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Abstract. The Infeld function expressed in terms of the outgoing prolate spheroidal

radial wave function and its derivative, and employed in the expression of the input

self-admittance of prolate spheroidal antennas, has accurately been calculated by using

a newly developed asymptotic expression for large degree n. This asymptotic power

series has been derived by using a perturbation method with a perturbation parameter

e = l/(Ain — h2), where Ain is the spheroid's eigenvalue for the given parameter h of the

spheroidal wave function.

1. Introduction. In the computation of the admittance of prolate spheroidal dipole

antennas of finite feed gap length [1], [2], [3] we encounter the problem of the slow

convergence of the input susceptance, expressed as an infinite sum of outgoing prolate

spheroidal wave functions, and their first-order derivative. More specifically, each term

of the susceptance includes the following function:

«2~1 )'/2S'.4„W) (1)

Infeld [1, p. 126] chose £n-i to represent this function. In (1) (h, £) is the prolate

spheroidal radial function of order 1 and degree n of the fourth kind [4], It satisfies the

following differential equation [4]:

^ {(£2 - - (a1b - h2e + Mn(M) = 0, n = 1,2,3,4,...,

(2)
where £ is the spheroid's radial coordinate (£ > 1), and AJn is the spheroid's eigenvalue

for the given h parameter, i.e., h — kF with k being the operating wavenumber and F

the semi-interfocal distance of the spheroid.
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The Infeld function rn(h,£) can be computed from i?^(/i,£) and its first-order de-

rivative, which have recently been calculated with single [5] and double [6] precision

accuracies. However, for large degree n it is useful to develop an asymptotic expression

of rn(/i, £). Infeld [1, p. 126] gave only the leading term of the function.

By introducing a perturbation parameter into the Riccati differential equation that

the Infeld function satisfies, and by using the perturbation theory [7], its remaining

asymptotic terms have been found. This asymptotic expression has been proved to be

helpful in obtaining a high accuracy for large n.

2. Asymptotic expression of the Infeld function. First, by letting

Pn(h,0 = ({2 - l)1/2R(i4J(h,0, (3)

we obtain from (2)

(£2 - l)^Pn(h,0 - (Aln - h2e)Pn(h,0 = 0. (4)

Because of (4), the Infeld function given by (1) satisfies the following Riccati differential

equation:

-~rn(h,0 + rl(h,^)
Am h*£2f2 "I

£2-l
= 1- (5)

Equation (5) was also derived by Infeld.

Now, if we introduce the perturbation parameter

1

Aln — h2 '

and use the following transformation:

(6)

sn(h, x) = ^ ^ rn(h, £), x = -, (7)

(5) is reduced to

\fix(\ - + \/esn(h,x) + xs2n(h,x) ^1 - h2 ^ X ̂ - x = 0. (8)

In (8) if e —> 0 we obtain s^(h,x) = 1 and choose sn(h,x) — —1 to have a physical

meaning [1]. This is also the only leading term obtained by Infeld.

Therefore, by employing a perturbation theory [7], the function sn(h,x) can be as-

sumed to be expanded in rational powers of e with the weighting functions hm(h,x) to

be found, as follows:
OO

sn(h,x) = ^2 em/2hm(h,x). (9)

m=0

The above asymptotic expansion was extensively discussed by Kevorkian and Cole [7],
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The substitution of (9) into (8) yields

OO

£

m=0

x(l-x2) dhm^x) +hm(h,x)
ax

e(m+1)/2

= 0.
°° m ( h2r2 \

Y, ^2hi(h,x)hm-i{h,x) (1 - - x2e) £m/2 ~~ 1
_m=0 1=0

(10)
By comparing like rational powers of e in (10) we find the relationship among the weight-

ing functions hm(h, x) as follows:

hl(h,x) = l, (11)

dh (h x) ^
2xhm+1(h,x) — x(l - x2)— 1-hm (/z, x) -I- xhi(h, x^j—^(/i-,x)

X i=i

x3 "~!
- h2 , _ 2 £ hi(hix)hm-i-i(h,x), m — 1,2,3,....

X i=o (12)

The recursion relation (12) shows that we can find hm+\(h, x) provided that the weighting

functions hk(h,x) with k = 0,1,2, ...,m are known. Prom Eq. (11) we obtain two

solutions for ho(h,x), of which only one solution has a physical meaning, i.e., ho{h,x) =

— 1, which is Infeld's only term. If we commence with his term, by using (12) the closed

forms of h\(h, x), h2(/i, x),..., ha(h, a;) are given by

, . , 1 , . , 1 1 h2 x2
hi(h,x) = - — , h2(h, x) =

2x' v ; 4 8x2 2 1 -i2'

MM) = - x2) - h2J^2'

, ^ 25 1 9 3 h2 1 ( 9 r 2
h4(h,x) = ——— —r - ——j + — + —   ~ I — - - 5x - 3h

128 x4 32x2 32 8 1 -i!\ 2 1 - x2

\ 13 1 23 1 515,, ,2^/3 1 5 2 3 h2x2
MM) = ---jr + - -h2x - h2——, - + — + -X2 + -■

32 x5 32 x3 16 x 8 l-i2\8 8i2 8 2 1 - x2

(13)

, ,, , 1073 1 1123 1 /339 h2\ 1 ( 23 h2\ 5,2 2

^ ~~ 1024x6 ~ ~512~x^ + \256 + ~8~ ) x2 ~ (^128 + ~2~ ) ~ 8 X

h2 ( 5 1 11 13 2 5 4

+ 1 -x2 \256 x2 ~ 64 ~ 64X ~ 8^

-^-^(ro^ + iei)- 5 h°x°
64v ; 16(1-: 2~\3 '

The generation of higher-order weighting functions hm(h, x) is more tedious. However,

in the appendix it is shown that there also exists a recursion relation among the expansion
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coefficients of hm(h,x), which facilitates their systematic computation. Therefore, the

final form of the Infeld function, with the use of Eqs. (6), (7), and (9), is given by

rn(h,0 = v^2 - 1 - h2) {rn+1)/2hm(h,x), x = V^2 - l/£. (14)

m—0

Equation (14) has been derived under the asymptotic condition, i.e., x\/Xin — h2 > 1.

3. Numerical results. Table 1 shows the convergence characteristics of the asymp-

totic series of (14) in terms of its number of terms N for £ = 1.05, h — 2 and n — 15,17,

and 19. The computed values are verified with those calculated with a double precision

accuracy [6]. It is shown from the table that we have obtained about 5 to 6 significant

figures of accuracy with only 7 terms of the asymptotic series for x\/Xin — h2 > 3. Better

results can be obtained by increasing n or N. For thin spheroids, i.e., £ = 1.005, Table 2

gives the computed values of rn(h, £) with 7 terms for n = 50,51,..., 63 to ensure about

six significant figures of accuracy.

Table 1. Convergence characteristics of the asymptotic series of (14)

in terms of its number of terms N for £ = 1.05 and h = 2 for

large degree n. The true values [6] of rn(h, £) are —2.290737 x 10-2,

-2.005182 x 10~2, -1.782769 x 10~2 for n = 15,17,19, respectively.

N

1

2

3
4

5
6
7

n = 15

-2.07528 x 10"2

-2.29588 x 10"2

-2.28812 x 10"2

-2.29114 x 10"2

-2.29052 x 10~2

-2.29084 x 10~2

-2.29067 x 10~2

n= 17

1.83623 x Hr2

-2.00893 x 10~2

-2.00356 x 10"2

-2.00541 x 10~2

-2.00507 x 10"2

-2.00523 x 10"2

-2.00516 x 10"2

n = 19

-1.64671 x 10"2

-1.78560 x 10"2

-1.78173 x 10-2

-1.78292 x 10"2

-1.78273 x 10~2

-1.78281 x 10~2

-1.78278 x 10-2

Table 2. Values of the Infeld function rn(/i,£) computed from (14) using

7 terms for £ = 1.005 and h — 2 with large n (n — 50,51,..., 63)

51

53
55
57
59

61
63

rn{h,0

-2.12694 x 10"'3

-2.04104 x 10"3

-1.96177 x 10-3

-1.88839 x 10"3

-1.82027 x 10^3

-1.75686 x 10"3

-1.69770 x 10"3

n

50
52
54

56
58

60
62

rn(h,Q
-2.17263 x 10"3

-2.08311 x 10-3
-2.00063 x 10-3

-1.92439 x 10"3

-1.85371 x 10"3

-1.78801 x 10"3

-1.72678 x 10~3
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Appendix. Prom Eqs. (11), (12), and (13) the weighting function hm(h,x) is ex-

panded as follows:
OO

hm(h,x) = x~m 'Y^amk{h)x2k, (Al)

fc=0

with its derivative given by

dhm(h,x)

dx
k=o

= ^(2k - m)arnk(h)x2k m (A2)

The substitution of (Al) and (A2) into the recursion relation (12) yields after some

algebra:

2/c—m+22 ^ am+itk{h)x2k m = ]P(2k - m)amk{h)x2k m - ^T(2k - n)amk(h)x2

k=0 k=0 k=0
oo oo s m

+ ^2amk{h)x2k~m + '^/'^2'^2aik(h)arn+i-l)S-k(h)x2s~rn

k=0 s=0 k=0 1=1

oo t s m—1

- h2 aik{h)am-i-i,s-k{h)x2t~m+4. (A3)

t=o s=o k=o i=o

By comparing like powers of x, the recursion relation among the expansion coefficients

a-mi(h) is obtained as follows:

am+i,i{h) = 5(21 - m + 1 )ami(h) - \(2l - m - 2)am,i-i(h)

^ I m

& (h) a m _|_ 1 _ r 5 / _ /c (h)

^ fc=0r=l (^4)

j^2 l~2 r m— 1

~2~ ̂  ^ ^ ^ 1—s,r—•

r=0 fc=0 s=0

If we begin with the expansion coefficient of ho(h,x), i.e., ao,;(/i) = —So,h the coefficients

(m = 1:2,...; I = 0,1,2,...) of hm(h, x) can easily be generated from (A4).
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