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Abstract. This paper deals with the periodic boundary value problem for impulsive
parabolic equations. A comparison result for impulsive differential inequalities is ob-
tained. This result is applied to get a uniqueness criterion for the solutions of impulsive
parabolic equations.

1. Introduction. The theory of impulsive partial differential equations is a new
branch of the theory of partial differential equations (PDE). Its start was made by the
pioneer paper of L. Erbe, H. Freedman, X. Liu, and J. Wu [5]. They showed that im-
pulsive parabolic equations provide a natural framework for mathematical simulations
of many processes and phenomena in population dynamics. After the contribution of
L. Erbe et al., the theory of impulsive PDEs underwent a rapid development in various
directions. We shall mention some of them: quenching phenomena [3], [4], semigroup
approaches [6], numerical analyses [1], [2], applications in quantum mechanics [7], etc.

The present paper deals with a periodic boundary value problem for impulsive para-
bolic equations. Impulsive differential inequalities generated by this problem are consid-
ered and uniqueness criteria are obtained. The results of this paper will be actively used
as an auxiliary apparatus in the theory of impulsive PDEs.

2. Preliminary notes. Suppose that Q C Ift" is a bounded domain with a boundary
cKl and f! = fiU dfl. Let ao > 0 and let

E — G i G [0, do] • £ G ,

E* = {(t,x) G R1+n: t G [0,o0], x G H}.
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Suppose that 0 < t\ < t2 < ■ ■ ■ < tk < a0 are given numbers and t0 = 0, tk+1 = ao-
Define Jimp = {ip}p=1, Eimp = {(t,x) E E: t e Jlmp}, E*mp = {(t,x) G E*; t G

Jimp\ •
Let Cimp[E*,R] be the class of all functions z: E* —> R such that:
(i) the restriction of z to the set E* \ E* is a continuous function;
(ii) for each (t,x) G E* there exist the limits

lim z(s,y) = z(t~, x), lim z(s, y) = z{t+, x),
(s,y)->{t,x) (a,-JSr)—►Ct.ar)

s<t S>t.

and z(t, x) = z(t+,x).
For a function z G Cimp[E*, R] and (t,x) 6 E*mp we define

A z(t,x) = z(t,x) — z(t~,x).

Let M[n] be the class of all matrices 7 = [7ij]i<i, j<n, where 7ij G R and 7^ = 7ji.
Suppose that /: (£\£im,p)xRxRnxM[n] ^ 1,5: E*mp x R —> R, <p: [0,ao]x9f2^

R are given functions.
A function z G CimP[E*,R] will be called a function of class [1?*,R] if z possesses

continuous partial derivatives zt(t,x), zx(t,x), and Zxx(t,x) for (t,x) G E \ Eimp, where

(zXl >••••) ZXn), Zxx [zXiXj ] l<i5 j<if

A function /: (E\ Eimp) x R x R" x M[n] —> R is said to be elliptic with respect to
z G [E*, R] in E \ Eimp if for (■t, x) G E\ Eimp and for any 7, s G M[n] such that

n
y ] (7ij ~ sij)^i^j S 0, A = (Ai, . . . , An) 6 Rn,

i,j = 1

we have

f[t..x,z(t,x).zx{t.x),-)) < f(.t,x,z(t,x),Zx(t,x),s).

We consider the periodic boundary value problem (PBVP):

zt(t,x) = f(t,x,z(t,x),zx{t,x),zxx(t,x)), (t,x) G E\ Eimp, (1)

z(0, x) = z(uq, x), xei}, (2)

z(t,x) = <p(t,x), (t, x) G [0, ao] x dft, (3)

Az(t,x) = g{t,x,z(t,x)), (t, x) G E*mp. (4)

Definition 1. The function z: E* -* R is a solution of the PBVP (l)-(4) if:
(i) 2 G Cj^p [E*, R] and z satisfies Eq. (1) on E \ Eirnp;
(ii) 2 satisfies (2), (3) and (4).
The solution z(t,x) of PBVP (l)-(4) is called parabolic if for every (t,x) S E \ Eimp

all the functions f(t,x,z,p,q) are elliptic with respect to z(t,x).
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3. Main results. Now we prove a theorem on the differential inequalities generated
by PBVP (l)-(4).

Theorem 1. Let the following conditions hold:
1. u, v £ ChnV[E*, M.] and the function / is elliptic with respect to u in E \ Eimp.
2. The differential inequalities

(5)
Ut(t,x) < f(t,x,u(t,x),ux(t,x),uxx(t,x)),

Vt{t,x) > f(t,x,v(t,x),vx(t,x),vxx(t,x))

hold on E \ Eimp and

u(0,a:) < u(a0,x), u(0, x) > v(ao, x), x £ fl, (6)

u(t,x) < v(t,x), {t,x) 6 [0, ao] x dfl. (7)

3. For each (t,x) £ E* we have

Au(t,x) < g(t,x,u(t,x)),

Av(t,x) > g(t,x,v(t,x)).

4. For each (t, x) £ E \ Eimp the function f(t, x,-,p,q): K —» R is strictly decreasing
on K.

5. For each (t,x) £ Eimp the function g(t,x, •): K —> E is strictly decreasing on R.
Then we have

u(t,x) < v(t,x) on E*. (8)

Proof. Let w(t,x) = u(t,x) — v(t,x) for (t,x) £ E* and

£ = sup{u;(t, x): (t, x) € E*}.

Suppose (8) is not true. Then £ > 0 and there are two cases to be distinguished:
Case 1. There exists (t,x) £ E*, x = (xi,... ,xn), such that

w(t,x)=e, w(t,x)<e on E*. (9)

It follows from (6) that we can take t > 0 and from (7) that x £ fl.
(la). Suppose that (t,x) £ E \ Eimp. Since u — v attains its maximum at (t,x) we

have

ut{t,x) > vt{t,x), ux(t,x) = vx(t,x),

and

^ {^'XlXj {t': Vxixj -^)) — 0
i,j=1

for A = (Ai,... , A„) e
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In view of (5) and condition 4 of the theorem it follows that

0 > vt(t,x) -ut(t,x) > f(i,x,v(t,x),vx(t,x),vxx(t,x))

- f(t, X, u(t, x),ux(t, x), uxx(t, £))

> f(t,x,v(t,x),vx(t,x),vxx(t,x)) - f(t,x,v(t,x) + e,vx(t,x),vxx(t,x)) > 0,

which is a contradiction.
(lb). (t,x) 6 Eimp. Then we have

u(t~,x) < v(t~,x) +e.

It follows that

u(t,x) — v(t,x) < u(t~,x) + g(t,x,u(t,x)) — \v(t~ ,x) + g(t,x,v(t,x))] < e,

which is a contradiction with (9).
Case 2. Suppose that w(t,x) < £ for (t,x) € E*. Then there is (t,x) E E such that

lim w(t,x)=e (10)
,x)

and there is j, 1 < j < k such that t = tj. Let fj: tj\ —> R be defined by

fj(t) = max {w(t, x): x £ f2}

for t e [tj-i,tj) and rj(tj) = e. Thus, fj is a continuous function. Since fj(t) < £ for
t € there is a sequence {1,} such that

ti £ \tj — 11 ̂ "j)i ti ^ lim ti tj t
i—*oo

and

D-fj(ti)> 0 for i— 1,2,...,

where is the Dini derivative. For each i there exists xW E f2 such that

fj (ti) = w(ti,x{l)).

It follows from (7) and (10) that there exists a natural number N such that for i> N,
(ti,xW) € E and w(ti,xW) > 0. Then we have

0 < D-i)(ii) < wt(ti,xM) = ut(ii,xM) - vt(ii,xM)

< f(ti,xM,u(ti,xM),ux(ti,xM), Uxx(ti, XM))

- f (tt,x{l\v(ti,x^),vx(tt,x{l)),Vxx(ti,x^)) < 0,

since

and

Ux(ti,XM) = vx(tux{l))

^ ^ yllxixj (ti > ^) VxiXj (ti ? ^ ^ 0
i,j=1

for A = (A1,... , A„) € R". Thus we have obtained a contradiction.
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Therefore

u(t, x) < v(t, x) on E*. □

We apply Theorem 1 to obtain a uniqueness result for PBVP (l)-(4).

Theorem 2. Let the following conditions hold:
1. for each (t, x) E E\ Eimp the function f(t, x,-,p,q): R —> R is strictly decreasing

on R;
2. for each (t,x) € Eimp the function g(t,x, ■): R —> R is strictly decreasing on R.
Then the PBVP (l)-(4) admits at most one parabolic solution.

Proof. Let u\, U2 € [E*, R] be two distinct parabolic solutions of the PBVP
(l)-(4). Employing Theorem 1 we can prove that:

(i) u\ < U2 on E*,

(ii) U\ > U2 on E*,

which imply the statement of the theorem.

Acknowledgments. The present investigation was partially supported by the Bul-
garian Ministry of Education, Science and Technologies under Grant MM-702.

References
[1] D. Bainov, Z. Kamont, and E. Minchev, Difference methods for impulsive differential-functional

equations, Applied Numerical Mathematics 16, 401-416 (1995)
[2] D. Bainov, Z. Kamont, and E. Minchev, The finite difference method for first order impulsive partial

differential-functional equations, Computing 55, No. 3, 237-253 (1995)
[3] C. Y. Chan and L. Ke, Remarks on impulsive quenching problems, Proceedings of Dynamic Systems

and Applications 1, 59-62 (1994)
[4] C. Y. Chan, L. Ke, and A. Vatsala, Impulsive quenching for reaction-diffusion equations, Nonlinear

Analysis, Theory, Methods and Applications 22, No. 11, 1323-1328 (1994)
[5] L. H. Erbe, H. I. Freedman, X. Z. Liu, and J. H. Wu, Comparison principles for impulsive parabolic

equations with applications to models of single species growth, J. Austral. Math. Soc., Ser. B, 32,
382-400 (1991)

[6] V. Gupta, Parabolic Equations with Impulse Effect: a Semigroup Approach, Ph.D. Thesis, Kanpur,
India, 1994

[7] G. Petrov, Impulsive moving mirror model in a Schrddinger picture with impulse effect in a Banach
space, Communications of the Joint Institute for Nuclear Research, Dubna, Russia, preprint E2-
92-272, 1992


