
QUARTERLY OF APPLIED MATHEMATICS
VOLUME LIV, NUMBER 4
DECEMBER 1996, PAGES 709-719

ON THE FORCED SURFACE WAVES

DUE TO A PARTIALLY IMMERSED VERTICAL WAVE-MAKER

IN WATER OF INFINITE DEPTH

By

P. F. RHODES-ROBINSON

Department of Mathematics, Victoria University of Wellington, New Zealand

Abstract. In this paper we determine the velocity potential describing the two-

dimensional antisymmetric wave motion generated by a harmonically oscillating ver-

tical plane wave-maker partially immersed in water of infinite depth. The solution of

the boundary-value problem for the velocity potential is obtained from a formulation

depending on the unknown horizontal velocity on the line of antisymmetry below the

wave-maker, which leads to a singular integral equation of known type for a related

reduction variable. The idea was developed by Ursell to solve the corresponding trans-

mission problem and another rigid wave-maker problem, and uses classical wave-maker

theory.

1. Introduction. The classical wave-maker theory of Havelock [3] to determine the

velocity potential for two-dimensional time-harmonic wave motion in water of infinite

depth in the absence of surface tension is well known. The wave-maker boundary, on

which a simple-harmonic normal velocity distribution is prescribed, is vertical and ex-

tends throughout the depth of water, and the motion has the form of outgoing waves at

infinite horizontal distance.

Herein we consider the motion produced in water of infinite depth and expanse when

the wave-maker is only partially immersed with its lower end at a given finite depth below

the free surface. The motion is antisymmetric, with outgoing waves at infinite horizontal

distance in both directions. The motion due to one such wave-maker comprising a rigid

vertical plate oscillating about a horizontal axis in itself was determined by Ursell [6],

who previously had also found the scattering effect on incoming waves by a partially

immersed fixed vertical plane barrier—Ursell [5].

The method developed in Ursell [5], [6] is extended herein. The velocity potential

is given by the classical wave-maker theory of Havelock [3] if the unknown horizontal

velocity on the line of antisymmetry below the wave-maker can be determined. This

unknown satisfies a complicated integral equation that is solved by reduction to a singular

integral equation for a related variable, upon which the required velocity potential can

in fact be made to depend, to complete the solution most expediently.
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The technique involves real variables and is suitable only for two-dimensional motion

on infinite depth; it may be amenable to the inclusion of surface tension, but this effect is

omitted herein. Complex-variable techniques that do not readily yield a velocity potential

were employed by Haskind [2], who effectively combined the two problems in Ursell [5],

[6]; and by Lewin [4], who made a formal investigation of incomplete vertical wave-maker

problems in general.

The outgoing waves in our problem have been determined in another form by Evans

[1] using the real-variable technique of exact Green's functions, provided in this case by

the transmission solution of Ursell [5].

2. Formulation and reduction of problem. Two-dimensional time-harmonic

wave motion of angular frequency a is set up in an ideal liquid of infinite depth and

expanse by small prescribed normal oscillations of a vertical plane wave-maker that

pierces the free surface and is partially immersed to a depth a. The motion is antisym-

metric about the gap below the wave-maker, and is assumed to be small with outgoing

surface waves at infinity. The effect of surface tension is excluded, and the motion is

under the action of gravity g alone. In terms of rectangular coordinates x, y the velocity

potential at time t has the steady-state form re[<f>{x, y)e~%at], where <j> is complex-valued

and satisfies a boundary-value problem in the liquid region. It is sufficient to consider

only the quarter-plane y > 0, x > 0 bounded by the free surface y = 0, wave-maker

x = 0, 0 < y < a, and line of antisymmetry x = 0, y > a below it: then, if the horizontal

velocity on the wave-maker into this region is Te[Uo(y)e~lat) and a flat-plate type infinite

velocity singularity is allowed at the tip of the wave-maker, <f> satisfies the equation

V20 = 0 in x > 0, y > 0

subject to the boundary conditions

K(j) + 4>y = 0 on y = 0,

(fix = u0{y) on X = 0, 0 < y < a,

cf> = 0 on x = 0, y > a,

r 51 V0| is bounded as r = [x2 + (y — a)2] 5 —> 0,

|V0| —» 0 as y —> oo,

(f) —> a multiple of e~Kv+lKx as x —> oo,

where K = a2/g.

This boundary-value problem may be solved by classical wave-maker theory if the

unknown horizontal velocity (j)x = U(y), say, on x — 0, y > a can be found satisfying the

conditions that (y — a)%\U\ is bounded as y —> a+ and |(7| —» 0 as y —* oo. For then, by

Green's theorem, the solution is given by the distribution

4(x, y) = - I" G(x, y; Y)U(Y) dY, (2.1)
n Jo



PARTIALLY IMMERSED WAVE-MAKER 711

where U = Uo (0 < Y < a) is already known and G(x,y;Y) is the well-known potential

for a wave source at (0,F); this is given by the alternative forms

p f°° e~k(y+y">
G(x, y\ Y) — log — - 2 i/i —- — cos kxdk, (2.2)

P Jo k - K

where p,p' = [x2 + (y T Y)2}^ respectively and the contour is indented below the pole

k = K, and

poo kcc

G{x,y;Y)= — 2 J (^cos ky - K sin ky)(k cos kY — K sin kY) dk ^

- 2nie-K^+iKx.

Explicitly, the wave-maker solution (2.1) is

2 Z"00 a(k)e~kx
4>(x,y) = — / -rr. —T(kcos ky - K s'm ky)dk - 2iAe~Ky+lKx (2.4)

7r J0 kz + Kz

from (2.3), where

1 f°°
a(k) = - U{Y){k cos kY - K sin kY)dY (k > 0) (2.5)

k Jo

and
rOO

= / U{Y)e~KYdY, (2.6)
Jo

in the original form obtained by Havelock [3]; the first term is non-propagating and the

second term represents the outgoing waves at infinity.

An integral equation is obtained for the unknown U (Y > a) by applying the remaining

antisymmetry condition: hence

rOC

0(0,1/)=/ G*(y,Y)U(Y)dY = 0 (y > a), (2.7)
Jo

where G*(y;Y) = G(0,y;Y). This is simplified, following the approach of Ursell [5], [6],

by applying a differential operator suggested by the free surface condition; thus, from

(2.7)
d\ r°°

/ G*(y,Y)U(Y)dY = 0
Jo

K + ~T~
ay

and so
pOO

4 [KG*(y,Y) + G;(y,Y)]U(Y)dY = 0 (y > a),
Jo

where the Cauchy principal value (CPV) is needed at Y = y. But

Iu _ YI f°° e~fc(y+y)
G*=logL^-2/ dk

y + Y J0 k-K
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from (2.2), and so

T/rr* , _ ts, \y~Y\ , 1 1 , 2 ^ T,']nn.\y ~Y\ , 2vKG +G —K log ——  — -t;H —rf — K\og — H 5 T7o 'y y + Y y — Y y + Y y + Y y + Y — Yl

thus

A' r U(Y) log dY + 2y -J°° dY = 0 („ > a).
Jo y + Y Jo y -y

Now let ^

F(Y) = [ U(s) ds {Y > 0)
Jo

so that F' = U and F(0) = 0; then

F = F0= [ U0(s)ds (0 <Y<a),
Jo

say, is known and Fq(0) = 0. Therefore

r U(Y) log dY = 2y -T dY
Jo y + Y Jo y -Y

by integration by parts.

Hence (2.7) reduces to

f°° q(Y)
ja y2 dY = ° (y>a)'

where g = KF + U = KF + F' is a reduction variable, and so we obtain the simplified

integral equation

<*>«

for the unknown g (Y > a) in terms of the known g — go = KFq + Uo (0 < Y < a), say.

Note that (Y — a)? |g| must be bounded as Y —> a+ and |</| must be bounded as Y —>00.

It is possible—and obviously convenient—to rephrase the wave-maker solution (2.4)

in terms of g(Y) also rather than U(Y). Thus, from (2.5)

1 poo roc

a(k) = — / F'(Y)(kcoskY — KsinkY) dY = / \g(Y) — 5(00)] cos kY dY (k > 0)
k Jo Jo

(2.9)
after integration by parts, where g(00) = limy-^ g(Y)\ and similarly from (2.6)

rOO

A =
pOO 1 poo

Ji F'(Y)e~KY dY = 2 J0 9(y)e~KYdY, (2.10)

since F(0) = 0. These replace (2.5, 2.6), and in them g (Y > a) is to be found and g = go

(0 < Y < a) is known.



PARTIALLY IMMERSED WAVE-MAKER 713

3. Solution of integral equation. Nonhomogeneous singular integral equations of

the above type were solved by Ursell [5], [6]. The formal solution of (2.8) for g (y > a)

is given by

y

where the outer CPV is at Y = y and D is an arbitrary constant,

■ p.g/•„(.)f r-?,« „dYds
Jo JaJo K ' Ja y(y2-y2)(y2-s2)

on interchanging the order of integration

= d + H
7r

fffo(s)
Jo

— (a2 — s2) 2 (a2 — s2) 2

y2 — s2
ds

on evaluating the inner CPV integral (see Appendix 2a)

2 fa (a2 — s2)i
= D'-2- '-d, (3.2)

* Jo y -s

finally, where

f 9o{s)-
J o

is now taken as the arbitrary constant.

Note that the required boundedness conditions on g (y > a) are satisfied by (3.2),

since

.->/ 2 fa a — (a2 — s2)? t
D -D+- / a0(s) 7T ds

(y-a)*9(y) — (\a

D'-2-[a

Jo (a2 — s2) 2
as y —► a+

and

g(y) D' = g(00) as y —► oo.

4. Calculation of wave-maker solution. The results incorporating (3.2)

0(y) = soOO (o < y < o),

y

(y2 - a2)5
/"soM-

^ Jo
(y > a)

are now used to evaluate (2.9, 2.10) in terms of £)'.

First, we have from (2.9) that for k > 0

a(k) — a0(k) + ai(fc),
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say, where

ao(fc) = [ 9o(Y)
Jo

and
r^ sin Icn

ik) = / [ffOO ~ 3(oo)] cos kY dY - g(00)
J a

cos kYdY

ai(k) =
k

,Y — (Y2 — a2) ̂  2Y

Y2 — s2
. [°° cos kY D-r-'y2-"' ^ /•„(.)

, sin ka

ds dY

~D t
r°° v

= D' LY-i Y2-a^ cos kYdY-Si,,ka
(Y2 — a2) 2 k

2 r / \ / 2 2\ - r° Y cos kY
- / ffo(s)(a -s )2 / — 
7T 7o 7a (Y2 - a2) 2 (Y2 - s2)

-iraD'Ji(ka) — J go{s) cosfcs — (a2 — s2)2 J cos(k — u)sJo(ua) du ds

on noting the integral representation of a Bessel function (see Appendix la) and evaluat-

ing another integral in convolution form involving another Bessel function (see Appendix

2b). Hence
1 fk

a(k) — --naD'J\(ka) + / b(k — u)Jo(ua) du (k > 0) (4.1)
2 Jo

after a cancellation, where

fa
b(u) — / go(s)(a2 - s2)^ cosusds (u > 0). (4.2)

Jo

Second, we have from (2.10) that

A = Ao + Ai,

say, where

A0 = \j\0{Y)e-KY dY

and
1 f°°

= « g(Y)e~KYdY
1 f°°

-d 9(Y)

2 J a (Y2 — a2) 2 7r J 0

2 — "2 , *

ds dY
Y2 _ s2

1 r°° Vr~KY 1 ra , f°° Yp~ky

= —D' / — 1-dY / go(s)(a2 — s2)5 /  T dY ds
2 Ja (Y2 — a2) 5 7T 7o Ja (Y2 - a2)i (Y2 - s2)

= \aD'Ki(Ka) -~[ go{s)
2 7T Jo

-7re + sinhKscos * —
2 a

fK
— / cosh(lf — u)sKo(ua) du

Jo
ds
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on noting the integral representation of a modified Bessel function (see Appendix lb)

and evaluating another integral in convolution form involving another modified Bessel

function (see Appendix 2c). Hence

A = \aD'K\(Ka) - —B +— [ c(K - u)K0(ua) du (4.3)
2 7T 7T J0

after a cancellation, where

ra s
9o(s) sinh Ks cos-1 — ds (4-4)

Jo a

and

ctu) =

= 0

ra

(u) — / go(s)(a2 — s2)! coshusds (u > 0). (4.5)
Jo

To complete the solution (2.4), the integration constant D' is determined from the

linear equation obtained by substituting the values (4.1, 4.3) into the original integral

equation (2.7) taken in the explicit form

2 f°° a(k)
~4>(0,y) — - — —^(kcosky - Ksinky) dk + 2iAe~Ky = 0 (y>a),

n Jo k A

using (2.4). Hence

1 h fK
--v aD'I<>1\y) + lW(y)+ie-Ky -ir aD'K1(Ka)-B+ / c(K - u)K0(ua) du

2 2 Jo

{y > a), where

1^ = [ f1 (k cos ky — K sin ky) dk
J0 kz + Kz

-\s:m*•* ">•»
= —ne~Ky Ii(Ka)

by the method of residues at the pole k = iK\ and

r( 21 k cos ky - Ksinky fk.,, . r . , , „
/( — J   J b(k - u)J0(ua) dudk

= f f ft[fc(l — f)j kj2o{ka^ (fc cos ky — K sin ky) dkdv (u = kv)
Jo Jo k + K

= [ f 9o(s)(a2 - s2)^I{i\y,s\v)dsdv
Jo Jo

from (4.2), where

1^ = f (k cos ky — Ksmky)cosk(l - v)sdk (0 < s < a < y,0 < v < 1)
Jo k + K

_ [ kJo(kav) ^lky ^ ^ [y — (1 — w)s > aw]

2 J-oo k-iK

= —7rKe~Ky coshA'(l — v)sIo(Kav)
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by the method of residues at the pole k = iK, so that

1^ = —nKe Ky f c[K(l — v)\Io(Kav) dv
J o

' / c(K — u)Io(ua) du (u = Kv)
Jo

= —7re Ky

from (4.5).

Hence, using these and cancelling a factor e~Ky, D' is given by

1 fK
-ira[irI\(Ka) + iKi(Ka)]D' — iB + / c(K — u)[irIo(ua) — iKo{ua)\du (4.6)
2 Jo

so that the solution is complete. This is extremely complicated to apply theoretically,

even in simple cases, but computational possibilities exist.

Note, using (4.3, 4.6), that A is given by

fK
[ixI\(Ka) + iKi(Ka)\A = -BIi(Ka) + / c(K - u)[K\(Ka)I0(ua) + I\(Ka)K0(ua)\ du

Jo
for the outgoing waves. A simple result to determine these (only) was obtained by Evans

[1], using the exact Green's function in the far field—viz. the transmission solution for a

partially immersed fixed barrier in Ursell [5]. In our notation, this is

[irhiKa) + iK!(Ka)\A

1 fa Ypky [y

= n , 2 V2\ 1 / Ms)e~KsdsdY
a Jo (a2 — y2)2 Jo

= ir[ ( 2 Y^1 eKY I 9o(s)e~Ks ds + e~KY f g0{s)eKs ds
Jo (a2-Y1) 2 Jo Jo

in terms of g0 used herein (see Appendix 3).

Appendices.

1. Integral representation of Bessel functions.

a. For z > 0

mz)=ir . 0
* Ji (/3 - l)i

and
%inz 1)4

dY

7T /

cos (3z d(3
002~l)*

the second result is obtained from the first by careful differentiation, although an inter-

esting proof was given by Ursell [5].

b.
r°° e-/s*

and

rOO

K, (z) = I
(/32-l)i

r°° 0e~0z
Ri W = y —77T d0.
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2. Evaluation of integrals.

a. The integral

f°° (Y2 — a2) i
Ja Y(Y2 - y2)(Y2 — s2) dY (°<s<a<2/)

f°° z2

i0 [.z2 - (y2 - a2)](z2 + a2 - s2){z2 + a2) dZ [z=(y2-fl2)2]

1 f°° \ s2{y2~a2) _j_ y2{a2 — s2) a2(y2 — s2)"1

y2s2(y2 — s2) J0 [z2 - (y2 - a2) z2 + a2 — s2 z2 + a2

by partial fractions

dz

7r

V
y2(a2 — s2)2

s2(y2 — s2)

7T

22 y

(a2 — s2) 2 a —(a2 —s2)2

y2 — s2

by elementary integration and rearrangement,

b. The integral

r°° Y cos kY njr tn , ^
/  y dY (0 < s < a, k > 0)

A (F2-a2)5(y2-s2) '(r2-a2)5(Y2-s2)

has Laplace transform in k with parameter p given by

Y pfJ a CY2-a2)i{Y2-s2)Y2+p2

1= p J
Jo (z2 + a2 — s2)(z2 + a2 + p2)

p f°° f 1 1

dY

dz [z = (Y2 - a2)?]

p2 + s2 J0 [z2 + a2 — s2 z2 + a2 + p2

1 7rp f 1 1

dz

2p2 + s2 L(a2-s2)3 (a2 + p2)i

similarly as above, and so by inversion has the value

1
2n

cos ks

(a2 — s2) 2
x— / cos(fc — u)sJo{ua) du
2 JO

c. The integral

Y e~KYIJ a

dY (0 < s < a)
(Y2 -a2)i(Y2 -s2)

rOO i rOO

= /  — / cosh(w — K)s du dY,
J a [Y — CL ) 2 J K
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using a simple integral representation,

(■OO a-uYr oo roo e~uY

= / cosh(u — K)s /  fdY du
Jk Ja (y2-a2)2

r OO

= / cosh(w — K)sKo(ua) du
Jk

on noting the integral representation of a modified Bessel function (see Appendix lb)

-Ks oinVi c nnc 1 ^

ua) du,
1 7re s sinhifscos 1 - f , N

= 2 T~2 ^ + —71. ~ / COsh(K ~ u)sKo(
* (aJ — sJ) 2 [az — s'1) 2 Jo

using the results

/ cosh usKn (ua) du = r
Jo 2 (a2 - 52) 2

and
Z*00 ~7T — COS ^ ~
/ sinhusi<'o(wa) du — — j-2- (0 < s < a).

Jo (a2 - s2)2

3. Outgoing wave forms. The form for A as obtained by Evans [1] is a multiple of

ra Yf(Y)

J
where

[ -Jo (a(a2 — y2)^

Y

r dY,

f(Y) = eKY f Uo{s)e~Ks ds (0 <Y < a)
J o

in terms of Uo-

To express this in terms of go, first note that f(Y) is the solution of the differential

equation

f -Kf = U0 in 0 < Y < a (A3.1)

subject to the condition /(0) = 0. Now let

G{Y) = [ f(s) ds (0 < Y < a)
Jo

so that G' = / and G(0) = 0; then term-by-term integration in (A3.1) gives

G' -KG = F0 for 0 < Y < a. (A3.2)

Multiply (A3.2) by K and add to (A3.1); thus G satisfies the differential equation

G" - K2G = 5o in 0 < Y < a

subject to the conditions G(0) = G"(0) = 0. The solution is

G(Y) = j(Jo go(s)smhK(Y-s)

/(F) = [ go(s) cosh K(Y — s)
Jo

[ g0{s)e~Ks ds + e~KY [ g0(s)eKs ds

Jo Jo

and so by differentiation

rY

— s)ds

(0 <Y < a)

in terms of g0.
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