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Abstract. We study a standard, explicit finite difference approximation of the 2-D

Broadwell model and construct a numerical solution with the sum-norm growing in time

faster than any polynomial. Our construction is based on a structure of a self-similar

fractal!

We also obtain global existence, long-time behavior and numerical stability results of

a large class of multidimensional discrete velocity models of the Boltzmann equation.

We assume certain restrictions on the size of the support and the sup-norm of the initial

data. Our results are obtained by examining the time evolution of sets on which the

solutions are supported.

1. Introduction. In this paper we will study the L°° stability of numerical solutions

to the discrete velocity models of the Boltzmann equation. We will also present a global

existence result for solutions of such models. The techniques presented in this paper

are applicable to a quite large class of discrete velocity models, but to simplify the

exposition we will focus our attention on the 2-D Broadwell model. This model is given

by the following hyperbolic semilinear system of partial differential equations:

d d
—r(x,2/,o + ~Qxr(x'y't} = u(x^y^)d(x'y^) -r(x>y^)l(x,y^),

d d
— l(x, y, t) - y, t.) = u{x, y, t)d(x: y, t) - r(x, y, t)l(x, y, t),

d ' d (L1)
—u(x, y, t) + QyV-ix, y, t) = r{x, y, t)l(x, y, t) - u(:r, y, t)d(x, y, t),

d d
—d(x,y,t) - —l(x,y,t) = r{x,y,t)l(x,y,t) - u(x,y,t)d{x,y,t),

with standard initial conditions imposed at time t = 0

(r,l,u,d)(x,y,0) = (ro,lo,uo,do)(x,y), r0, l0, u0, d0 > 0. (1.2)
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Local existence results imply that the solution of (1.1) and (1.2) is defined on a strip

{(x,y,t) : —oo < x < oo, —oo < y < oo,0 < t < T} where T depends on the size of the

initial data. A difficult question, which we will examine, is if one can let T = oo.

System (1.1) and other similar systems were studied by many authors. We refer the

reader to the review paper of Platkowski and Illner [1] and the references contained

therein for a survey of the theory of such systems. Equations (1.1) model the motion of

an idealized gas of particles that can travel only with prescribed velocities. Equations

(1.1) are simply the balance identities for such a gas where r,l,u, and d represent the

number (or the density) of particles that travel with velocities (1,0), —(1,0), (0,1), and

—(0,1), and ±(ud — rl) are the collision terms.

In this paper we study the following explicit finite difference scheme:

yk — 1 . 1
K,m = K-irn + hQ*Z\[,m,
jk _ rk-1 , 1

n,m n+1 ,m ' ^ n-j-1 ,m'

TJk — Uk~l — hOk~1
u n,m °n,m— 1 ^n,m— 1'

ijk _ nfc-1 _ hQk~1
n,m n,m+l

where h = At = Ax = Ay is the mesh size, (R, L, U, D)km denotes the approximation

of (r,l,u,d)(nh,mh,kh), and Q is the numerical collision term

Ok = Dk — 7?^ T^ (1 4)
n,m ^ n,m n,m n,m' \ /

We define a sequence (rh, lh, uh, dh) of piecewise constant functions by requiring that

(rh,lh,uh,dh)(x,y,t) = (R^,m,LknimtU^m,D^m) for

n — ̂  < x < n + ^, m — ̂  < y < m + ^, k — ̂  < t < k + ^, (1.5)

and assume that the numerical initial conditions

(rh, lh, uh, dh)(x, y, 0) = {r^,l^,u^,d'^){x,y) (1.6)

are nonnegat.ive, bounded uniformly in L°°, and satisfy

(rQ, lg, Uq , dg) —> (tq, /q, uo, do) in L^oc. (1-7)

We note that solutions of (1.1) are nonnegative if the initial data is nonnegative, but

it is not so for solutions of (1.3).1

As was pointed out by Peszek [5], if for 0 < t < T the sequence {rh, lh, uh, dh) is

bounded uniformly in L°°, then the unique solution (r,l,u,d) of (1.1) and (1.2) exists on

the time interval t £ [0, T], and

(rh,lh,uh,dh) —> (r,l,u,d) in Lfoc, 1 < p < oo. (1.8)

1 However, if the sequence of solutions to (1.3) is bounded uniformly from above as h —> 0 and if the

numerical initial data is nonnegative, then for sufficiently small h these solutions remain nonnegative at

later times t.
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One would like, thus, to ask if the numerical scheme (1.3) is L°° stable for t G [0, oo),

i.e., if

Halloo < M(0), lltflloo < M(0), ||ug||oo<M(0), lldglloo < Af(0) (1.9)

implies

max(||r'l(-,-.^Hoo, \\lh(-,-,4)||oc, \\uh(', -, t)^, ||rf^(-,-, i)!!^) < M(t) (1.10)

for some function M : [0, oo] —* (0, oo) independent of h. Local L°° stability is easily

shown by taking

M(t) - M(°-> . (1.11)w l-M(Q)t v '

The observation that both numerical and exact solutions of (1.1) are bounded by a

function M that satisfies M(t) = M(t)2 gives local L°° stability with (1.11). It is

substantially more complicated to obtain a function M defined on [0, oo).

One can easily construct both exact and numerical solutions for which the L°° norm

grows linearly or quadratically in time (see [3]). Thus M{t) has to grow faster than

0(t2). The main result of this paper shows that the numerical scheme (1.3) is not

polynomially Z/°° stable, that is, that the above function M has to grow faster than

any polynomial. This result is based on fractal-like constructions of motions that satisfy

(1.3). Constructed numerical solutions satisfy

(rS.tf.ug.d^^O, in Lfoc, 1 < p < oo, (1.12)

||rh(-,-,0)1100 - ||^(-,-,0)||oo - ll<A-,-,0)||oo = llAv.OJIU = e, (1.13)

where e > 0 is a given constant, and

||r"(.,., 2s/i)||oo > ||rfc(.,-, 2'"1/i)||00 + h\\rh(-,; 2—1fc)||§0 (1-14)

and, thus, produce a growth that is faster than any polynomial.

Our construction is based on the ordered graph shown in Fig. 1. This graph has the

fractal structure. The initial data is supported on a set based on a set which approximates

a fractal shown in Fig. 2. This fractal has 2-Lebesgue measure 0, and this is the basis

of proving (1.12). The idea of using fractals to study PDEs is not new (cf. Mandelbrot

[6]), but this is probably the first time that a self-similar structure of a fractal is used to

study the stability of finite difference schemes.

Our construction suggests that one may need to impose some additional restrictions

on initial data to guarantee the stability. It turns out that global L°° stability is closely

related to obtaining an a priori L°° estimate for the exact solution of (1.1). Such estimates

automatically give global existence of solutions to the Broadwell model. Again we refer

the reader to the review paper of Platkowski and Illner for the survey of existence results.

In particular, a priori estimates for the 3-D Broadwell model were obtained by

Kawashima [4] and then generalized to a class of other models by Illner [2], Their
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methods require the initial data to be small in suitable norms and can be reformulated

as a stability result for the numerical scheme (1.3).

In the last section of this paper we will present a global existence and a stability result

for the Broadwell model (1.1). We will assume that the support of the initial data is

restricted to one of the strips

= {(x,y) ■ \x - y\ < (1-15)

^2 = {(x,y) : \x + y\ < a}, (1.16)

and that the size a of the strip is small compared to Mq ■= max(||ro||oo> ||£o||oo> Ilwo||oo)

11 ^011 oo ) ?
&A1@ < 2.

Let us restrict our attention to the case (1.15). Global existence follows from the ob-

servation that the support of (r + eZ)(-, -,t) travels southeast and is included in the set

{(x,y) : \x — y — t\ < a} while the support of (I + u)(-,-,t) travels northwest and is in-

cluded in the set {(x,y) : \x — y + t\ < a}. For times t > a/2 the supports are disjoint and

the functions r, / , u, and d become constant along corresponding characteristics. Now one

can employ the estimate (1.11) to guarantee that the time of separation tsep = a/2 occurs

before the blow-up time tCT\t = 1/N(0) and, thus, to guarantee global existence. This

method can be generalized to a large class of multidimensional discrete velocity models

of the Boltzmann equation yielding global existence and long-time behavior results. The

admissible class of models includes the full 3-D Broadwell system, as well as the coplanar

model with 2r velocities (see [1] for definitions). As we will show in the end of the last

section, the diagonality of the choices for the strips Q\ and SI? in the above discussion is

not essential.

We note that, in the same way, one obtains the corresponding L°° stability bound

for the numerical solutions. These results are apparently new; at least we have not seen

them in the literature.

2. An instability result and fractals. In this section we shall study the numerical

scheme

Rn,m = Rn-l,m + hQn-l,m'

Ln,m = Ln + 1 m + ^Qn+l.m'

rjk _ rjk-1 _ Uf)k-\
^71,171 un,m— 1 ^n,m-1'

f)k _ f)k — l _ uf)k-1
n,m -^71,771+1 '<,Vn.m+1'

where h = At = Ax = Ay is the mesh size, (R, L, U, D)\\ denotes the approximation

of (r,l,u,d)(nh,mh,kh), and Q is the numerical collision term,

Qn,m = KmDkn,m - Rkn,mLn,m• (2-2)

The above finite difference scheme is defined on the set of grid points Gf,,

Gh ^ (^n ? ?/m 5 ) •
xn = nh, ym = mh, tk = kh,

where m, n, and k are integers, and 0 < k <T/h
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As in the previous section, we introduce the following sequence of piecewise constant

functions:

(rh,lh,uh,dh)(x,y,t) = «m, Lkn<m, U^m, Dkn,J for

n-|<x<n+|, m — \ <y <m+\, k—\<t<k + \, (2.3)

and assume that the given numerical initial conditions

(rh,lh,uh,dh)(x,y, 0) = (rfi,l(},ut},dft)(x,y) (2.4)

are bounded uniformly in L°°. In this section we study the stability of the numerical

scheme (2.1), and we will fix h as a small parameter rather than considering h —> 0.

The numerical scheme (2.1) inherits the physical interpretation from the Broadwell

model: we can think of trains of particles that travel with speed one along vertical and

horizontal lines connecting the lattice Gh• Since they are initially positioned at the lattice

locations collisions will happen at times tk = kh, when the particle trains are again at the

grid locations. The numerical scheme employs the same collision rule as the Broadwell

equations; we simply assume that collisions occur only between particles moving right

and left and between particles moving up and down and that each collision results in

a change of velocity directions, which affects some number of particles. Right after the

collision these particles will split into two groups moving in two directions (perpendicular

to the direction before the collision). The number of particles affected in this change is

assumed to be proportional to the product of colliding quantities multiplied by a factor

h. We make our measurements of the motion only at grid points and only at specified

times t — kh. Thus we will see the effect of the collision with the time lapse h, and this

is exactly the behavior modeled by the scheme (2.1).

Now we are in the position to describe our construction. We fix h and want to

construct a numerical solution (rh ,lh ,uh, dh) which exhibits a very fast time growth of

rh. We assume that the initial data lift, eft) satisfies

||rh(.,.,0)|U = ||^(-,-,0)|U = ||^(-,.,0)|U = |Mh(-,-,0)|U = e. (2-5)

The motion is described by the fractal-like ordered graph shown in Fig. 1 (see p. 782).

We let rft = ift = uft = dft — 0 at all grid points (nh, 0), n > 0 and also at points

(n, to) with m > n or to < —n. We assign rft (0,0) = e, uft (h, —h) = e, and dft(h, h) = e.

We assume that these are the only nonzero initial conditions in the square K1, with

vertices (0,0), (h,h), (h,—h), and (2/i,0), except for rQ(h,h) and rfc(h,—h) which we

will prescribe in the next step of our construction. Solving (2.1) for rh(2h,0,2h) yields

rh{2h, 0,2h) = rh{h, 0, h) + he2 = rh{h, 0, h) + h(rh{h, 0, h))2. (2.6)

We observe that our initial data, as well as the solution, can be described by drawing a

graph as in Fig. 1. If at a certain point one of the functions rh,lh,uh, or dh is nonzero

we will draw an arrow at this point. We will draw an arrow pointing to the right if rh

is nonzero, an arrow pointing to the left if lh is nonzero and so on. The numbers on the

graph refer to the times in which rh,lh,uh, or dh is nonzero as described by the arrow.
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Figure 1. Numbers 0, h, 2h, and 4h mark times in which the arrows

are drawn. The symbol O marks all the points in the square K3 at

which the initial data is nonzero.

The basic trick is to rotate the pattern from the square K\ around the point (2h, 0) by

90° clockwise and counterclockwise. The term "rotating" refers of course to the arrows.

After rotating clockwise rh starts to play the role of uh,lh plays the role of dh, and so

on. The counterclockwise rotation requires that we substitute rh for dh and lh for uh

and so on. Thus, the construction yields that

dh(2h, 0,2h) = uh(2h, 0,2h) = rk{2h, 0,2h)

and, thus, that

rk(3h, 0, 3h) = rh(2h, 0,2h) + huh(2h, 0, 2h)dk(2h, 0, 2h)

= rh(2h, 0, 2h) + h(rk(2h, 0, 2h)f.
(2.7)

Now we define the initial data on the remaining part of the square A"2, which has the

vertices (0,0), (2h,2h), (2h,—2h), and (4/i,0). We simply put all initial data to be 0,
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except for rft and u(j on the northeast side of K2 and for r[} and cIq on the southeast side

of A~2 • These values will be prescribed in the next step of our construction.

We repeat the above procedure by rotating the pattern K2 around the point (4h, 0)

by 90° clockwise and counterclockwise, in the way that yields that

dh(4h, 0,4h) = uh(4h, 0,4h) = rh(4h, 0,4h)

and that

rk(5h, 0,5h) = rh{4h, 0,4h) + hrh{4h, 0, Ah)2. (2.8)

This defines our solution on the square K3 with vertices (0,0), (4/i,4/i), (4h,—4h), and

(8/i,0). We observe that throughout the construction rh increases rapidly at points

rh(2sh, 0,2sh) and is nondecreasing elsewhere on the line y = 0.

Now let us assume that the initial data is defined on the square Ks, s > 1, with

vertices (0,0), (2s~1h,2s~1h), (2s~1h, -2s_1/i), and (2sh,0), except for rq and ufc on the

northeast side of Ks and for t*q and c?q on the southeast side of Ks. As above we rotate Ks

around the point (2sh,0) by 90° clockwise and counterclockwise, and the self-similarity

of the graph yields that

dh(2sh, 0,2sh) = uh(2sh, 0,2sh) = rk{2sh, 0,2sh) (2.9)

and, thus, that

rh{(2s + 1 )h, 0, (2s + 1 )h) = rh(2sh, 0,2sh) + h{rh{2sh, 0,2sh))2. (2.10)

This recursive construction yields a numerical solution with the property that

rh(kh,0,kh) is nondecreasing. Thus, we obtain the following

Lemma 2.1.

rh(2s+1h, 0,2s+1h) > rh(2sh, 0,2sh) + hrh{2sh, 0,2sh)2 for s = 0,1,2,... . □ (2.11)

Definition. We say that the numerical scheme is polynomially stable if there exists

a polynomial P, P(t) > 0 for t > 0, with the property that for all initial conditions

(r£,Z§,ttg,d§) satisfying

Halloo < P(0), II^0II00 — -P(o), KlU<P(0), IMSlloo < P(o) (2.12)

one obtains

maX(||rh(.,-,t)lloo,||i',(-,-)t)IUII«'l(-,-)Olloo,|M',(-,-,i)||oo)<i,W- (2-13)

Theorem 2.1. The scheme (2.1) is not polynomially stable.

Proof. We apply the above construction with e = P(0). We observe that after at most

s0 = [(l/e)2(l//i)2j steps s,rh(2sh,0,2sh) > l/(hekh) for some k > 0. We also note that

7k{p) =f (l//i) exp(fcp)
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satisfies

FIGURE 2. The initial data is supported on a set which approximates

a self-similar fractal. The reader should rotate this picture by 45°

so that the coordinate system has its usual position. The fractal

is obtained by the following procedure: Start with a square S as

shown on the picture and divide it into 4 equal squares. Remove

the one closest to the right and mark the center of S. Divide the

remaining squares into four equal squares each and remove squares

closest to the marked point. Now mark centers of these 3 squares

and repeat the procedure for each of the smallest squares. Repeat

this procedure several times. If we stop when the remaining squares

have diameter 2h, then they will tightly cover the part of the support

of (vq , Zq , Uq , d,Q) that is restricted to S. If we do not stop, we will

obtain a self-similar fractal of Lebesque measure 0.

7fe(2s+[h) < 7fe(2sh) + hlk{2shf for a = 0,1, 2,... . (2.14)

Thus, Lemma 2.1 implies that

rk(2sh,0,rh)>lk(2s-soh),

for s > so-

Now to conclude the proof we need only to note that 7t grows faster than any poly-

nomial. □

Our final observation is that, since the fractal associated with the support of

(rg,lQ,UQ,do) has 2-Lebesgue measure 0,

(ro,lo,Uo,do) —> 0 in Lfoc, 1 < p < oo. (2.15)
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3. Remarks on numerical stability. It may seem that the construction described

in the last section is sufficiently universal to obtain instability results similar to the one

in Theorem 2.1 for other numerical schemes. Fortunately, this is not so. For example,

let us consider the following implicit scheme:

r>k   1 i hr)k
Ixn,m lx"n—l ,m ' n^n,m'

= + (31)

Km = - h(£tm,
T~\k   T*\k—1  

n,ra n,m—1 '^v n,m'

where again h — At — Ax = Ay is the mesh size, (R, L, U, D)„ m denotes the approxi-

mation of (r, I, u, d)(nh, mh, kh), and m is the numerical collision term,

s-)k _ Tjk j~\k _ ryk jk /o o\
n,m ^ n,m n,m Jrin,mljn,m'

As in previous sections we let (rh, lh, uh, dh) be the piecewise constant function that

coincides with the finite difference solution (R, L, U, D) on the grid points.

Scheme (3.1) turns out to be more stable; in particular, one obtains a priori bounds

on the numerical solution of the order 0(l/h). Thus, one cannot obtain an unbounded

growth of the numerical solution for a fixed h and we have to let h—+ 0. If we repeat the

construction from the above section we will obtain the following result.

Let h be small. Then as long as

h ( max (u (ph,0,ph),r (ph,0,ph))\ <1/2 (3.3)
\p€N,ph<T J

one obtains

rh(2s+1h, 0,2s+1/i) > rh(2sh, 0,2sh) + |ft(r/l(2s/i, 0,2sh))2

for s such that 2s+1h < T. (3.4)

To obtain (3.4) we note that the implicit character of the scheme (3.1) introduces some

changes in the argument from the last section. The basic change is that one has to

replace the equation (2.9) by

rh((2s -1 )h, 0, (2s -1 )h) = uh{{2s -1 )h, 0, (2s -1 )h) = dh{(2s -1 )h, 0, (2s -1 )h). (3.5)

Now to obtain rh(2sh,0,2sh) we have to deal with a more complicated implicit system

of equations (3.1). This system reduces to2

rh(2sh, 0,2sh) = rh{{2s - 1 )h, 0, (2s - 1 )h) + h{uh{2sh, 0,2sh))2

- hrh(2sh, 0,2sh)lh(2sh, 0,2sh),

lh(2sh, 0,2sh) = h(uh(2sh, 0,2sh))2 - hrh{2sh, 0,2sh)lh(2sh, 0,2sh), (3.6)

dh(2sh, 0, 2sh) = uh(2sh, 0, 2sh),

uh(2sh, 0,2sh) > rh({2s - 1 )h, 0, (2s - 1 )h) - h{uh{2sh, 0,2sh))2.

2 A straightforward, inductive argument shows that r(ph, 0,ph) > 0 and u(ph, 0,ph) = d(ph, 0,ph) > 0

for all p > 0.
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Plugging (3.6)2 into (3.6) 1 and using (3.3) yields

rh(2sh, 0,2sh) > rh((2s - 1 )h, 0, (2s - l)h) + \h(uh{2sh, 0,2sh))2, (3.7)

while applying (3.3) to (3.6)4 yields that uk(2sh,0,2sh) > (2/3)rh((2s - l)h, 0, (2s —1 )h).

Now a brief look is enough to verify that

rh(2'h, 0,2sh) > rh{(2s - 1 )h, 0, (2s - l)h) + lh(rh{(2s - 1 )h, 0, (2s - 1 )/i))2. (3.8)

To show (3.4) we need to prove that rh(ph,0,ph) is a nondecreasing function of p. The

calculation which shows that is similar to the one above, and therefore omitted.

Condition (3.4) shows that the L°° norm of the numerical solution diverges as h —► 0.

It turns out, however, that the time needed for this solution to attain a rapid growth is

0(l/h) or larger and, thus, we cannot claim at this point that the scheme (3.1) is not

polynomially stable.

4. Global existence results. In this section we will show a global existence result

for solutions to a large class of discrete velocity models of the Boltzmann equation. The

results presented here are quite elementary and simple in the context of the 2-D Broadwell

model,
d d , ,
dtr dxr =

d, d
—I- —I = ud-rl,
at dx

d d ( )
~rT,U + Tr~u = rl — ud,
at ay

— d — —d = rl — ud.
at ay

To clarify our exposition we start from the model system (4.1). At the end of this section

we will discuss how our method is applied to a more general situation.

We restrict our attention to the case in which the support of the initial data

(ro,lo,uo,do)(x,y) (4.2)

is included in one of the strips

fii(a) = {(x,y) : \x -y\ < a} or fi2(a) = {(x, y) : \x + y\ < a}. (4.3)

For the sake of generality we consider nonnegative solutions to the more general system

d d
—ui{x,y,t) + —ui{x,y,t) < u3{x,y,t)u4{x,y,t),

d d
—u2(x,y,t) - —u2{x,y,t) < u3{x,y,t)u4(x,y,t),

d d (4'4)
—u3(x,y,t) + —u3(x,y,t) < ui(x,y,t)u2(x,y,t),

d d
—u4{x,y,t) - —u4(x,y,t) < m (x, y, t)u2(x, y, t)

and prove the following:
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Theorem 4.1. Assume that U\, u2, «3, and U4 are uniformly bounded, nonnegative func-

tions defined on {(x,y, t) : 0 < t < T}, and satisfying (4.4). Assume also that

supp[(ui,u2,«3,w4)(*,*,0)] C fii(a). (4.5)

Then for 0 < t < T

supp[(ui,u4)(-,-,0)] C {(a:,y) : \x - y - t\ < a} = fix(a) + (t, 0) = fi^a) + (0, -t) (4.6)

supp[(ix2,u3)(-,.,t)] C {(x,y) :\x-y + t\<a} = rii(a) + (-t, 0) = fii(a) + (0, t). (4.7)

In particular, all times t > a/2, supports are disjoint and ui,u2,u3, and U4 satisfy

d d ,
—ui{x,y,t) + —ui{x,y,t) < 0,

d , d .
—u2(x,y,t) - —u2{x,y,t) < 0,
at Ox . .

8 d (4-8)
—u3(x, y, t) + y, t) < 0,

d , . d .
—u4(x, y, t) - g^u4{x, y, t) < 0.

Similarly, if

supp[(ui,u2,U3,it4)(-,-,0)] C ft2(a), (4-9)

then

supp[(ui,u3)(v,f)] C {{x,y) :\x + y-t\<a} = fi2(a) + (t, 0) = fi2(a) + (0 ,t) (4.10)

and

supp[(M2,W4)(-,-,i)] c {(x,y) -\x + y + t\<a} = 02(a) - (t, 0) = ft2(a) - (0,t). (4.11)

Before proving this theorem we want to make a few observations. Let

M(t) d= max(||ui(-,.,t)||00, ||u2(-,-,t)||00, |K(-, *)||oo, IK(-, •, i)IU)- (4-12)

Equations (4.4) yield that -^M < M2 and, thus, that

M(i) < M/,0) . (4.13)w ~ 1 - Af(0)t y '

This observation, together with Theorem 4.1, yields the following global existence

result for the 2-D Broad well model.
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COROLLARY 4.1. Assume that the initial data is nonnegative and satisfies

ll^olloo, ||^01|oo? Il^ollooi ll^olloo Mo,

supp(r0,lQ,u0,do) C Qi(a) (or C fi2(a)),

and

M0a < 2. (4.14)

Then the (unique) globally defined solution (r,l,u,d) to (4.1) and (1.2) exists. Moreover,

(r, I, u, d) satisfy

d d
—r(x, y, t) + —r(x, y, t) = 0,

—l(x,y,t) - —l(x, y, t) = 0,

a a (4-15)
—u(x,y,t) + —u(x, y, t) = 0,

—d(x,y,t) - —d(x, y, t) = 0

for f > a/2. □

The following is also a trivial consequence of Theorem 4.1.

Corollary 4.2. Assume that (r, I, u, d) is a uniformly bounded solution of (4.1) defined

on {(x,y, t) :t> 0} and that the initial data is nonnegative and has bounded support.

Then, for sufficiently large a, the support is included in the rectangle K(a) = fii(a) D

fi2(a),

supp(r0,l0,u0,d0) <Z K(a), (4-16)

and
supp(r(-, £)) C K(a) + (t, 0),

suppt)) C K(a) + (—t, 0),

suppC K(a) + (0,0,

supp(d(-,-,t)) C K(a) + (0, —t). □

A quick look at the Broadwell equations (4.1) shows that the collision term rl has

a damping effect on both r and Z; similarly ud damps u and d. The global existence

condition (4.14) does not follow from global existence results known in the literature,

even though it neglects these effects.

Proof of Theorem 2.1. We will show that the condition (4.5) implies (4.6). Let N > 0

be such that

0 < u1(x,y,t),u2{x,y,t),u3(x,y,t),u4(x,y,t) < N

for all x, y and for 0 < t < T. Let

Ni(t)d= sup u\(x,y,t) and N4(t)d= sup u4(x,y,t), (418)
x—y—t — a—e x—y=t—a—e
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where e > 0. Observe that N\(t) and N4(t) are nonnegative and Ni(0) = N4(0) = 0.

Since

ui(x,y, t) < u\(x — t,y, 0) + / ^3(2; — t + s, y, s)u4(x — t + s, y, s) ds
Jo

< u\(x — t, y, 0) + TV / u4(x — t + s,y, s) ds,

;° (4.i9)
u4(x,y, t) < U4(x, y +1,0) + / ui(x, y + t — s, s)u2{x, y +1 — s, s) ds

Jo

< u4(x,y + t,0) + N / u\(x,y +1 — s, s) ds
Jo

we obtain (after taking the supremum over the line x — y = t — a — e) that

Ni(t) < N!(0) + N [ 1V4(s)ds (4.20)
Jo

and that

N4(t) < N4{0) + N f Ni(s) ds. (4.21)
Jo

Inequalities (4.20) and (4.21) together with the fact that N\(0) = ^4(0) = 0 imply that

Ni(t) = N4(t) = 0. Thus, supp[(r, I, it, d)(-, •,()] C {{x,y) : x — y — t < a}. To show

that supp[(r, I, u, d)(-, *, t)] C {(x,y) : —a<x — y — t) we notice that the domain of

dependence for points (x,y,t) such that —a < x — y — t lies entirely in the set, where

u\ = u4 = 0. □

We note that the same results are valid for numerical solutions of (1.3) and (3.1). One

obtains that if aM(0) < 2, and if the initial numerical data (2.4) is bounded by M(0)

and supported on either or ^2(0), then the numerical solutions are bounded by

the function

■ ( M(°) 2M(°)
( ) mm \ 1 — tM(0)' 2 — aM(M{0) J '

We also note that the above results can be easily extended to a large class of discrete

velocity models of the Boltzmann equation. One may consider the following class of

systems:

du

ST + V' ■ V«. = <J». < = 1 P. (4.J2,
u(x, 0) = Uo(x),

where V{, i = 1,2,... ,p, are constant vectors in Kn, u = (u\,u2, ■ ■ •, up), x = (x\,x2, ■ ■ ■,

xn), and the collision terms Q1 satisfy

Ql(u) < ^A)kUjUk, i — 1,... ,p,

where A^k are positive constants.
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We need to assume that there exists a unit vector V and a number 1 < s < p such

that

V • Vi < 0 for i = 1,2,..., s — 1 and V • Vi > 0 for i = s, s + 1,... ,p (4-23)

and that

Al]k = 0 if either j < s and k < s or j > s and k > s. (4.24)

Let

c\ min V • Vj and c2 '= min | V • Vj \.
j>s j<s-1

We show the following generalization of Theorem 4.1.

Theorem 4.2. (a) Let u = (ui,u2,.--,up) be a uniformly bounded solution of (4.22)

defined on K2 x [0, T], 0 < uly i = 1,2,,p, and let the support of the initial data u0

be included in ttv(-a) = {x : x • V > —a}, a > 0.

Then at times 0 < t < T

supp[(us,us+i,..., up)(-, -,t)] C Q.v{c\t - a) = ttv(-a) + tcxV. (4.25)

(b) If, in addition,

supp(uo) C f2_v(—a) — {x : x • V < a},

then

supp[(tii,u2,... ,us_i)(-,-,t)} C f2_v(a - c2t) = f2_v(-a) - tc2V. (4.26)

Thus, for t > a/{c\ + c2) the supports in (4.25) and (4.26) are disjoint and u satisfies

f)qi ■
+ V,. VUl < 0. (4.27)

Proof. We will show (a). Without loss of generality we may assume that

f 1 if ? < s and k > s

otherwise. " <4-28)

Let N be such that

0 < Ui,U2, ■ ■ ■, up < N.

Define

Vi^V-V,, i=l,2,...,p.

Similarly to the proof of Theorem 4.1 we let

Ni(t,e)d= sup Ui(x + Vt,t), i = s, s + 1,... ,p, (4.29)
V-x = —(a+e)
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and note that Ni(0,e) = 0, for all e > 0, and that Ni(t,e) < N for all e and 0 < t < T.

Condition (4.24) and (4.28) imply that for i > s

«i(x, t) < Mj(x - Vjt, 0) + nYj [ Uj(x.-Vi(t-qi),qi)dqi (4.30)
Jo

and, thus, that

Ni(t,e) < NS~] ( Nj(qi,£ + (Vi - ci)(t - qi))dq1. (4.31)

3>.J 0

We note that e+(vi — Ci)(t — s) >0 for all e > 0 and, therefore, that Nj(0, £+(vt —ci)t) =

0. We plug the formulas (4.31)j into (4.31)» and obtain that

nn Nk{q2,£+(vi-ci)(t-qi) + (vj-ci)(qi-q2))dq2dqi (4.32)

__

and observe that e + (vi — Ci)(t — qi) + (vj — C\)(qi —q2) > 0 for e > 0 and 0 < q2 < q\ < t.

Again we substitute (4.31)fc into (4.32)^ and obtain

Ni(t,e) < N3 VV V [ [ [ Ni(q3,£ + {vi-ci){t-qi)
0 Jo Jo (4.33)

+ (Vj - Ci)(qi - q2) + (vk ~ Ci)(q2 - q3)) dq3 dq2 dqi

and so on.

Repeating the above procedure inductively we obtain, in the nth step, that Ni (t, e) is

bounded by (p — s + 1)™ terms each less than ^Nn+1tn. Thus

Vi(t,e) < N—r(pNt)n, n = 1,2,.... (4.34)
n\

Letting n —> oo yields that Ni(t,e) = 0 for 0 < t < T and e > 0 which completes the

proof of our result. □

Theorem 4.2 yields results on global existence, stability, and long-time behavior which

generalize the results presented for the 2-D Broadwell model. These generalizations are

straightforward and therefore we do not present them here.
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