the boundary layer, we
may roughly approximate the non-dimensional temperature To by a function of the form
f(s/Vt*DT), where s is the distance to the boundary. Treating the coefficients in (3.20)
as constant, we estimate ATq « (t*Dt)-1 f"{s/\A*Dt) in the boundary layer. The
integrand in the numerator is then of order (i*Dx)_1 in the boundary layer and zero
elsewhere, and the integrand in the denominator is of order 1. Suppose the fluid domain
is a cube with dimensional side length L = xaL*. Then the order of dpo/dt* is given by

_~i-z>, = ■ (3-21)

The time integral of this expression produces an order-one change in po (hence in To),
when t = t\ = t*ta = L2r~2/144D, where D = na/(pccPa) is the characteristic thermal
diffusivity. For the fluid parameters corresponding to the flow regime that we have
described above, in a cell with side length L = 10~2m we estimate t\ « 3.3 x 10-4 s.

This time is longer but not much longer than the acoustic time tc for a sound wave to
cross the cell, given by tc = L/cs ~ 1.25 x 10~4 s. It is unrealistic to expect, however, that
the boundary temperature can be raised so rapidly in experiment. So what this estimate
indicates is that for processes in which the boundary temperature varies slowly compared
to the acoustic time, the boundary-to-bulk coupling provided by the integro-differential
equation for the mean pressure is efficient in effecting bulk temperature changes.

The above estimate for t\ is consistent with the results of Onuki and Ferrell [24],
except for the geometric factor of 144 appearing in the denominator. We expect that
diffusion dominates the equilibration at approximately the time td = L2/144D « 104 s.
Onuki, Hao, and Ferrell [25] characterize the intermediate regime between the long times
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t/ti > r2 and the short times t/t\ = O(l) by the geometrical mean tmt/ti = T so that
^int = Tt\. For our flow regime we estimate tmt ~ 2 s.

4. Multi-dimensional flows with strong gravity.
4.1. Motivation. In this section, we re-examine the equations of motion in the case of

strong gravity. Motivating us is the problem of describing near-critical fluid flows and
equilibration in earth's gravity. Recall that |g*| ~ 104 in the flow regime considered in
Sec. 3.1 with earth's gravity. The simplified system (3.12)-(3.16) fails to capture some
key features of equilibration in this situation.

In equilibrium, temperature is constant and density is stratified according to the basic
equation of hydrostatic balance,

Vp = -pg, (4.1)
and the equation of state. (We will neglect capillarity in most of this section.) Denoting
equilibrium temperature by Te and density by pe(z), the equilibrium density gradient
satisfies

^7(2) = ~XT{Pe{z),Te)g.

As temperature approaches Tc, the critical temperature, Xt(Pc,Te), the susceptibility on
the critical isochore, diverges as in (3.4). Thus the density gradient develops a singularity
at the level of critical density, and the density profile becomes highly nonlinear. In Fig. 1
we plot density profiles for xenon in equilibrium at 1G, using the restricted cubic equation
of state as in [5].

For the simplified system (3.12)—(3.16), however, the density in equilibrium is constant,
given by p = p(pe,Te). The hydrostatic balance V7r = —pg from (3.14) can be interpreted
as supplying an 0(M2) correction to the leading-order pressure. This correction is linear
in z and could be used to generate a density correction (by linearizing the equation
of state, for example). But as it stands, the system (3.12)-(3.16) relies only on the
leading-order density to determine the fluid flow. One can therefore expect this system
to be inaccurate in modeling phenomena such as deep convection and gravity waves in
near-equilibrium states.

In order to model related phenomena, researchers studying small-scale atmospheric
circulations frequently approximate the continuity equation with the "anelastic" conti-
nuity equation

V ■ (pv) = 0, (4.2)

where p(z) is usually defined either as the density in an adiabatically stratified, horizon-
tally-uniform reference state, or as the horizontally-averaged actual density. Batchelor
[2] introduced an equation equivalent to (4.2). The name "anelastic" was given by Ogura
and Phillips [23], who derived (4.2), together with approximate momentum and thermo-
dynamic equations, through a systematic scale analysis. Important assumptions in their
analysis are that: (i) all deviations 66 of the "potential temperature" from some constant
mean value 9a are small (this is equivalent to a similar statement for entropy variations),
and (ii) the time scale of the disturbance is similar to the time scale for gravity wave
oscillations. The terms neglected in their approximation are formally an order e = 50/0a
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smaller than those that are retained. Their anelastic system does not support sound
waves, does support gravity waves and conserves energy. Ogura and Phillips define p as
the density in an adiabatically stratified, horizontally uniform reference state.

Some of the largest errors in the Ogura-Phillips anelastic approximation are reported
to be generated by large deviations of the mean state potential temperature (or entropy)
from a constant reference value. Several authors (Dutton and Fichtl [11], Wilhelmson and
Ogura [32], Lipps and Hemler [19], Durran [10]) have presented alternative "sound-proof"
equations in which thermodynamic variables associated with the adiabatic reference state
are replaced with horizontally-uniform averaged or approximate actual values. These
authors make different approximations in the momentum equations, but (except for
Durran) they all obtain a continuity equation of the form (4.2) in which p is defined as
a horizontally-averaged approximation to the actual density.

In the remainder of this section, we describe three possible models for multi-dimen-
sional flows under strong gravity, making different assumptions about how to balance
and approximate terms in the non-dimensionalized system (3.1)—(3.3):

(1) At first we scale so as to enforce hydrostatic balance at leading order. We find
then that to be consistent, at leading order the thermodynamic variables must remain
horizontally uniform. Also, the vertical velocity must remain horizontally uniform, unless
we assume the entropy is spatially constant to leading order.

(2) If we indeed assume that entropy is spatially constant to leading order and also
neglect heat conduction, we obtain a generalization of the anelastic approximation valid
for a general equation of state.
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(3) Neither choice so far admits both thermodynamic equilibrium states and non-
stratified multi-dimensional flows. We find, however, that if we return to the scaling
adopted in Sec. 3.1, and modify the momentum equation so that the gravity force term
incorporates a pressure correction self-consistently, then we get a system of the same
formal accuracy that admits physically correct equilibrium states exactly. Moreover, the
new system supports gravity waves but not acoustic waves.

4.2. Strongly stratified flow. Because equilibria are governed by the equation of hy-
drostatic balance, if gravity is strong it is natural to try to balance the pressure gradient
term with the gravity term in the non-dimensional momentum equation (3.1). Thus we
regard M~2 and |g*| to be of the same order. This same approach was taken in [5] for
one-dimensional flows.

In this approximation, we rescale the gravitational acceleration, writing g* = Af~2g
where g = 0(1). It will prove instructive to replace (p,T) by (p,s) as the thermody-
namic state variables, where s is the specific entropy density. In terms of these vari-
ables, we write the equation of state as p = p(p,s). In non-dimensional form, we write
p* = p*(p*,s*), where entropy is non-dimensionalized via the relation s = sas*. It is
convenient to take sa = cpaTa; this will be discussed further in the next subsection.

Starting from the non-dimensionalized system (3.1)—(3.3) with the replacement g* =
M~2g, we proceed as in Sec. 3.2 and regard M2 and S as small, obtaining the tempera-
ture evolution equation (3.6) and continuity equation (3.7). In terms of the leading-order
pressure po and entropy so, these equations are equivalent to

p0(l + raT0)^ = JDTV-(KVT0), (4.3)

1 DPo _ apo / oPo(l + Tor0)—^ -V-v0. (4.4)
p0c2s0 Dt* pqcpo V Dt*

The leading-order terms in the momentum equation now just yield the equation of
hydrostatic balance,

Vpo = -pog. (4.5)

This equation imposes tight restrictions on the spatial dependence of the leading-order
thermodynamic state variables. In particular, it is necessary that po is a function only of
height z* and time t* and is independent of the horizontal variables (x*,y*). Then from
(4.5) it follows that po = p0(z*,t*) is also horizontally uniform. The equation of state
now implies that s0 = so(z*,t*) as well. The entropy and pressure equations (4.3)-(4.4)
now read

Mi + T„r„) (gs+ »»!£) = {••'•§:) • <«)

"V (§? + «*#?) = Dt-t-. (*>F?) -v-vo. <«)p0cj0 V dt* dz*) poCpQ dz* \ Oz* J

Here wq is the vertical component of the velocity v0.
If we assume dso/dz* 0, then to satisfy (4.6) consistently, the vertical velocity must

be horizontally uniform-, wo = wq(z*,t*). We can eliminate the horizontal components
of velocity from (4.7) by integrating over (x*, y*); if the cell walls are vertical or periodic
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we can express the result in terms of density as the usual one-dimensional continuity
equation,

^ + = „8,
The system consisting of the three equations (4.5), (4.6), (4.8) is equivalent to the one-

dimensional system (14) (16) in [5] for temperature and pressure, which was expressed
using a Lagrangian variable z' = po(h, t*) dh in place of the height z* G [0, L]. With
t' = t*, in the present notation this system takes the form

Po(z',t') = pa(t') - gz', (4.9)

dTp _ f Cvo\ Kto dpa Dt d f dT0\
dt' \ Tcpo/ ap0 dt' cp0 dz' y°K° dz' ) '

dpa /pm Polapo(dTo/dt') dz'
dt' f0mp^Krodz' ■ ( ' >

(Here m = JQL po(h, t*) dh is the total linear mass.) This system determines the evolution
of the temperature, pressure, and vertical velocity. Vertical fluid motions in this model
are due solely to density changes that occur in a horizontally stratified manner—the
equations do not support acoustic or gravity waves.

The horizontal components of the momentum equation at order 1 govern the hori-
zontal fluid flows within each material layer corresponding to z' = const. Presuming
that pi yields an 0(M2) correction to the leading-order pressure, we may write the
horizontal components of the momentum equation as follows: Let u denote the hori-
zontal components of velocity v0 and the subscript h denote differentiation with respect
to the horizontal variables x/t = (x*,y*). Then the horizontal momentum equation for
u(xh,z',t') is

P° (S + (U' V/j)U) +VhPl = ^ + • (4-12)

Horizontal motions are incompressible, because • u = 0 from (4.7) and (4.8). When
viscosity can be neglected, then the equations corresponding to different fluid layers de-
couple, and fluid layers can exhibit arbitrary independent two-dimensional incompressible
flows.

The vertical component of the momentum equation at order 1 can be used in deter-
mining higher-order corrections of order M2 for horizontally-averaged density, pressure,
and temperature. For the sake of brevity we omit further discussion.

4.3. The anelastic approximation. In order to admit convective flows with nontrivial
vertical circulation and/or gravity waves, we can suppose that the entropy is spatially
constant at leading order. As we have indicated, this is the same as the assumption
made by Ogura and Phillips that potential temperature variations are small compared
to a reference value.

At leading order, then, the fluid density, pressure, and temperature are in hydrostatic
balance and adiabatically stratified, with a (negative) adiabatic temperature gradient.
We must neglect heat conduction to maintain constant entropy; this restricts the time
scale, and any flows generated will be adiabatic.
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To describe flows, we use the notation of Sec. 3.1 for non-dimensional and leading-
order quantities, and non-dimensionalize entropy according to s = sas* where sa = cpaTa
(as discussed below). We postulate that the non-dimensional pressure p* and entropy s*
are given to order 0(M2) by

p* ~ p0(z*) -I- M2pi(x*,£*), s* ~ s0 + M2S\(x*,t*),

where so is a constant. (This neglects any fast-time acoustic corrections that may be
present as discussed in [16].) Then we expect the density p* ~ po(z*) + M2Pi(x*,£*),
where from the equation of state,

¥;) Pi + (t£) + a + (4.i3).d'P Js' \ds* Jp, cjo cp0

Here the non-dimensional coefficients are evaluated at (po,so)-
The momentum equation at order 1 is

Po^ + Vpi = -pig + ^(V • (/j0(Vv0 + VvJ)) + V(A0V • v0)). (4.14)

Since heat conduction is neglected, the entropy si is convected with the flow, satisfying

— =0. (4.15)Dt* v '
Because dpo/dt* = 0, the leading-order continuity equation yields

V-(a>vo)=0. (4.16)
This constraint on the velocity should be used in solving (4.14) to determine p\. Note,
however, that p\ will not be completely determined by the constraint—Given any solution
of (4.14), pi can be replaced by adding an arbitrary time-dependent multiple of a solution
to the linearized hydrostatic balance equation

l=_Ip
dz* C30

The equations (4.14)-(4.16) correspond to the anelastic equations of Ogura and Phillips,
generalized for an arbitrary equation of state.

As a model for slow flows of fluids near the critical point, these equations have some
drawbacks: first, heat conduction is entirely neglected; so the fast adiabatic mechanism
for rapid thermal response is not accounted for within this model. Also, the effect of
fluid flow on thermal relaxation cannot be evaluated. Moreover, describing states in
thermodynamic equilibrium is problematic. At rest, the equations permit an arbitrary
horizontally uniform entropy correction si. It may or may not be consistent with the
derivation of the equations to take this to correspond to the equilibrium entropy profile
(meaning the hydrostatic profile at constant temperature).

Regarding this point, we can ask, what is the size of the non-dimensional equilibrium
entropy gradient in the regime of interest? To estimate this, we need to identify a
typical entropy change in a process of interest. Consider a fluid at equilibrium at one
temperature, subject to a temperature change at the boundary of order TcTa. During
the early development of the thermal boundary layer, we may suppose roughly that
the entropy change in the boundary layer occurs at constant pressure; so it is of order
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sa = cpaTa since (ds/dT)p = cp/T and Ta is small. Then it seems reasonable to non-
dimensionalize the entropy by letting s = sas*.

Now, the equilibrium entropy gradient satisfies

ds f ds\ dp cp — cv (dT\
di = \A,)Tlu = \m,)f{~p9y

Non-dimensionalizing this expression, we find that up to a quantity of order one,

("7)

Under the specific conditions considered in Sec. 3.1, ds*/dz* ~ —.003. This is moderately
small but not quite of order M2\ it would make dsi/dz* of the order of —104. Also,
since pa « 6Ta, the last member of (4.17) shows that ds*/dz* diverges as temperature
approaches critical, like T~l as Ta —» 0.

It seems that in our flow regime, the entropy gradient may not be small enough for
the anelastic approximation to be reasonable for states near true equilibrium (at least
at the level of critical density). But states near constant entropy do possess experimen-
tal interest. Physically, the condition that an inviscid stratified fluid is stable against
convection is is ds/dz < 0 [18]. In order to obtain "pseudo-equilibrium" states with
near-uniform density profiles, ground-based experiments have been suggested on near-
critical fluids in which a steady-state heat flux is maintained so as to achieve a marginally
stable entropy profile [22]; also see [4]. Note that the adiabatic density gradient satisfies
p~l dp/dz = -g/c2s, which is about 1/500 m_1 in our flow regime; so the density is close
to constant in centimeter-sized cells. Provided that heat conduction can be neglected on
the time scale of interest, the anelastic approximation could be useful, to describe flows
near such "pseudo-equilibrium" states.

4.4. Slow flows including equilibrium. In trying to enforce hydrostatic balance at lead-
ing order, we have found that either flows remain strictly stratified, or equilibrium states
are not admissible since entropy must be constant at leading order in M2. In this section
we return to the scaling as it was done in Sec. 3.2, in which the leading-order pressure
turns out to be spatially constant. Working in the spirit of the Boussinesq approxima-
tion, we can decide to selectively retain some terms of higher order in M2 where it would
be most useful, without affecting the formal accuracy of the system.

We propose no alteration in the Eqs. (3.6)-(3.7) for leading-order temperature and
mean pressure. (But now p0 and To will depend on M2, through the coupling to the
momentum equation.) To order M2, supposing that the pressure is given by p* ~
Po + M2pi, the approximation to the density p ~ po = p*(po,T0) can be improved to

P~P = P*(Po + M2p1,T0).

We propose to make this improvement only in Eq. (3.9) for the velocity. The new sys-
tem of equations governing leading-order temperature, pressure, and velocity (neglecting
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capillarity) is

+ (4.18)
Dt y cpo J CKpo dt PoCpQ
dpo DT0
~dt* ~Qp0~Dt* ~ V°' ^ ^

^ + Vpi=- ^ • (^o(Vvo + VvJ)) + V(A0V • vo)). (4.20)

The temperature evolution and continuity equations (4.18)-(4.19) may be replaced by
the equivalent pair (4.3)-(4.4), in which the material derivative Dpo/Dt* can be replaced
by the ordinary derivative dpo/dt*.

As with the anelastic equations, the pressure correction pi should be determined
in solving (4.20) to satisfy the implied constraint on the divergence of velocity from
(4.19). The pressure correction will not be unique, but any two solutions p\ and p\ that
correspond to the same (po, Tq, Vq) will be related by

Vpi + p*(po + M2p\, T0)g* = Vpi + p*{po + M2pi,T0)g*. (4.21)

Therefore the difference p\ — p\ is a function of z* and t* that is determined solely in
terms of a function of t* by solving an ordinary differential equation.

The system consisting of Eqs. (4.18)-(4.20) can be reformulated to better reveal its
evolutionary character exactly as in Sec. 3.3. In dimensional form with pressure p{t) +
iv(x,t), where p = pc( 1 + PaPo) and 7r = pcpaM2p\, one obtains exactly the system
(3.12)-(3.16) except that (3.14) is replaced by

Dw DCVcfr)

+ V • (/i(V(w + V0) + V(w + V0)T)) + V(AA(j)), (4.22)
where the (now dimensional) density p is determined from pressure and temperature by
the equation of state: p = p(p + it, T). We anticipate that, like system (3.12)—(3.16),
solutions of (4.18)-(4.20) are determined by initial values for the temperature field, mean
pressure, and divergence-free part of the velocity field.

The system (4.18)-(4.20) admits as rest states true equilibrium states with constant
temperature and hydrostatic balance between the total pressure po + M2p\ and the
improved density p = p*(po + M2pi,To). It filters acoustic waves but admits gravity
waves, as we shall show in the subsection to follow. Moreover, heat conduction need not
be neglected; so the adiabatic effect can be modeled. It should be interesting to study
which flows are generated when large density changes in the thermal boundary layer are
present together with very stable equilibrium entropy profiles away from the boundary.

We remark that it is evidently not necessary to replace po by p in the acceleration
term of (3.9) to gain true equilibria as rest states. In some circumstances it may be more
convenient not to make this replacement. But it turns out that Eq. (4.20) is slightly
more convenient when we study the linearized equations for gravity waves; see the next
section.

The system (4.18)-(4.20) certainly has shortcomings. First, in the flow regime de-
scribed in Sec. 3.1, |g*| = gt\jxa is still rather large. This problem diminishes if a larger
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space scale or smaller time scale is relevant. The system can be expected to lose formal
validity if solutions become large or singular, as may well happen in a nonadiabatic con-
vection process. Another point is that, while the leading-order total energy is conserved
in time for the weak-gravity equations (3.12)—(3.16), this is not strictly true for the sys-
tem (4.18)-(4.20). The time derivative of the leading-order total energy is formally of
order M2 instead.

4.5. Gravity waves in the linear approximation. We wish to verify that in the linear
approximation near a stably stratified rest state for which entropy decreases with height,
the system (4.18)-(4.20) admits gravity waves but not acoustic waves when heat con-
duction and viscosity are neglected. We shall also show that, in the special case of a
perfect gas with an exponential density profile and constant sound speed, in the limit of
large wave number the gravity-wave frequency approaches the Brunt-Vaisala frequency
N corresponding to a compressible fluid. This frequency satisfies

jv2 = _s^£_9! (423)
Pe dz Cj

The second term does not appear in the usual treatment of gravity waves for a stratified
incompressible fluid, in which the density is advected with the flow, cf. [33].

When heat conduction and viscosity are neglected in the system (4.18)-(4.20), the
leading-order pressure is constant in time as well as space. Consequently, the temperature
(and entropy) are advected with the flow, and the velocity field has zero divergence. In
dimensional form with p = p + 7r and p — p(p, s), the governing equations take the form

% = 0, (4-24)
V • v = 0, (4.25)

P+ Vp = - pg. (4.26)

Near a rest state where (p, s,v) = (pe(z), se(z), 0), we write

p = pe+p, s = se + s, v = (u,v,w)

and pe{z) = p(pe,se). Then we linearize, obtaining

ds _ ,, .
— +wse{z) = 0,

V • v = 0,

--((!)/

where the coefficients are evaluated at (pe,se). Let us suppose that periodic boundary
conditions are specified in the horizontal variables (x, y). We look for normal modes with

(p,s,u,v,w) = el^klX+k2V~ut\p,s,u,v,w){z),
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and eliminate p, s and the horizontal components of velocity from the system. Note that
the sound speed satisfies c~2 = (dp/dp)s, and define

= «*)=--(§0 £=«(*)-4- (4-27)
Pe ^2 Pe \ds J P dz cj

(The last identity holds due to hydrostatic balance.) Then for the vertical velocity
component w{z) we obtain the equation

d2w ndw k2(3g\ _ ,
~l^+(3^+[k ~^)W = °' (4'28)

where fc2 = fc2 + fcf. The vertical velocity must vanish at the top and bottom boundaries.
So, given a horizontal wave number k, possible oscillation frequencies oj are determined
by solving the eigenvalue problem in (4.28) with Dirichlet boundary conditions.

We note that in the special case of perfect gas at constant temperature, the density
profile is exponential and sound speed is constant, and so a(z) and (3(z) are constant.
Then (4.28) has explicit solutions of the form w(z) = e/3z/2sin(nz), whence the gravity-
wave dispersion relation is given by

W2 =
k2/3g

k2 + n2 + \(32 (4.29)

In the limit k2 —» oo, this expression approaches (3g = N2, where N from (4.23) is the
Brunt-Vaisala frequency for a compressible fluid. For comparison, for a fully compressible
fluid in which one starts with Dp/Dt+pV• v = 0 in place of (4.25), the dispersion relation
in this special case is

k2 + n2 + — J — 4fc2

For large fc2, the plus sign yields u>2 « c2fc2, corresponding to acoustic waves, and the
minus sign yields J2 N2, corresponding to gravity waves. The magnitude of any
oscillation frequency u> that satisfies (4.29) is less than N, showing that the system
(4.24)-(4.26) supports gravity waves but not acoustic waves.

In general, when the coefficients in (4.28) vary with z, we can obtain an upper bound
on oscillation frequencies as follows. Let q(z) = exp(— fz /3(C) d(), multiply equation
(4.28) by qw and integrate over z G [0, L\, from bottom to top. One obtains

[ q{z)w'(z)2 dz + ^ [ (J2 - f3g)q(z)w(z)2 dz = 0.
Jo ^ Jo

Since the second integrand cannot be everywhere nonnegative, it follows that

uj2 < max/3(a;)gr. (4.30)

The dispersion relation in (4.29) is very similar to that obtained in the usual case of
an incompressible fluid when one assumes the density is advected with the flow. Starting
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from the governing equations

Wt = »• (4'31>
V • v = 0, (4.32)

Dw
P+ Vp = - pg, (4.33)

one finds in similar fashion that the equation corresponding to (4.28) is

d2w dw k2aq\ „ , ,„,s+ <4-34'

and for an exponential density profile the dispersion relation is

c-35'
In the limit A:2 —> oo this approaches ag = Nq, where No is the usual Brunt-Vaisala
frequency for an incompressible fluid. In many circumstances the difference between N0
and N may be negligible, but it is interesting that the dispersion relation arising from the
system (4.24)-(4.26) more faithfully approximates the compressible case in this respect.

4.6. Final remarks. We close with a few remarks intended to clarify the differences
between the new system (4.18)-(4.20) and the anelastic system (4.13)-(4.16). For pur-
poses of comparison, we neglect heat conduction. In this case, the new system (4.3),
(4.4), (4.20) becomes

TT- = 0, (4.36)Dt* '
V • v0 = 0, (4.37)

^ + V^1 = - PS* + £(V ■ MVv0 + VvJ)) + V(A0V • v„)), (4.38)

where p = p*(p0 + M2pi,s0)-
For each system, the source of the constraint on velocity ((4.37) or (4.16) respectively)

is the continuity equation

§?+A)V-v0 = 0, (4.39)

where po = P*(Po, $o)- For the anelastic system, the leading-order entropy so is constant
and the pressure po is a function of 2 determined by the hydrostatic balance equation
(4.5); so Dpo/Dt* = wodpo/dz*. Using hydrostatic balance we can also write (4.16) in
the form essentially given by Batchelor [2]:

V ■ v0 — wo~y~ = 0. (4.40)
Cs0

For the new system (4.36)-(4.38), since po is a constant when heat conduction is
neglected, we have Dp0/Dt* = 0 and this is why the velocity field is divergence-free.
Note that if we seek to "improve" Eq. (4.39) by replacing po by p = p*{po + M2pi,so),
then we recover the original fully compressible system without simplification! Indeed,
the essential difference between the fully compressible system (3.1)-(3.3) (neglecting heat
conduction and viscous power terms), and system (4.36)-(4.38) with p* = po + M2p\, is
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precisely that in the new system a term proportional to M2Dpi/Dt* is neglected in the
continuity equation.

This point suggests a modification to the system (4.36)-(4.38) in a situation with
possible relevance for atmospheric circulations. Suppose gravity is rather strong but the
pressure correction pi does not happen to deviate significantly (more than 0(1)) from
some time-independent reference state p(z*) that determines a reference density profile
p(z*) via a hydrostatic balance equation

Vp = -p{z*)g*. (4.41)

Then we replace po in (4.39) by po = p*{po + M2p,so)- Note that po can depend on
(x*,y*,t*) as well as z* through So. Since M2 Dp / Dt* = M2wo(d.p/dz*), the continuity
equation becomes

V • v0 - w0 — =0, (4.42)
4) Po

where the coefficient c2a is evaluated at (p() + M2p, so) and we have used M2g* = g. This
equation replaces (4.37), without changing the formula validity of the approximation.
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