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Abstract. A nonlinear geometrically exact inextensible elastica theory is used to

derive a mathematical system which models a clamped circular arch of central angle 2a

under the action of a vertical force field of amplitude P (e.g., gravity). The equilibria of

the arch are studied for various values of a, 0 < a < ir. The existence of a solution of

symmetric form for all fixed values of P and a is proved analytically by arguments based

on variational principles. Numerical solutions are calculated for a variety of choices of

a, and in each case buckling (nonuniqueness) is shown to occur when P is sufficiently

large. In some cases, both symmetric and unsymmetric configurations are found, but

each unsymmetric configuration obtained is found to be an unstable equilibrium, having

energy greater than that of the symmetric configuration. Implications concerning the

relative strengths and weaknesses of the various arches are discussed.

1. Introduction. The purpose of this paper is to discuss the equilibria of an arch

under the action of a vertical force (e.g., gravity). It is assumed that the undeformed arch

is some portion of a circular annulus and that the center-line of this annulus is inexten-

sible. The theory that is derived under these assumptions (cf. Sec. 4) is a geometrically

exact nonlinear theory which leads to the differential equation

d?ib
-tttt + A0cos(V> + 0) + + 9) lo costip + 9) = 0 (1.1)
a9A

with boundary condition

ijj(-a) = ip(a) = 0 (1-2)

(where a is some angle, 0 < a < 7r) and constraints

cos(tp + 9)d6 = 2 sin a, (1.3a)
/J —(

fJ —c

s'm(^ + 9)d9 = 0. (1.3b)
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The dependent variable %p is the change in angle that the normal to the center-line makes

before and after deformation. The parameters // and u> are Lagrange multipliers to be

used to satisfy the constraints (1.3) and

A = g (1-4)

where P is the applied loading, a is the radius of the center-line, E is Young's modulus,

and I is a geometry parameter

"HX^)dA' (L5)

A being the cross section of the arch.

The theory of arches, which is described by Eqs. (1.1), (1.2), and (1.3), is related to

the various theories of rings, which are studied in [1], [2], and [3]. The behavior of the

arch itself has been studied by Stoker [4, pp. 82-91]. The analysis of the arch presents

difficulties, which do not occur for the ring. In the case of the ring the trivial solution

exists for every value of A. This is not true for the arch. Indeed, Eq. (1.1) has the trivial

solution only in the case A = 0, i.e., in the case of zero load. Numerical evidence (cf. Sec.

3) indicates that, like the ring, for all values of a (0 < a < n) there is a critical load at

which the arch buckles. However, unlike the ring, the arch undergoes some deformation

before the critical load is reached. For some values of a this pre-buckling deformation

may be quite large. In other cases it is extremely small.

A second feature that distinguishes the arch from the ring is the existence of unsym-

metric solutions. The arch has unsymmetric solutions, while no unsymmetric solutions

have been found for the ring. These results are discussed in Sec. 3. In Sec. 2 it is shown

that (1.1), (1.2), and (1.3) have a solution for all values of A. These equations are derived

in the appendix (Sec. 4).

2. Existence theory. The mathematical problem considered in this section, which

arises from our physical model, consists of showing the existence of a function ip(0) €

C2{ —a,a) n C[—a,a], and two parameters fi and u> which together satisfy the system

(1.1), (1-2), and (1.3) for every value of A on the interval —a < 0 < a. The proof of

existence is accomplished by a variational approach. We associate with system (1.1),

(1.2), and (1.3) the energy functional

1 fa r
JbP\ = 7 / ip'2 ~ 2X0 sm(ip + 0) d6 + A(sina - a cos a) (2.0)

4 J—a

over the set of functions Q that belong to C1(—a, a) H C[—a, a] and that also satisfy

Eqs. (1.2) and (1.3). Equation (1.1) is then seen to be the Euler equation for J[ip]

with Lagrange multipliers ^ and w arising from the integral constraints (1.3). We also

see that J = 0 when 0 = 0 (which belongs to Q). The technique is to prove that a

solution of the system (1.1), (1.2), and (1.3) exists by building a minimizing sequence of

functions for J[ip\, showing that the minimizing sequence converges to a limit function,

and establishing that this limit function solves the problem.

In fact, this technique can be used to show the existence of an odd function solution;

that is
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Theorem 2.1. For every value of A, there exist an odd function tp £ Q and a real

number fi which solve system (1.1), (1-2), and (1.3) with u = 0.

Proof. Every continuous odd function tp satisfies (1.3b) and if ?/> is also a solution of

(1.1), then uj = 0, since the first three terms of (1.1) are odd functions while the fourth

term, containing u, is an even function. It follows that for odd x/j, (1.1), (1-2), and (1.3)

reduce to the equivalent system below on the interval 0 < 9 < a:

d2il)
+ X9cos(ip + 9) + + 9) = 0 , (2.1a)

V>(0) = — 0 , (2-lb)

t
cos(ip + 6)d9 = sin a , (2-lc)

and the energy functional may be expressed as

/Jo

■m = f
Jo

^ip'2 — X9sin(xp + 9) d6 + A(sina — a cos a) . (2-2)

We shall work with (2.1) and (2.2). First, we choose jsin ^n7r£^| as an orthogonal

basis for £2(0, a). For every integer N > 2, we consider the points bpj = (bi, 62, • • • ,b/v)

in TV-space and with each such point, we associate the function

n=1

We next define

N 9\
ipN(9) = ^6„sin (nn-J, 0 <9<a. (2.3)

Cn(^n) = [ cos(ipN + 9)d9 (2.4)
Jo

and

N_2 <v f-a

HN(bN) = — n2b2n - A / 9sm(ipN + 9)d9 + A(sin
4a Jo

a - a cos a) . (2.5)

We note that -f/jv(byv) = J[ipN] and that Hn(0) = 0. Now, we define M = M(N) to be

the set of points in /V-spacc such that C/v (b,y) = sin a and ///v(by) < 1. A point by

in M will be called a regular interior point if H^(b,y) < 1 and VCjv(bjv) 7^ 0.

We see that Cjv(O) = sina, Hn(0) = 0 < 1, and that

ac
dbj

9Cn

dbj

(bN) = -J sin sin(ipN + 9)d9, j = 1,2,3,... ,N, (2.6)

(0) — — J sin sin 0d0

7T j — or
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for 0 < a < it. Hence, 0 is a regular interior point of M and so M, and indeed the set

of regular interior points in M, is nonempty. From the definition, M is seen to be closed

and the condition that Hn(bjv) < 1 implies that

h2 ^ n2fi2 ^ 2a3|A| + 4a|A|(l + a) + 4a
2^bn<2^nbn< ^2 = R(a, A), (2.8)
n= 1 71= 1

so that, for every fixed a and A, the set M is bounded. Thus, M is a nonempty compact

set. With b;v now being restricted to the set M, we have that ///v(b,y) is a continuous

function on a nonempty compact set and therefore attains its minimum value in M,

which value is nonpositive since Hn(0) = 0. Let /3 v = (Pi,... ,/3yv) be a point at which

Hn attains its minimum and let

N 9

i>N {0) = ^2, fin sin (wtt-J ■ (2.9)
n=1

From (2.4) and (2.5), it follows that if b/v € Int (M),

cIHn(b]v) = —n2bn — A / dcos(ipN + 9) sin (mr— )
^ L2Q Jo V aJ

d9 dbn , (2.10)

and
Niy ^ roc q

dCjv(biv) = — > / sin(ip + 9) sin (nrc— )d9
V aJ .

dbn — 0 . (2.11)

Now, if it should be true that 0N is a regular interior point, then

N r 9

dHN((3n) = ~n2f3n - A f 9cos(ipN + 6>)sin (rar-W
L2« 7o V

r ra ~ / 9 \
dCN(0n) = - / sin^ + 0) sin (n7r— )d9

n=l '■•'O V " ■

eton = 0 , (2.12)

ctf>n = 0 (2.13)

and, therefore, for any value /i;V, we have

N r 9^ /~q __ / 9 \
dHN + nNdCu = — n2/Jn - A / Ocos(ipN + 9) sin (mr— )

^ L2« 7o v
/*a ~ / $ \

—/iN J sm(ipN + 0) sin ynn—Jd9

— )d9
J

dbn = 0

(2.14)

The assumption that (3N is a regular interior point also implies that there exists an

integer k, k = k(N), 1 < k < N, such that s'm(ipN + 6>)sin ̂ kn^jd9 ^ 0 (cf. (2.6)).

We may therefore choose

id
2a k2pk - \f° 9 cos (ipN + 9) sin (kn^j

sin(ipN + 9) sin [kn^dQ

- )d9

(2.15)
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and then, from the independence of the N — 1 variables dbn, rt / k. it would follow that,

for all n = 1,2,3,... ,N,

2 /»q ^ fa ^

—n2pn — A / Ocos(ipN + 6) sin (mr — )d6 — nN / sin(^N + 0)sin (nix— )dd = 0 ,
2 a J 0 V aJ J0 V a)

(2.16)
and also that

CN(0N) = sina . (2-17)

Equations (2.16), (2.17) comprise a system of N + 1 equations that /3i,/?2, • • • ,Pn and

fiN must satisfy if the condition that VCn(Pn) ^ 0 holds.

We shall now prove the following:

Lemma 2.1. There exists a monotonic increasing subsequence Nj and a fixed integer k,

independent of j, such that if one denotes

PN] = (j3i(Nj),fh(Nj),... ^nANj)) , (2.18)

and
"s . 6.

(0) = E Pn(Nj) sm [mr-J , (2.19)
71=1

then, for all j sufficiently large,

fa ~ / f) \
/ sm(xpN + 9) sin ( kn— )d9 ^ 0. (2.20)

Jo 3 \ a)

Proof. For convenience, we define (3n(N) — 0 for n > N. Thus,

oo r\

Vv(0) = ^2(3n(N)sm (nn-j. (2.21)
71= 1

Prom (2.8), we see that, for fixed a and A,

OO OO

E ^ E n^n(N) < R(a, A) . (2.22)
n—1 n— 1

Hence, {f3\ (N)}^=1 is a sequence that is bounded from above and below. Therefore,

there exists a subsequence Nj (j — 1,2,3,...) such that (3\(Nj) —* j3{ as j —> oo. Now,

foiNj) is also bounded from above and below and so there exists a subsequence Nj of

Nj such that (i-iiN'j) —>> /3£ as j —> oo and it follows also that Pi(Nj) —+/3f as j —> oo.

In a similar manner, we construct NJ1 such that /3P(N™) —> (3* as j —+ oo for p < m.

We now consider the subsequence Nj — Nj and we see that /3p(Nj) —» /3* for all p as

j —> oo. We next define
OO Q

i>(e) = E & sin {n7Ta) (2'23)
n=l
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and we claim that ipN, (6) —> ip*(0) uniformly on the interval 0 < 6 < a as j —> oo. The

proof of this claim is established as follows:

L oo

wN. -in<£i/w-)-/£i + E (i/w-)i + ki)
n=1

L

<^\MNj)-p*\ +
n=1

/ oo y/2

• (2-24)

\l/2 ( oo vl/2"

* |2 \^ n2|^„(iVj)|2 j +1 ^ n2|/3,
, n=L+l / \n=L+l

Tl'
\n=L+l

<^|/3„(ATj)-/3;|+2[JR(a,A)ll/2

71=1

OO -j

E ^
n=L+l

1/2

By first choosing L sufficiently large and then choosing j sufficiently large relative to L,

we can make the right-hand side of (2.24) as small as desired.

Since the convergence is uniform, the limit function ip*(0) is continuous and

lim
j—> oo

Cnj(Pn )= [ cos(ip* + 6)d6 = sina . (2.25)
J 3 Jo

Equation (2.25) implies that i[>* + 0 ^ ran (to integer) and hence sin(^* + 0) ^ 0.

Therefore, there exists an integer k such that

/a / 0 \sin ykn—J sin(tfi* + 0)d0 ^ 0 , (2.26)

and, accordingly, for all j sufficiently large,

J sin r—^ sm{ipN^ + 0)d6 0. (2.27)

We have established that (2.15) and (2.16) hold when N — Nj and j is sufficiently

large. Letting j —> oo in (2.15) and (2.16) yields

)d0

and

2i&Pk - A fo ^cos(V* + 0) sin (fcTrf V

H* = t^, (2.28)
sm(ip* + 0) sin (kn^JdO

—n2(3*—\ [ 9cos(tp* + 0) sin (nn— )d0
2 a J0 V a)

ra r\

— fi* J sin^* + 0) sin ̂ n7r—Jd# = 0 , (2.29)
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for every positive integer n. In addition, ipN (0) is a minimizing function for the functional

J over Q(Nj), where Q(Nj) is the set of functions %pN (cf. (2.3)) with a coefficient vector

b/Vj € M(Nj). Therefore, tp* minimizes J over Q* which is the subset of Ll2(—a, a) n

C[—a, a] containing odd functions that satisfy (2.1b) and (2.1c) or, equivalently, (1.2)

and (1.3a).

There remains to prove that ip* is twice differentiate on (0, a) and is a solution of

(2.1a). This will now be done with the aid of a well-known Green's function:

G{6,4>) — — 4>6 - min(0,9), 0<4>,0<a. (2.30)
a

(This Green's function vanishes at the endpoints and satisfies the equation

d2

d92

We consider the integral operator

G(6,<t>) = W-4>).) (2.31)

m = r G(0, <t>)F(<j>, i)(<f>))d<f> , (2.32)
J o

where

F(0, ip((/>)) = — Ai^cos (ip(<f>) + <j)\ - /i* sin + (p\ . (2.33)

If we define

h(o)=r(o)-i[r], (2.34)

then, for every n = 1,2,3,..., we discover that

J sin (n-rr—^h(d)dd = ^/3*—^ 2 J 9cos(ip* + 6) sin (hit—^JdO

fa / 0 \
J + 0) sin \^rnr—Jd9 = 0 (2.35)

H*a2 ra

(cf. (2.29)) and thus h{6) = 0 so that

r(0) = i[r\. (2.36)

Equation (2.36) implies that tp* is twice differentiate and satisfies (2.1a) with n = fi*.

This completes the proof of Theorem 2.1.

We note that for A ^ 0, it is clear that ip*(8) ^ 0 since ip(0) = 0 is not a solution of

(2.1a) for any value of fi.

We now redirect our attention to system (1.1), (1-2), and (1.3) and the functional J

as given in (2.0) over the interval —a < 9 < a. In a manner similar to the proof of

Theorem 2.1, it is possible to prove the following:
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Theorem 2.2. For every value of A, there exist a function ip £ Q and a pair of real

numbers that solve system (1.1), (1-2), and (1.3), and the function ip also minimizes

J[ip\ over Q.

The solution ip of (1.1), (1-2), and (1.3) that is obtained in the proof of Theorem (2.2)

minimizes J over all the functions in Q, as opposed to the solution tp of Theorem 2.1

that minimizes J over the odd functions in Q. In every case treated numerically, the

two solutions coincided; that is, the odd solution of Theorem 2.1 was also the solution of

Theorem 2.2. In several cases, a non-odd solution of system (2.1) was found numerically,

in addition to the odd solution. However, in each of these cases, the non-odd solution

had a larger energy J[ip]. The questions as to whether the odd solution of the system is

always the minimum energy solution and as to which values of the parameters A, /x, and

lj yield a unique solution are still under investigation.

3. Numerical solutions. Equation (1.1) with boundary conditions (1.2) was solved

numerically for both the case of symmetric deformation (u> — 0) and the case of unsym-

metric deformation (u> ̂  0). In both cases the boundary value problem was solved by

the "shooting method" (cf. [5]). The parameter fi, and in the unsymmetric case lo, was

determined by Newton's Method to satisfy the constraints (1.3).

The problem was solved for a variety of choices of a with 0 < a < tt. Once 'tp is

found the actual shape of the arch can be determined by quadrature (cf. Sec. 4). We will

describe the results for three representative cases, in particular, a = n/4, a = 7r/2, and

a — 3n/4. In Figures 3.1a, b, and c the solid curves are a plot of /i versus A for the case

ui = 0, i.e., the symmetric case. The dashed curves in the figures are the projection of the

A,/x,o; curve onto the (A,/i)-plane. Thus the dashed curve corresponds to unsymmetric

solutions. The small circles on the diagrams indicate bifurcation points. Any point of

intersection that is not enclosed in a circle is not a bifurcation point. The numbers on

the diagrams in Figures 3.1a, b, and c refer to Figures 3.2, 3.3, and 3.4. In Figures 3.2,

3.3, and 3.4 (see pp. 768-770) we have drawn equilibrium positions for the arch under

various loads. In the figures the loads are acting in the direction of the negative y axis.

For example, (1) is the undeformed arch, i.e., it corresponds to A = 0, /z = 0, w = 0. The

values of the parameters for the states (l)-(9) are given in Table 3.1 (see p. 768).

Once problem (1.1)—(1.3) was solved numerically there was no difficulty in calculating

the corresponding energy. In none of the cases that were studied was the unsymmetric

solution the solution of minimum energy. However, if we assume the arch always takes

up the position of minimum energy, buckling occurred in every case. The buckling was

always from one symmetric state to another symmetric state. In particular, consider the

case of decreasing A for the three different cases described in Figure 3.1. Assuming the

arch takes up the position of minimum energy, the deformation is continuous from state

(1) to state (2), the arch jumps from state (2) to state (3) (buckling) and for smaller

values of A the deformation is again continuous, i.e., the arch deforms continuously from

state (3) to state (4) and beyond. Thus in Figures 3.2 through 3.4, cases (l)-(4) are

stable equilibria and (5)-(9) are unstable equilibria.

One feature that stands out in the behavior is the relative strength and weakness of the

various arches. The buckling loads for the three different cases are (a = 7r/4, A « —18),
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T M

10

Fig. 3.1

(a = 7t/2,A « —5), and (a = 37r/4, A « —3.5). Thus the buckling load for an arch

that is a quarter of a circle is much larger than either the half circle or the arch that

is three-quarters of a circle. In addition, in the case a = 37r/4 the arch undergoes a

large deformation even before the buckling load is reached. This arch is very flexible. It

would be a poor choice for use in a structure since the relative flexibility would have to

be compensated for by stiffer (and probably heavier) construction.

Because of the large deformation that was encountered in the case a = 37r/4 under

relatively light loads, it was of interest to look at the extreme case a — n. This would

correspond to the case of a ring welded to the top of a column. In Figure 3.5 (see p. 771)

a couple of symmetric equilibria and an unsymmetric equilibrium are drawn. As is to be

expected, small values of A lead to large deformations.



768 R. W. DICKEY and JOSEPH J. ROSEMAN

(1)

a = 7r/4

Fig. 3.2

In a couple of the equilibria (cf. Fig. (3.4) and Fig. (3.5)) the arch has actually passed

through itself. In reality this would not happen and the actual equilibria would have be

determined by analyzing the contact problem. This type of analysis has been done in

the case of the circular ring under normal pressure (cf. [6]).

1

2

3

4

5

6

7

= 7r/4

-18

-18

-30

-20

-40

-15

-70

M

16.55

16.69

6.79

32.84

43.72

38.10

33.87

33.47

w

-2.6

-2.7

a = it/2

-5

-10

-2.2

-9

-5

3.30

5.93

2.80

9.5

11.30

6.65

9.37

7.17 .55

a = 37t/4

-3.5

-3.5

-8.0

-1.5

-3.0

-5.6

-3.0

-8.0

.41

3.95

2.87

5.50

5.55

1.90

4.90

1.52

w

.37

2.87

TABLE 3.1
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(1)

(2) (3)

(4) (5)

(6) (7)

(8) (9)

a — 7r/2

Fig. 3.3
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(1)

(2) (3)

(4) (5)

(6) (7)

(8) (9)

a = 3n/4

Fig. 3.4
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A = - 2

Fig. 3.5

4. Appendix. Derivation of the equations. We consider a portion of a circular

ring whose radius, measured to the center-line, is a. Before deformation the position of

a point or the center-line is given by

R — aer (4-1)

(er and eg will denote unit vectors in polar coordinates). After deformation this point

has a new position

R* = (a + w)er + uee. (4.2)

The functions w and u depend on the polar angle 0 where —a < 0 < a (0<a<7r).
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Before deformation, the position of a point off the center-line of the arch can be written

X = (a — r)er = R — rer. (4.3)

In order to describe the position of the point after deformation, we will use the assump-

tions von Karman introduced in his study of plates and shells (cf. [7]). In particular, we

assume (i) a normal to the center-line before deformation remains normal after deforma-

tion and (ii) a point at a distance r from the center-line before deformation remains a

distance r after deformation. Thus, after deformation, the point has a new position

X* = (a + w)er + ueg + rfi (4-4)

where n is the principal normal to the deformed center-line.

For small strains the strain energy of the arch is given by

LFJ*—e adOdA (4.5)

where A is the area of a cross section of an element of the arch, E is the Young's Modulus,

and £ is the circumferential strain in the arch. The strain energy is dependent on the

single strain e since the von Karman assumptions guarantee that there are no radial or

shear strains. It is convenient to introduce a variable ip by

n = —(cos iper + s'mipeg). (4.6)

Thus ip measures the change in angle of the normal to the center-line after deformation.

We will assume the arch is clamped at both ends. Therefore,

ip(ct) = ip(—a) = 0. (4-7)

The theory of arches is a geometrically exact theory in which it is assumed that the

strain in the center-line is zero. Under these assumptions, it is shown in [1] that the

circumferential strain is given by

e = —if/, (4.8)
a — r

where the prime denotes differentiation with respect to 6. It is also shown in [1] that the

displacements w and u are related to ip by

w' — u
= — smip, (4.9a)

a

w + u' ,
1 H = cos ip. (4.9b)

a

Combining (4.5) and (4.8) we find that the strain energy is given by

/a FT— Wfade (4.10)
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when the constant I is given by (1.5). It will be assumed that the arch is acted on by a

constant force P in the direction of the negative x axis. Thus the force can be written

F = P(cos8er — s'mOee) = Pi (4-11)

(i is the unit vector in the x direction). In the figures in Sec. 3 the arch has been

rotated so that the force acts downwards. However, for computational purposes the

above formulation is more convenient. In any case the work done by the force in (4.11)

W — — f F ■ (wer + ueg)adO (4-12)
J —ex.

r
= — I P(vu cos 6 — us\nO)adQ.

J—a

In order to rewrite (4.12) in terms of tp it is necessary to solve Eqs. (4.9) with the

boundary conditions

w(—a) — w(a) = 0, (4.13a)

u(—a) — u(a) = 0. (4.13b)

Since the arch is clamped, ip satisfies the boundary condition (1.2).

The equations (4.9) imply that w satisfies the second-order equation

Uj,f _|_ qjj

 =—1 + cos ■i/'— cos (4-14)
a

The general solution (4.14) is

w

a
= A cos 9 + B sin 6 (415)

f9 d
+ / sin(0 — £)(—1 + cosip — sin ■*/>)(/£

J-oc

where A and B are constants to be determined by the boundary conditions. After

simplification, Eq. (4.15) can be written

w
— = A cos 9 + B sin 9 + cos(a + 9) — 1 (4.16)
a

/6 r6cos (ip + £)d£ — cos 6 / sin(^ + £)d£.
-ot J—a

The boundary conditions (4.13a) lead to the equations

Acosa — Bsina = 0, (4.17a)

A cos a + B sin a + cos 2a — 1 (4.17b)

pa pot

-j-sino; / cos(^ + £)<i£ — cos a / sin(^ + £)d£ = 0.
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Assuming a ^ 7t/2 and a ^ 7r we find

—7 | 2 sin2 a — sin a [ cos(ip + £)(!£ (4.18a)
os(a) v J-a

+ cos ot J sin(il> + ,

A — , x
2cos(a)

B = , (2 sin2 q — sin a [ cos(ifr + £)d£ (4.18b)
2 sin(a) V J_a

+ cos a J s'm(ip + £)d(^j .

It is a consequence of (4.9a) that

— =—As'm9 + B cos6 — sin(a + 9) (4-19)
a

n6 rO

+ cos8 / cos(^ + £)d£ + sin 6* / sin(ip + £)d£.
J—a J—a

Using the same argument as above, the boundary conditions (4.13b) imply that

A = — ( — sin(2a) + cosa [ cos(ip + £)d£ (4.20a)
2 sin (a) V J_a

+ sina J sin {ip + £)d£

= —7—r [ sin 2a — cos ot f cos(t/> + £W£ (4.20b)
2 cos(a) V J-a

[ sin (ip + £)d£
J —a /

- sin a

(a ^ 7r/2, a ^ 7r). The values given in (4.18) and (4.20) for the constants A and B must

agree. There is no difficulty in showing that a necessary and sufficient condition for this

agreement is that the conditions (1.3) be satisfied. The conditions (1.3) are constraints

on the variational problem that guarantee that the displacements satisfy the appropriate

boundary conditions. In the above remarks we have assumed that « / n/2 and a ^ ir.

However, conditions (1.3) are also correct in these special cases.

An elementary calculation (cf. (4.16) and (4.19)) shows that

w cos t) — u sin #
  — A + cos a —

f8
/ sin(V> + £)<&;• (4-21)

J a

The only term in (4.21) that will make a contribution to the Euler equation for the

variational problem is the integral term. Therefore, it suffices to choose the work (cf.
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(4.12)) to be

sina2dO (4.22)

/a nOc

sin(tp + 9)d9 — a2 / P0sm(ip + 9)d9.
-a. J —a

Standard arguments (cf. [8]) imply that the equilibria of the arch are the stationary

values of £ — W subject to the constraints (1.3) and the boundary conditions (1.2).

Equivalently, the equilibrium equation is the Euler equation for the integral

/

\EIt^ 2(V'') - Pa9sin(9 + 0 + Ml COBW + *) + M2sin(V> + 9) jVdS. (4-23)

Equation (1.1) is a consequence of (4.23).
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