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GLOBAL EXISTENCE AND SINGULARITY FORMATION

IN SOLUTIONS OF A MODIFIED FOURIER LAW

By

K. SAXTON

Loyola University, New Orleans, Louisiana

Abstract. The aim of this paper is the analysis of formation of singularities from

smooth initial data, for rigid conductors. The modified Fourier law used asserts that

the governing second-order equation is hyperbolic with first-order dissipation. Global

existence for small initial data is also examined.

1. Introduction. The model for heat conduction used here replaces the classical

Fourier law with a modification introduced by Kosinski [4], physically motivated by

Cimmelli and Kosinski [1]. In this approach the heat flux is proportional to the gradient of

a "new" temperature scale B. This temperature 3 is related to the absolute temperature

$ > 0 by the initial-value problem

/?(0)=/?o, /? € (0,oo).

The heat flux q is related to V/3 by

q = dV/3. (1.2)

Generally d, for rigid conductors, may be a function of i).

We employ the following constitutive equations for nonlinear heat conductors ([4]):

V = Mv/J)

and

7? = -cW(tf,V/3), (1.3)

where ip is the Helmholtz free energy and rj the specific entropy. For an explicit function

/ (cf. [4]) in Eq. (1.1), the Maxwell-Cattaneo relation can be obtained: rqf + q = —fcV$,

Received June 22, 1994.

1991 Mathematics Subject Classification. Primary 35L10, 35L67, 73B30.

Partially supported by the LEQSF Grant (1991-94)-RD-A-22

©1996 Brown University

697



698 K. SAXTON

with r the relaxation time depending on $ and fi (cf. [4]). We will assume that the free

energy ip is given by

^(i?,V/3) = ^(7?) + ie2(V/3)2 (1.4)

where £2 = koTo/(po^°), and To, ko are characteristic material constants representing the

relaxation time and thermal conductivity at constant reference temperature i9°,/3° and

po is a mass density. Additionally, we assume that the function in Eq. (1.2) is a constant

d — k0.

From the energy balance law, one obtains a second-order hyperbolic equation. In the

case of a one-dimensional rigid body (cf. Kosinski and Saxton [6]) this becomes

~~C(/3i fit)fitt + b/3x(3xt 4- af3xx + H((3, fit) = 0 (1-5)

where

and

C((3,(3t) = PoT0ficv(tf),

H(P,pt) = p0dcv^)MPu

a = fco$°,

b = T0k0

Tof(V,l3) = i9° log(i9°/tf) + M/3),

fo(0) = Tof(d°,0)-

(1.6)

(1.7)

Here cy = fld$r] > 0 is the specific heat at constant volume, and the relations (1.7) are

derived by Kosinski in [4]. Equation (1.5) can be rewritten as a system of hyperbolic

equations by introducing new dependent variables

fit = w, / N

A-* <L8)

Then
-C(/3, w)wt + bpwx + apx + H (/?, w) = 0,

(}t-w = 0, (1.9)

Pt wx — 0.

Kosinski and Saxton [6] showed that the amplitude a = [u;t] of acceleration waves

satisfies a Bernoulli-type equation

-f-a — nT0a2 H — a — 0. (1-10)
at toto

Here n, m are constants depending on the value of 1) and fi in front of the wave, assumed

to be a constant state. Both n and m are positive. As a result, the solution a(t) of Eq.

(1.10) blows up to +00 or —00 in finite time provided that the initial condition ao — c*(0)

satisfies the inequality

-riToOto H   < 0. (1-11)
TOTo
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Here the initial jump in wt and wx results in [wt] and \wx] becoming unbounded in finite

time. Similar results were obtained in [6] for elastic conductors where both amplitudes

[wt] and [vt\ (v is a velocity) also satisfy a Bernoulli-type equation.

In Sec. 2 we give an existence result based on Nishida [12] for global in time, small

amplitude solutions. Section 3 then examines the breakdown of solutions from smooth

initial data in the sense that (w,p) are no longer of class C1(R)2 after some time t* < oo.

2. Global smooth solution. In this section we obtain sufficient conditions for

global existence of small amplitude solutions of the Cauchy problem for Eq. (1.5).

We assume that the function f0 in Eqs. (1.7) is linear, that is,

fo{0) = —{0 ~ (3°)- (2.1)

A local existence theorem was established by Cimmelli and Kosinski [2]. The initial

conditions for the heat propagation (1.5) can be given physically for /? and t9. Using the

evolution equation (1.1), and (1.7) with (2.1), these can be obtained as:

/3(0,x) = 0o(x),

$° 1 ^ (2.2)
Pt(0,x) = — log  (0o{x) - 0 ) = 0i{x).

To 77(1), X) To

We calculate ■& from Eq. (1.7), using (1.1) and (2.1). Then

* = '6X13 {sS -v/ + vf)} = m' (2 3)

where for convenience we introduce the variable £ defined by

i = 0t + -0. (2.4)
TO

We express the coefficients in (1.6) in terms of £, so that

C{0,0t) = r0g(0,

H(0,(3t) = -g(O0t,
(2.5)

and

9(0 = Poti(0cv(#(0) > 0-

Next we substitute these coefficients into Eq. (1.5) and multiply by Tq"1, which gives

k flO I
-g{Q0tt + ko0x0xt h 0xx —g(O0t = o. (2.6)

TO T0

If we define P(£) such that

p\0 = 9(0 > 0, (2.7)

then

P(Z)t = g(Z)Zt. (2.8)
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On using (2.8), Eq. (2.6) can be written in the form

=(P(*M*0(&)2)t- (2-9)

Let (j)(t, a;) be a potential function such that

</>* = P(0 - !M/?x)2,

, M°, (2-10)
0t —  Pa;-

TO

Our next step is to obtain an equation for <f>(t,x). First, on differentiating (2.10), we

obtain

0tt ~ ̂ k)0xx ~ wko{(pt)l+=°- (2-n)

The variable £ can be expressed in terms of <px and <pt from Eq. (2.10), namely,

£ = p-!( u) (2.12)

where

(213)

since the function P is invertible (cf. (2.7)).

We define a function cr(is), satisfying the relation

= r0g(P-») > °" (214)

As a result, we have the following second-order quasi-linear wave equation containing

first-order dissipation,

<t>tt ~ v(v)x + —4>t = o, (2.15)
To

with the initial conditions

0(0, x) = 0O (x), 4>t(0,x) = <j>i(x),

where v is given by (2.13).

The initial data for <f>{t,x) can be obtained from (2.2) via (2.10).

This equation is now in the form analyzed by Nishida [12]. Equation (2.15) will

possess (cf. Nishida [12], Matsumara [11]) global smooth solutions 4>{t,x) € C2(K+ x R)

for |0o(•)IC2 + I0i (*)lo1 sufficiently small provided the function <7 satisfies the conditions

(cf. (2.14))
a(0) = 0,

a'(v) > (To — const. > 0, and er(-) G C4.

The solutions x) have the property

-4 (2-16)

2 !<£(*>-)lc2 + Olc1 + \<t>u(t, -)lc° < 00 for all t > 0. (2.17)
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This result is obtained using energy estimates in spaces of L2-functions together with

Sobolev's Lemma in one space dimension.

We next show that a solution of Eq. (1.5) (equivalently (2.6) with (2.4)) satisfies,

similarly,

h = \P(t, -)lc2 + \/3t(t,-)\ci + IPttit, -)|c° < 00 for allt > 0. (2.18)

Using (2.17) and Eq. (2.10)2, we have that (3X,/3XX, and (3xt are bounded in C°.

Now we will see that pt and fJtt are also bounded, which will give (2.18), under the

additional assumption

p'(0 > Pq — const. > 0. (2-19)

Equation (2.10)i implies P(£) is bounded, which in turn implies that £ is bounded, under

the assumption (2.19). Thus, there is a constant V for t £ [0, T], T < 00, such that (cf.

Definition (2.4))

-V < pt + — (3 < V. (2.20)
TO

This implies the following inequality:

-Dero < ^/3eT°j <VeTo. (2-21)

By integration of (2.21) we obtain upper and lower bounds for [3, and by (2.20), for (3t.

Let us differentiate (2.10)i with respect to t to give

<Pxt = P'iOtt - k0pxf3xt,

which shows that in view of (2.19), and the boundedness of <j>xt,l3x, and fixt■ = 0tt +

To (3t is bounded. This together with our prior result gives the boundedness of /3tt.

Similar arguments can be applied to show that from the initial conditions, |/?o(-)lc2 +

l/MOIc1 is small if and only if |<fo(*)lc2 + |^i(*)Ic?1 is small. The above arguments imply

the following:

Lemma. The Cauchy problem for Eq. (1.5) with (1.7) and (2.1) together with data (2.2)

will have global smooth solutions (3{t, x) £ C2(M+xlR) for |/30(-)lc2 + l/?i(')lc1 sufficiently

small. Then

II0MII2 = \P(t,-)\C2 + \0t(t, «)|ci + \Pu(tr)\c° <00 for t > 0,

provided that

A0 <ti(0cv(V{0) < Bo and cy(-) S C3,

where

Ao = const. >0, B0 = const. > 0,

and d is given by (2.3) with (2.4).

The constants Aq and Bq are determined such that the assumptions (2.16)2 and (2-19)

are satisfied,

A) = Po/po1

B0 = fcoi?0/(tqctoPo).
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3. Breakdown of smooth solutions. We will continue with the discussion of Eq.

(2.6) under the assumption that the function <?(£) — Cq — const. Then the function )

defined by (2.14) with condition (2.16)i is linear,

<t(v)=oqv, (3.1)

and Eq. (2.15) takes the form

4>tt ~ (ao4>x + ^—4>2t \ H—4>t = 0, (3-2)
V 2a0 Jx t0

where the constants ao and bo are introduced for convenience,

M°
a o —

7"0 CO

, ko
b0 = — ■

Co

(3.3)

The corresponding system of equations for w and p (cf. (1.9)) can be reduced to 2 x 2

form

wt - b0pwx - a0px H w = 0,
To (3.4)

pt-wx = 0,

with initial data
u>(z,0) = w0(x),

p(:r,0) =p0(x).

The above system is of nonconservative form and includes dissipation. We will use Rie-

mann invariants along characteristics to establish breakdown of solutions. This approach

has been applied successfully to other problems in the literature; see Slemrod [13], Malek-

Madani and Nohel [10], Hattori [3], MacCamy [9], Longwei and Yongshu [8]. Another

approach, used by Kosinski [5] for nonhomogeneous hyperbolic systems, cannot be ap-

plied because the system (3.4) does not satisfy the assumptions needed in [5] to show

blow up.

The system (3.4) is strictly hyperbolic for any values of p with eigenvalues:

A1 = ^ ^-b0p + \Jblp2 +4a0^ > 0,

A2 = i (^-bop - yj6qP2 + 4a„j < 0,

(3.6)

and characteristic curves, parametrized with 7 and 6, respectively,

= A1, xi(0,7) = 7,
dt (3.7)

—x2(t,S) = A2, x2(0,6) = 8.
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The Riemann invariants form a one-to-one transformation from (w,p) 6 1 x 1 to (r, s) 6

Kxl:
rp

r(w,p)=w + / A1(z)dz,
Jo (3.8)

f
s(w,p) = w + / A 2(z)dz

Jo

Next, we will use the following notation for the derivative along the characteristic x\ or

a>2 :

d ,2 d

'~dt+X fe'

^=l + X^.
dt dx

(3.9)

Then the Riemann invariants satisfy

r' = w,
To

1
s = w.

TO

(3.10)

We combine (3.8) and (3.6),

J \Jb%z2 + 4a0 dz = F(p),

r + s = 2w — ~^P2>

which gives (3.10) written in terms of r and s:

(3.11)

/ 1 / - \ ko 2

' - -;jjr(r + ») -
Ztq 4tq

(3.12)

where by Eq. (3.11)2, P = F_1(r — s).

Next we will show that rx and sx develop singularities in finite time if roiX and So.i

are sufficiently large, and so w and p cannot be in C1(M)2 for all time. The following

arguments used are based on work by Lax [7] for nondissipative 2x2 systems, and for

dissipative systems by Nishida [12], Slemrod [13], and others. One important difference

here is that our eigenvalues do not satisfy the usual condition A1 = —A2; so in Eq. (3.12)

we have an extra nonlinear term.

Lemma. Let |ro| = sup^^ |r0(a;)|, |so| = suPxgR lso(£)|- Then, as long as smooth

solutions exist, we have

sup \r(x, t)\ + sup |s(a:, t)\ < (|r0| + IsoDe^'.
zeR xeR
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Proof. We rewrite the function F(p) = r — s in Eq. (3.11) 1 in more convenient variables

( and z defined by

<=£"->• "ikp- (3'13)
Then

c = T{z) = z\Jz1 + 1 + log (z + \/z2 + 1^ .

Straightforward calculations lead to the observation

M < (3-14)

and by (3.13),

\p\ < yj^\r-s\. (3.15)

Now we integrate both equations in (3.12) along their corresponding characteristics,

r(x2{t,6),t) = r0(6) ~ 7^T J S), t) + s(x2(t,6),t) - yp2(x2(r, <5), t) j dr,

s(xi(t,j),t) = s0(7) - J j^iCr,7),t) + s(xi(t,7), t) - ^P2(a:i(r,7),r)| dr,

where, by Eq. (3.7), characteristic curves are given by

x2(t, 6) — 6 + ( A2 dr,
Jo

=7 +

Equations (3.16) and (3.15) imply the inequalities

\r(x2(t,6),t)\ < |r0(<5)| + ~ f {|r(x2(r,<5),r)| + \s{x2(t,6),t)\} dr,
to Jo

1 f1
|s(xi(i,7),<)| < |s0(7)H / {k(xi(r,7),T)| + |s(xi(r,7),r)|}rfr.

To Jo

[ A1 dr.
Jo

(3.16)

(3.17)

(3.18)

We define

R(t) = sup |r(x, t)I,
x€H

S(t) — sup |s(x,t)|.
x€R

Then it follows from (3.18) that

1
R(t) < |r0| H / {R(t) + S(r)}dT,

To Jo

1 f*
S'(t)<|so|-l / {R{t) + S(t)} dr.

To Jo

(3.19)
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Then

R(t) + S(t) < |r0| + |so| + — [ {R{t) + S(t)} dr,
TO J o

and finally, by Gronwall's inequality,

R{t) + S{t) < (|r0| + IsoDe7^,

which establishes the lemma.

Theorem. If ro,x or so,x are sufficiently large for some i£K, then any C1(K)2 solution

(w,p) to system (3.4) only exists for finite time.

Proof. The functions Ax(p) and A2(p) can be expressed as functions of (r — s) by (3.11).

Thus A1 = A1 (r — s), A2 = A2(r — s). Differentiating Eqs. (3.10) with respect to x implies

r'x + Alrl + X2srxsx + —wx = 0,
To

sx* + A^s2 + A lrrxsx + —wx = 0.

Now we use the relations

(3.20)

1 (r" — ), sx= 1 Jr' - s') (3.21)x A1 — A2 " x A1-A2

together with

A A
Wx = Ai _ \2Sx ~ \i _ \zrx' (3.22)

We will proceed with the proof based on Eq. (3.20)i, concentrating on the value of rx.

The argument applied here could be applied in a similar way to Eq. (3.20)2 for sx.

Multiplication of both sides of (3.20) i by the integrating factor /x = n(r — s) defined

^ r — s 2

H(r - s) = exp ^ (Ai^A2) «)<%) (3-23)

yields
A2 A1

{nrx)' + A2rfj,r2x - T()^ai _ A2)^ + ^(A1 - A2)2^' ~ ^ = °' 2^

We now follow Slemrod [13]. Let us define

A2)2
/(r-s) = -^ ((A1 ) (OdC (3-25)

and

e = tirx, (3.26)

so that Eq. (3.24) becomes

6' — — X2rn 162 H —-j /'■ (3.27)
r0(A — A ) r0
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Setting

9 = 0--f,
TO

k\(r — s) — —Xl/j,"1 > 0, (3.28)

A2
k2{r-s) = -A1 _ A2 > 0

gives us

Define

9' = ki§2 + — k2
to

2±f-l
k2

+ ~2f - %/• (3-29)

e = inf k\ > 0, M — sup ~k2
TO 2r/_1k2

K = inf ( — ~T§/ ) • (3-30)

Then

and

~k2
TO 2r/_1k2

1 / - M2\ ,
>--U+_) (3.31)

M2 + ~k2 2±f-l
k2

I hf2_ fof> Zq2_M (3 32)
TO L J r2-' Tq - 2 2e v ;

Without loss of generality, suppose K < 0.

Next we compare two solutions 0 of Eq. (3.29) and 0 for which 6(x, 0) = 0(:r,O) = 9o,

where

ie = if-^ + K, (3.33,

and for which 9{t) > 6(t) for some t € [0, d).

The solution 9{t) of Eq. (3.33) is given by

6{t) V B 1 - Z)„e2^ (3'3 }

where

e M "0
A=-, B = — — K, D0 = -

9o +\J^ (3.35)

#0 = M(ro - so)^o,i - —/(^o - so)-
To

From this, it follows that 9(x2(t, 6),t), and so d(x2(t, S),t), tends to infinity in finite time

t* if 0 < Do < 1 or, equivalently,

2 G
0 <  7 nr, 7   < 1 (3.36)

Mro - so)r-o,x - —f{r0 - s0) + G

where G = y/A/B.

Equation (3.36) is satisfied for ro,x sufficiently large. Since /i(r — s)rx = 6 + ^/, thus

fi(r — s)rx goes to infinity. From the lemma, /z(r — s) is bounded for t <t*, and so rx

goes to infinity.
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