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Abstract. We find and classify all first-order conservation laws in the Stroh formal-

ism. All possible non-semisimple degeneracies are considered. The laws are found to

depend on three arbitrary analytic functions. In some instances, there is an "extra"

law which is quadratic in Vu. Separable and inseparable canonical forms for the stored

energy function are given for each type of degeneracy and they are used to compute the

conservation laws. The existence of a real Stroh eigenvector is found to be a necessary

and sufficient condition for separability. The laws themselves are stated in terms of the

Stroh eigenvectors.

1. Introduction. Conservation laws play a major role in determining the properties

of solutions to a system of partial differential equations. This is especially true in the

theory of elasticity, where each conservation law corresponds to a "path-independent"

integral. The "energy-momentum" tensor [1, 1951] that corresponds with Rice's "J-

integral" [2, 1968] is the best-known example. It has been used to find energy release

rates and stress intensity factors associated with a crack tip. In 1972, Knowles and

Sternberg [3] used a restricted version of Noether's theorem [4], [5] to compute addi-

tional conservation laws for elasticity. Budiansky and Rice [6] gave energy release rate

interpretations of these new laws. Noting that the version of Noether's theorem used in

[3] would not yield all possible laws, Edelen [7] proposed in 1981 that "• • • a detailed cat-

aloging of all invariance transformations and conservation laws in linear elasticity would

seem a worthy task." Since then, Olver [8, 1984], [9, 1984], and [11, 1988] classified all

conservation laws depending on up to one derivative for homogeneous planar bodies and

for three-dimensional isotropic bodies. Caviglia and Morro [12, 1988] classified all laws

that exist for any three-dimensional anisotropic elastic body. (But certain materials,

such as a transversely isotropic one, do have additional laws [16, Chapter 6].) The Stroh

formalism, [13], [14], and [15], deals with planar deformations of a three-dimensional

body. Yeh, Shu, and Wu [17, 1993] classified the conservation laws for the cases when

the material has three distinct Stroh eigenvalues and when the material is isotropic.
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Hatfield [16, 1994] independently obtained these results as well as results for all possible

degeneracies of the material. An isotropic material, which is degenerate, easily decom-

poses into a planar and anti-planar part and is therefore far easier to deal with than a

general degenerate anisotropic material. These degeneracies are worthy of analysis since

recent work by Ting [18] shows that they do in fact occur in real materials. The results

in [16] on the Stroh formalism are summarized here and the laws are given explicitly in

terms of the generalized Stroh eigenvectors. An extension of Olver's [19] canonical forms

for the Stroh formalism and an interesting condition for a separable form are given as

well.

2. The Stroh formalism. We are concerned here with the linear theory of hyper-

elasticity (see [20]). We let {x1} denote the reference variables and {u-7} denote the

deformation variables. The equilibrium equations of elasticity arise from the variational

problem (the summation convention will be in force except when specified)

/[ul = L ClJkl' dxi ' d^dx (2-1)

where the elasticity tensor Cijki satisfies the symmetries

Cijki Cm — Cklij (2.2)

as well as the hypothesis of positive definiteness

Cijkl ' * &kl ̂  0 (2.3)

for any symmetric tensor e ^ 0.

The Euler-Lagrange equations for (2.1), which we will also refer to as the equilibrium

equations, are

Cijki • u-ji = 0 (2.4)

where we have used the notation u[= (d2 uh) / (dxi dxl). We will also denote uf =

duk/dxl. This notation will be used throughout.

With the aid of the stress tensor aij = Cijki • ui > (2-4) can be written as

Div(cr) = Dj^ij) = 0 (2.5)

where Dj denotes the taking of the total derivative (see [21]). Equation (2.5) is an

example of a conservation law of (2.4). In general, a conservation is a divergence that

vanishes on solutions of the system.

Definition 2.1. Given the system of fcth-order partial differential equations Al[u] =

0, a conservation law is a p-tuple of smooth functions Pl [u] such that

Div(P) = Dt Pl [u] = 0

whenever u = /(x) is a solution to A'[u] = 0.
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In the Stroh formalism we have ul3 = 0. We will restrict our attention to this case. We

will interchangeably use the notations {x,y) = (xl,x2) G R2 and (u,v,w) = (ul,u2,v?) G

R3. Boldface symbols will denote vectors. By virtue of (2.5), we know that for any u

that satisfies (2.4), there exist three stress functions $ = (01(x), </>2(x), </>3(x)) such that

d<t>1 d<j)1

= "a = w (26)

We define the following 3x3 matrices (see, for example, [22] or [23]):

Q Qij Cjijij

T = TlJ= Ci2j 2, (2.7)

R Rij Cilj2'

We note that Q and T are symmetric and positive definite. We define the following 6x6

matrices:
~T o"

M2 =Mi =
-RT I

-Q 0 R I (2.8)

We define Y = [^] £ R6. We can then express the relations (2.6) as

dY dY
Ul. - = M2 ■ w (2.9)

Noting that is invertible, we multiply (2.9) by M2 1 to get

dY dY

dx dy
n3£ - ? (2-10)

where
rr— 1 p'F qn—1

r , r— 1 , r -L IX JL

N - Mo Mi = (2.11)RT~1Rt-Q -RT-1

This matrix N is the same as N(fi) in Eq. (5.11) of [22] and it is called the fundamental

elasticity tensor. It will be shown that the Jordan structure of this matrix essentially

determines the nature of the conservation laws.

The characteristic polynomial of N, s(A), is a sixth-degree polynomial known as the

"Stroh sextic". It is shown in [13] that since the strain energy is positive definite, so

is s(A). Hence, its roots come in three complex conjugate pairs pa = pa\ + ipa2 where

a — 1,..., 6; pa = Pa+3 and Im{j>a} = pa2 > 0 if a = 1,2,3. The associated eigenvectors

are Va £ C6. If the matrix N is not semisimple, the material is said to be degenerate.

An example of a degenerate material is an isotropic one. In this case the Stroh sextic has

one triple pair of roots at p = ±i and the eigenvectors of N span only a four-dimensional

subspace of C6.

If the material is not degenerate, then we have the following general solution to (2.10)

[13]:
3

Y = J2va.fa(za)+V-a.JM (2.12)
a—I
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where each fa is an arbitrary complex-analytic function of its argument za = x+pay. The

functions fa are called the Stroh functions. If we write Va = [gQ] with AQ,Ba E C3,

the vectors AQ are called the Stroh eigenvectors. It is easy to show that they satisfy (no

sum):

(Q + pa(R + RT) + p^T) AQ = 0 (2-13)

where pa is a root of the Stroh sextic. The vectors Ba satisfy

Ba = (RT +paT)Aa = (Q+paR)Aa. (2-14)
Pa

If we define the matrices A = [Ai, A2, A3] and B — [61,62,63], the solution (2.12)

can be written as

u — Af -f- Af,
— (2-15)

$ = Bf + Bf

where

"/i(*i)

f= f2{z2)

It is not hard to see that if (2.13) and (2.14) hold, then

W„ -
6„

is a left eigenvector of N with eigenvalue pa (by "left eigenvector" we mean that TV1 WQ =

p0Wa). If the eigenvectors are suitably normalized, this leads to the following relations

due to Stroh ([14] and [15]):
AtB + BtA = I,

T_ (2.16)A B + BtA = 0.

Applying this to (2.15) we see that

f = STu + ^T$. (2.17)

We now give the analogous relations for the case when TV is not semisimple. For a

discussion of this, see [24]. Suppose there are only two independent pairs of eigenvectors

V1,V2,V1,V2 with two generalized eigenvectors Vf and Vf such that TVVf =pjVf +

V1. We denote

"Afvf =

The generalized Stroh eigenvector Af satisfies

Bf

(Q+p1(R + RT)+p21T)Af = (~Q-PlT )Al (2.18)
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We also have

Bf = (PlT + Rt)Af + TAi = - (—Q + r) Af + ^QAX. (2.19)
\P i / Pi

The choice Af is not determined by (2.18). However, for reasons that will appear shortly,

(Af )TBf = 0. (2.20)

we will choose Af so that

The general solution of (2.10) is given by

u = i4ff + i4ft,

$ = Bff + Bft,
(2.21)

where

ft =
fi(zi)

h{z2)
A — [Af, Ai, A2], B=[Bf,B1,B2],

If we define the matrices = [Ai, Af, A2]T, — [Bj , Bf, B2]T. then the analogue

of (2.16), which holds because of (2.20), is

A*B + B*A = I,
+- ♦- (2-22)

A*B + B*A = 0.

The analogue of (2.17) is now

ft=Stu + ^4t$. (2.23)

Suppose there is only one eigenvalue p = p\ + ip2, p2 >0 and one pair of independent

eigenvectors V and V with the generalized eigenvectors V* and V## such that A'V* =

pV* + V and + V^. Similar to the above, we write

y##
A##

B##

etc. We see that (2.13), (2.14) and (2.18), (2.19) hold for V and V# respectively. We

also have

(Q + p(R + Rt) + p2T) A** =(-Q-pt) A*- \QA (2.24)
\r / P2

and

B** = (PT + RT)A**+ TA*. (2.25)

We will choose A* and A** so that simultaneously

(b##)ta# + (A##)TB# = 0,

(b##)ta## = o. (2-26)
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The general solution of (2.10) is given by

u = Aft + Aft,

where

ft

+   (2.27)$ = Bft + Bft,

/(*)
9(z) + ^zf'(z)

Hz) + ± zg'(z) - i(z*f"(z)+2zf(z))]
2p2

A = [A##,A#,A], B = [B##,B#,B],

Similar to the previous case, we define

= [A, A*, A##]t, B] = [B, B#, B##]t

and we have (provided we assure (2.26))

AiB + B*A = I,

A^B + B^A = 0.
(2.28)

This yields
ft = SW At$. (2.29)

We make an observation about the degenerate cases. In the semisimple case, define

H = 2iAAT,

L = -2i BBT, (2.30)

S = i(2ABT - I).

These are real-valued and are called the Barnett-Lothe tensors [25]. In [25] it is shown

that these tensors can be computed directly from the fundamental elasticity tensor using

integrals and are well defined even for degenerate materials. As pointed out by Ting [24],

we may alternatively define these tensors for degenerate material by using the generalized

Stroh eigenvectors. If we choose the generalized Stroh eigenvectors to satisfy (2.20) or

(2.26), we have

H = 2i AA\

L=-2iBB\ (2.31)

S = i(2ABf - I).

3. Canonical forms. The elastic tensor has (in general) 21 components. If the

material possesses elastic symmetry and the reference coordinates are taken in the cor-

rect frame relative to the symmetry, the elastic tensor simplifies. That is, if one makes

the right orthogonal change of coordinates, the elastic tensor transforms into one of the

twelve standard canonical forms of crystal symmetry. We wish to find canonical forms
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appropriate to the Stroh formalism. Rather than restricting our attention strictly to or-

thogonal changes of coordinates, we will widen the class of allowed changes of variables to

the full linear group. Lodge [26, 1955] first explored this idea for fully three-dimensional

elasticity. Since then, Olver gave canonical forms for planar elasticity and showed that

all anisotropic materials are equivalent to an orthotropic material [27] (see also [28] and

[29]). In [19], Olver treated planar deformations of three-dimensional bodies and gave

canonical forms for separable and inseparable materials. In [16], these forms were ex-

tended to cover the various possible non-semisimple degeneracies. We note that we no

longer treat u as a vector field on R3 such that du/dx3 = 0, but instead as a function

u : R2 —> R3 (compare [30]). This has the advantage of simplifying things even further

without losing any generality when it comes to conservation laws (the disadvantage being

that the transformations will have no obvious physical interpretation).

Consider the integral (2.1) under the effects of a change of variables (x, u) = (Lx, 5u)

where L G GL(2,R) and S € GL(3,R). We have

I = f W(Vu)dx — [ W (S'VuL^1)\L\dx.

This implies W —> CiQj/35ir5js(L_1)a7(L_1)/3i •u^-us6- \L\ where the Greek indices run

from 1 to 2 and the Latin from 1 to 3.

At this point, it is useful to make a simplification. We pass to the symbol S —

CiajfjU1^xaxP and look for a canonical form for it. This has the advantage that in-

stead of thinking liCr-ySs —> CiajpSirSSj{L~1)a7(L_1)/3g|L|", we may think uCriS6

CiajpSirSsjLa-fLps". There is of course a concern here: "Does a canonical form for

the symbol give a canonical form for W?" This is seemingly a serious problem since

the symbol does not uniquely determine W. However, the following lemma relieves our

concern.

Lemma 3.1. [31, Proposition 5] Let W\ and W2 be two stored energy functions (which

are quadratic in Vu). Then they determine the same Euler-Lagrange equations if and

only if they have the same symbol.

We will define the Stroh eigenvectors to be vectors that satisfy (2.13). The effect of

the above type of transformation on the eigenvectors is that they transform with S~1.

The Stroh eigenvalues will transform as linear fractional transformations given by L.

Consequently, if we wish to show that certain Stroh eigenvectors are independent, it is

sufficient to show that they are for the canonical forms.

Suppose there exists a transformation such that the symbol S takes the form

S = C^as0u'yu6xo'x13 + q(x, y) • w2

where q is binary quadratic and the Greek indices run from 1 to 2. Then we say that

the symbol is separable. We note that if a material is separable, then the equilibrium

equations decouple into a planar part and an anti-planar part. Any material with x3 = 0

as a plane of symmetry is trivially separable. Whether or not the symbol is separable

will be of critical importance for degenerate materials.
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Proposition 3.2. The symbol is separable if and only if one of the Stroh eigenvectors

is a complex multiple of a real vector.

Proof. If the symbol is separable, then clearly A = [o o 1 ]T will be a Stroh eigenvector

of the separated form. After transforming back to the original form, A will be trans-

formed to a real eigenvector. Suppose that A £ R,! is a Stroh eigenvector with eigenvalue

p = pi + ip2 with P2 7= 0. Then consideration of the real and imaginary parts of (2.13)

shows that QA,TA, and (R + RT)A all lie in the same one-dimensional subspace of

R3. If we let si and S2 be two independent vectors spanning the complement of that

subspace, then the transformation given by the matrix S = [st s2 a] will separate S. □

The following canonical forms are a refinement of Olver's [19]. The canonical form

depends on whether or not the symbol is separable and on the Jordan structure of the

matrix N. For proofs, see [19] and [16]. The Greek letters represent constants that

depend on the elastic constants.

• Semisimple, separable:

S = u2x2 + au2y2 + 2fluvxy + av2x2 + v2y2 + w2(r)x2 + 2Sxy + ey2), 0 < 1 < a

• Semisimple, inseparable:

S = u2x2 + au2y2 + 2f3uvxy + av2x2 + v2y2

+ 27 uwx2 + 2 Suwy2 + 2 evwx2 + 2 6vwy2 + pw2x2 + aw2y2

• Non-semisimple, separable:

S = u2x2 + au2y2 + 2(1 — a)uvxy + av2x2 + v2y2 + w2{^x2 + 2 Sxy + ey2)

• Non-semisimple, inseparable:

Either

S = u2x2 + au2y2 + 2(1 — a)uvxy + av2x2 + v2y2

+ 27 uwx2 + 27 uwy2 + 2evwx2 + 2 evwy2 + (a + 2 )w2x2 + aw2y2

or

S = u2x2 + u2y2 + 2f3uvxy + v2x2 + v2y2

1 1 (3-2)
+ 2 (6 + l)uwx2 + 2 Suwy2 + —zw2x2 + —5w2y2

If the matrix N is completely irreducible, then the symbol is inseparable and for (3.1)

we have
e2

a = and 7 = 0

and for (3.2)

4 = 4
Lemma 3.3. If the symbol is inseparable and the Stroh sextic has repeated eigenvalues,

the matrix N is not semisimple. Furthermore, if the symbol is inseparable and there

is only one tripled pair of complex-conjugate eigenvalues, the matrix N is completely

irreducible.

COROLLARY 3.4. If the matrix N is semisimple, then the Stroh eigenvectors correspond-

ing to the three roots with positive (resp., negative) imaginary parts are independent.
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4. Conservation laws. We consider now the problem of finding conservation laws.

We note that we are only concerned with first-order conservation laws. That is, the

components of the law will be allowed to depend on x, u, and Vu. We also note that

there are certain laws that reveal no important information about the system.

Definition 4.1. Let Pa[u] form the components of a conservation law of the system

of p.d.e.

A'3[u] = 0 (3 — 1,... ,m. (4.1)

The conservation law is called trivial if either

1) Pa[u] = 0, whenever u = f(x) is a solution to (4.1).

2) DaPa = 0, for all u = f(x).

A conservation law satisfying the first condition will be called a trivial law of the first

kind, and a conservation law satisfying the second condition will be called a trivial law

of the second kind. Trivial laws give an equivalence relation on conservation laws. We

will classify laws only up to this equivalence relation.

Definition 4.2. A conservation law of (4.1) is said to be in characteristic form if

Da(Pa) = f i3[u] • A'3[u].

The m-tuple of functions "J*3 is called the characteristic of the conservation law. It

forms the components of the generator of the variational symmetry which corresponds

via Noether's theorem to the conservation law. An important fact is that if the system

is totally nondegenerate [21], then each of its conservation laws is equivalent to a law

that is in characteristic form. In the case of linear elasticity, the equilibrium equations

are strongly elliptic and therefore the nondegeneracy conditions are met.

Let P' (x,u,Vu) be the components of a conservation law of (2.4) in characteristic

form. Then we have

f)pi ptpi a pi

^ + + = <42)

Since the L.H.S. is linear in second derivatives, so is the R.H.S. Consequently, we may

assume that $k = ^(x, u, Vu). It is then immediately clear from examining the second

derivative terms that

dP1 dPJ Tk . . .

+ ~du^ ~ ' J + k^si)- (4-3)
3 1

Equation (4.3) proves the following critical theorem.

Theorem 4.3. [8, Prop. 4.4] If P"(x,u,Vu) form the components of a conservation

law of (2.5) with characteristic $k(x, u, Vu), then for each fixed xo,Uq, the p-tuple

PQ(x0,u0,Vu) is a conservation law with characteristic \l/fc(xo, uo, Vu).

The great value of this result is that it allows us to break the finding of all first-order

laws into two steps. First, using (4.3), we find all laws that depend on Vu only. Once

we know the general form of these laws, we allow it to depend on x and u and insert

it into (4.2) and solve it. Along the way, we will be aided by two lemmas that help us

to recognize the form of a trivial law of the second kind and a Betti-reciprocity law. A



748 GARY A. HATFIELD

Betti-reciprocity law is one that arises due to Betti's reciprocal theorem [20, Sec. 30]. It

takes the explicit form

P = Ciajf3 ' Up • U Cialp ' Up • U

where u is any other solution of the equilibrium equations.

Lemma 4.4. Suppose that D\Pl + D^P2 = 0. That is, Pa[u] form the components of

a trivial law of the second kind when there are two independent variables. Then there is

a scalar-valued function Q[u] such that

P1 = -D2Q,

P2 = DlQ.

Lemma 4.5. [11, Proposition 1] Suppose Pa[u] form the components of the conservation

law of (2.5) such that the functions P" [u] are linear in u and its derivatives. Then it is

equivalent to a Betti-reciprocity law.

Let P"(Vu) be a conservation law that is independent of x and u. Equation (4.3)

can be written as

r)Pl

— = ■ Ckin = Qh,

BP'1
—T = . Ck2>2 = *kTkl, (4.4)
dul2

F)pl f)p2

Ckia + Ck2ii) - *k(Rki + Rik).

We denote the vectors Ti1- = [DP1 /du^, dPl/du'j, dPl/du'j\T. We conclude from (4.4)

that
= Q~l nj = T'1^,

+ n? = + rt-1u\.

If we think of Pl and P2 as functions of the six variables u*, we can write

(4.5)

VP1 =
n;
n2j

and VP =
n i
n2

The relations (4.5) take the matrix form

0
• VP1 =

0 T
-1 RT

-l

-1-RTQ~1 I

Since the matrix on the L.H.S. is invertible, (4.6) can be written as

VP1 = M • VP2

VP2. (4.6)
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where

M =
° QT_1 (4.7)

-I (R + RT)T~\

We note that M = —GT|t)=o where G is the matrix in Eq. (4.2) of [15]. Furthermore, it is

easy to show that M is similar to —N. The general solution of an equation of type (4.7)

is found in [32]. It will depend on the Jordan structure of the matrix M (and therefore,

that of N). Since the roots of the Stroh sextic come in complex-conjugate pairs, there

are three possibilities: the matrix is semisimple; there are exactly two real Jordan blocks;

there is only one real Jordan block.

4.1. The semisimple case. We suppose that M is semisimple. The eigenvalues are

the negatives of the Stroh eigenvalues. The right eigenvector of M corresponding to the

eigenvalue — pj may be taken as

b,=

The left eigenvector is

TA,

A,

(4.8)

L PjAj J

Note that if the Stroh eigenvectors are normalized so that (2.16) holds, then we have

a, • bj — Sij.

We denote

Vu = U"

and define the complex variables

(4.9)

uy J

V = Vi + im = bj • Vu,'1

,T€ = €l + = t>2 • Vu' (4-10)

iTC = Ci + 1C2 = bj • Vu.

We apply the result [32, Theorem 5.2],

Theorem 4.6. Suppose that M (hence N) is semisimple. Let Pl and P2 form the

components of a conservation law that depends only on the first derivatives of u. Then

p1 = -Mm,%) + #2(6,6) + K3(Ci,^) + KT,

P2 = Li(rh,ri2) + ^2(6,6) + £3(6X2) + Lt,

where

F{rf) = K\ + P1L1,

G(C) — K2+ P2L2,

H(0 — K'J + P3-C-3
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are complex-analytic functions and KT, Lr form the components of a trivial law.

With the aid of (2.17), we find that

V = f\ £ = & C = & (4.11)

We now proceed to compute the most general laws. To this end, we note that if the P1's

are of the form given in Theorem 4.6 but now depend on x and u, then

= 2 RelD^F + D^G + D^H} (4.12)

where D= —\/(2pf.2) ' (PkDx — Dy). Since the terms in (4.12) that depend on second

derivatives of u vanish on solutions, we must have

Fzi ~t~ Fu ' uZl Fv * Fu, * wZl

Re ^ + Gu • it?j + Gv • v+ Gw • w-gj

+-I- Flu • -I- Hv ' -j- Hw ' ^

> = 0 (4.13)

where we denote F= dF/dzi, u^ = Dyi(u), etc. We would like to express the first

derivative terms of u that appear in (4.13) in terms of 77, £, £, etc. The following notation

is helpful. Let X = dT/du • 1+ 9r/dv • v^ + 9r/dw • w-^. Then there are uniquely

defined linear differential operators duk — C)-i(d/du) + c/t2{d/dv) + Ck-s(d/dw) such that

for TUk = duk • T we have

x = 7?rUl + £rU2 + crU3 + ^rU4 + £rU5 + crU6.

We note that the u^s should not be confused with u,v, and w and do not represent

actual variables. Nevertheless, the operators duk are well defined. In a similar manner,

we define dvk corresponding with D^ and dwk corresponding with D^.

Lemma 4.7. The above defined operators have the following explicit representations:

duk = - (pk - pi) Afc • V,
2^12

dvk = —*—(pk -P2)Afc • V, (4.14)
2^22

dwk = 7T—(Pk -_P3)Afc • V,
2P32

where V = — -S-l
du ' dv ' dw J'

Equation (4.13) takes the form

Re <

Fzt + £FU2 + (FU3 + r]FU4 + £FUb + (FU6

+GW + rjGv j + C GV3 + r}GVi + £,GV5 + C GVfi

+Hzj + r]HWl + £,HW2 -(- r]HWi + £,HW5 + CHWti

. = 0. (4.16)
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Using Corollary 3.4 we conclude

F = Fo{rj,zi) + /(u,x) • 77 + /o(x,u),

G = Gq(£, z2) + g{u,x) • £ + ff0(x, u), (4.16)

H = H0{C, ̂ 3) + h(u,x) • C + /io(x, u),

where Fo, Go, and Ho are analytic functions of their arguments. In the treatment [17], the

eigenvalues are assumed to be distinct, in which case Corollary 3.4 is already known to

hold [14], So here our result is somewhat more general. The Fo, Go, and H0 terms stand

alone as conservation laws. Noting their form, we subtract them off and concentrate

on the remaining terms. For a trivial law, P1 = —DyQ, 1 — DXQ where Q(x, u) is

real-valued, we would have (as in (4.16))

/ - -2rp12dui • Q, g = -2ip22duE ■ Q, h= -2ip32duE • Q

from which we may conclude:

LEMMA 4.8. Up to a trivial law, we may take f,g, and h to depend only on x.

With the aid of Lemma 4.5, we conclude the complete result for the semisimple case.

Theorem 4.9. Suppose that M (hence N) is semisimple. Then P1 and P2 form the

components of a conservation law that depends on x, u, and Vu if and only if

P1 = A"i(r?1, 772;x) + AT2(6,C 2;x) + A'3(Ci, C2; x) + KT + K R,

P2 = Li(r]1,ri2-,x) + L2(6,6;x) + L3(Ci,C2;x) + Lt + Lr,

where

F(r], z\) = Kx +piLi,

G(£, z2) = K2 + P2L2,

H(C,z3) = K3 +P3L3

are complex-analytic functions, Kr, Lr form the components of a Betti reciprocity law,

and Kt,Lt form the components of a trivial law.

4.2. Non-semisimple, two real Jordan blocks. We suppose that there are two complex-

conjugate pairs of Stroh eigenvalues p\ and p2. Corresponding with p\ there is also a

generalized eigenvector

Vf = Af
B f

of N satisfying (2.18) and (2.19). We find that the corresponding right generalized

eigenvectors of M corresponding with the eigenvalue —p\ may be taken as

bi = -^Al

TA\
bf  i_

2pi
—T\* A l—TA,1 Ai + 2»,,i

b2 =
-±Q A2

ta2 (4.17)
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(We have chosen this so as to make (4.21) as simple as possible.) For left generalized

eigenvectors we take

ai = af =
At + yj-Aj

1 2pi2 1
a2 =

A2

P2A2
(4.18)

—Ai

,—PiAi J ' [piAf + ^A
in which case we have

[ai af a2 aT af a^]T • [bf bj b2 bf bx b2] = I. (4-19)

We define the complex variables

rj = r]i + ir]2 = bj ■ Vu,

£ = 6 + i& = (bf )T ■ Vu, (4.20)

C = Ci + 1C2 = bj • Vu.

Using (2.23) and (2.19) we find that

diag
Odd

dz\' dz\' dz2
/f =

V

-a
L C J

(4.21)

where ft is that of (2.21).

Theorem 4.10. [32, Theorem 5.2] Suppose that M (hence N) is not semisimple and has

exactly two real Jordan blocks. Let P1 and P2 form the components of a conservation

law that depends only on the first derivatives of u. Then

P1 = K^r, 1,772,6,6) + A'2(Ci,C2) + Kt,

P~ = £i(r?i,772,6 >£2) + £2(6^2) + Lt

such that

.<9G i
F(V) +«r- G(t7) = Kx +pjLi,

or] 2pn

H(C) = K3 +ML3

where F, G, and H are complex-analytic functions and Kt ,Lt form the components of

a trivial law.

As in the previous subsection, we now assume the laws are in the form of Theorem

4.10 but allow the components to vary with x and u. On solutions to 2.4 we must have

Re jz% (^(77) + ^ + D^H(0\ = 0. (4.22)

Since the terms involving second derivatives of u must already vanish on solutions, the

remaining terms vanish identically. We now define differential operators similar to those

of the previous subsection. In particular, we have

<9r dr dr „
du ' + ~dv ' + dw ' ~ 1 + u* + ^r"2 + ??ru4 + + U5 ^4'23^

and

ar or dr -
~du'U^+ ~dv dw'W^~ 11 Vl + + + 7?r"4 + + ^ri)5' ^4'24^
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Lemma 4.11. The above defined operators have the following explicit representations:

(4.25)

1 * — «„# " 1
du\ — -—-Ai-V, <9uf = 0, du2 = -—(p2-pi)A2-V,

2p 12 2pi2

du4 = Af • V, duf = Ai • V, duh = —— (pi - pi)A2 • V

and

9" = s(l""K|Af + (l?i"1|A,|-v'

dvf = —(pi - p2)Ai • V, dv2 = 0,
^P22

PlZlL, iWVr, (4-26)^^((pr-^Af+^-^A^V,

dvf = r^— (pT-p2)Ai • V,
^P22

<9^5 = A2 • V.

Corollary 4.12. The operators du2,duf, and du-} are independent if and only if the

symbol is inseparable.

Proof. We use the canonical forms. If the symbol is inseparable, pi ^ p2 or the matrix

is completely irreducible. We therefore must show that Ai, A2, and A2 are independent.

For the form (3.1) we compute that Ax = [i 1 0]r. By showing that the third component

of A2 is nonzero and employing Proposition 3.2 we conclude the required independence.

The argument for (3.2) is similar. If the symbol is separable, A2 = [00 i]T and the

operators cannot be independent.

Corollary 4.13. The operators {du2, du^, duf, du^} form a rank three set.

This means that if fU2 = fUi — fu# = fUs — 0, then / = /(x) does not depend on u.

Corollary 4.14. The operators in (4.26) form a rank three set.

Equation (4.22) can now be written as

Re <

Fzt + t)FUi + r]FU4 + £Fu# + (FU2 + (FUs

"W + VGvUi + VGr/u* + r]U* + (Grju? + C,GT)Us>

(Gjy + r]GUl + r)GU4 + £GU# 4- £ GU2 + CGU5)
2pi2

+Hz^ + r]HVl + r]HVi + £,Hy# + £,Hy# + £H\

0. (4.27)

Remembering that F and G are analytic functions of 77 and that H is an analytic function

of C, we can use Corollaries 4.13 and 4.14 to show that

i AC1
F = F0(zi,r]) - -—+ /i(x) -rj1 + /(x,u) • 77 + /0(x, u),

Zp 12 OZ1

G = G0{z1,ri) + g{x,u)-'n, (428)

H = H0(z2,Q + Mx>u) • C,
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where Fo,Gq, and Ho are analytic functions of their arguments.

We recognize that the terms of (4.28) involving Fo,Go, and H0 stand alone as a class

of conservation laws. We subtract them off and concentrate on the remaining terms.

Inserting these into 4.27 and using Corollary 4.12 we find the key difference between the

separable and inseparable cases. This difference will lead to an "extra" quadratic law in

the separable case.

Lemma 4.15. Up to a trivial law, we may take g and h to be independent of u. Fur-

thermore, we may take / to be independent of u provided the symbol is inseparable.

Proposition 4.16. If the symbol is separable, there exists a quadratic law of the form

Fq - -<pUl •zi-'n2 +<P-V (4.29)

where ip is the unique (up to a real multiple) linear combination of it, v, and w such that

Vu* = ^"2 = Vu5 = 0, Re{<Pti4} = 0.

THEOREM 4.17. Suppose that M (hence N) is not semisimple and has exactly two real

Jordan blocks. Let Pl and P2 form the components of a conservation law that depends

on x, u, and Vu. Then

P1 = ^1(^1,^2,^1,^2) + A'2(Ci, C2) + Kr + Kt,

P2 = + £2(0, C2) + Lr + Lt

where (Kr,Lr) is a Betti-reciprocity law, (Kt,Lt) is a trivial law, and

i f_dG — A dG
2^2{Zld71+GM)+^

K2 + P2L2 = H(z2, C)

such that F, G, and if are analytic functions of their arguments and Fi is of the form

(4.29) which exists only if the symbol is separable.

4.3. One Jordan block. We deal with the case that there is one real Jordan block

corresponding to one tripled Stroh eigenvalue pair p = pi + ipi and its conjugate p. We

note that in this case, the symbol must be inseparable. The details are similar to the

previous subsection. The generalized right eigenvectors of M may be taken as

Ki +P1L1 = F(z1,tj) - ( z1— +G(z1,rj) ) + Fq,

b =

b## =

"^A

TA
b# =

1<?A* - ^,QA
-TA# + jijTA

■JeA## + 5S»(<3A*-i<3A
TA*# - j-TA#

2p2

(4.30)

The left-generalized eigenvectors may be taken as

a =
A

pA

-A* - JjA

"PA* - £a

a** =

A## + - jljA

pA** + %A* - J,A
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Using (2.22) we find that

[a a* a** a a# a##]T • [b## h* b h** b* b] = I. (4.31)

We then define the complex variables

77 = bT • Vu, £ = (b#)T ■ Vu, C = (b##)T • Vu. (4.32)

We find that for the ft of (2.23), we have
" V '

. (4.33)

. c.
Theorem 4.18. [32, Theorem 5.2] Suppose the matrix M is completely irreducible. Let

P1 and P2 form the components of a conservation law that depends only on Vu. Then

P1 =K + Kt,

P2 = L + Lt,

where (Kt, Lt) is a trivial law and

r, _r „ dG i ^ ~d2H 8H i _dH 1 — ,
K + pL-F + Z— G + Z — + + (4.34)

such that F,G, and H are analytic functions of 77.

We define operators so that

dyt = + 7?rUl + £ru# + cru## + Wu,. + £ru# + <ru##. (4.35)

By using (4.31) we are able to show the following lemma.

Lemma 4.19. The operators satisfying (4.35) have the explicit forms

dui = (r^-A# - ~ a) • V, duf = ^-A • V, duf* - 0,
\2P2 4p2 J 2p2 (4.36)

dui = A## • V, duf = -A* • V, duf* = A • V.

By using the canonical forms I' and II', we conclude that the sets {duf,duf,duf*}

and {S«4, duf, duf*} are both rank three. We allow the functions in (4.34) to vary with

x and u and consider the equation (which holds on solutions)

Re{Z)T(F1 + pP2)} — 0. (4.37)

Looking at the various powers of Vu we conclude that, up to a trivial law, we may take

i _dG0 1 fz2d2H0 _dH0\
F = F0{z,V) - —z— - ^3 (

(4.38)

2p2 dz 2p\ \ 2 dz2 dz

+ /i(x) -V2 + /(x,u) •r? + /0(x, u),

G = G0 {z, 7?) z--^ + g1 (x) • rj2 + g(x) • 77,
p2 dz

H = H0(z, C) + h(x) • 77,

where F0, Go, and Ho are analytic functions of 77 and 2.

We recognize that the terms in (4.38) involving Fq,Gq, and H0 stand alone as a

conservation law. We note its form and concentrate on the remaining terms. As in the

doubled-root separable case, these terms will lead to an extra quadratic law as well as

the Betti-reciprocity law.
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Proposition 4.20. If the matrix M is completely irreducible, there exists a quadratic

law of the form (4.34) such that

F = {-tpujz ■ r)2 + tp • T), G = ~{ipu#)z • if, H = 0 (4.39)

where <p is the (unique up to a real multiple) linear combination of u, v, and w such that

Vuf* = °> vu* = = o. (4.40)

Theorem 4.21. Suppose the matrix M is completely irreducible. Let P] and P2 form

the components of a conservation law that depends on x, u, and Vu. Then

P1=K + Kr + Kt,

P2 = L + Lr + Lt,

where (Kr,Lr) is a Betti-reciprocity law, (Kt,Lt) is a trivial law, and (4.34) holds

such that

i _dG0 1 (z2 d2H0 _dH0
F = Fq(z, tj) - —- ^-9

(z2d2H0 , _dH0\ , 2 ,

2p2 dz 2p\ \ 2 dz2

G = G0(z,r)) -

H = H(z,V),

where Fq,Go, and Hq are analytic and <p satisfies (4.40).

5. Conclusions. We have computed all first-order conservation laws that exist in

the Stroh formalism. The exact forms of the laws were found to depend on the canonical

form of the symbol. The canonical forms depend on the separability of the symbol and

on the degeneracy of the material. An interesting necessary and sufficient condition for

separability is given by Proposition 3.2. The canonical forms were used to determine

certain facts about the laws, but the laws themselves are expressed in terms of the

generalized Stroh eigenvectors. In each case, the laws depend on three arbitrary analytic

functions. In the separable, non-semisimple case and the completely irreducible case

(which must be inseparable), we find that there is an "extra" law quadratic in Vu. The

applications of these laws may include the determination of stress intensity factors [33]

and energy-release rates. Yeh et. al. have demonstrated an application to thermoelasticity

[34]. The canonical forms may be of interest in the study of degenerate materials which,

[18], do in fact occur in nature.
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