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Abstract. We study the quasi-static behaviour of a linearly viscoelastic body which

is subject to boundary forces respectively of elastic type and of viscous type. The ensu-

ing problems exhibit dynamic boundary conditions. We impose on the memory kernel

only those restrictions deriving from thermodynamics and, making use of the Fourier

transform method, we show existence and uniqueness of the solution to each problem.

1. Introduction. A linearly viscoelastic body is described by the constitutive equa-

tion:
pOO

T(x, t) — Go(x)E(x, t) + / G(x, s)E(x, t — s) ds (1.1)
Jo

where T is the Cauchy stress (second-order) tensor, E = |(Vu + VuT), u is the dis-

placement vector, and

G(x, t) = Go(x) + / G(x, s)ds, t> 0 (1.2)
Jo

is a symmetric fourth-order tensor representing the relaxation function of the viscoelastic

material. The quasi-static behaviour of a continuum medium is described by the equation

V • T(x, t) + f(x, t) = 0, (x, t)€fixR, (1-3)

together with suitable boundary conditions (here Q is an open and bounded region of R3

with sufficiently regular boundary).

For materials of type (1.1), (1.3) turns out to be an integro-differential equation of

elliptic type, depending on time, whose integral kernel is G. We shall assume that G

satisfies the fading memory principle, at least in its weak form (see for instance [1]).

Furthermore, we shall impose on G the restriction dictated by the Second Law of Ther-

modynamics in the Clausius form ([7]). In particular, as Fabrizio and Morro pointed out

([3] and [4]), we shall distinguish reversible from irreversible processes in the sense that,
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in the Second Law, equality holds for reversible processes only. Such restrictions on G

are summarized in the following properties:

i) G(x,')eI1(R+) VxgH; G{-,t±, G{-,t) £ C^U) Vt > 0;

ii) G(x, t) is a symmetric tensor in SI x moreover, Go(x) and Goo(x) =

limt-^oo G(x, t) are positive definite, that is, there exist two positive constants 70

and 7oo such that

£?o(x)E • E > 7o|E|2, Goo(x)E • E > 7oo|E|2 VxeH; (1.4)

iii) the "sine" Fourier transform of G : Gs(x,uj) = G(x, s) sinujs ds is such that

Gs(x, w)E • E < 0 Vx € fl, Vw > 0, VE ̂  0. (1.5)

Remark. Indeed, the condition that G00 be positive definite does not really follow

from the above assumptions but rather from experimental evidence. Such a property is

specific for viscoelastic solids (see [10]).

A quasi-static problem for a viscoelastic body has recently been studied in [2] and [5];

it had homogeneous Dirichlet boundary conditions, namely,

J V ■ T(x, t) + f(x, t) = 0 (x, t) e x R,

1 u(x, t) = 0 (x>0 € dfi xl. ^ ^

It has been shown that restrictions i)—iii) are necessary and sufficient for the well-

posedness of the problem (1.6), that is, to guarantee existence and uniqueness of so-

lutions.

In this work we assume less simple boundary conditions. They are of dynamic type

and are to some extent related respectively to an elastic and a viscous force acting on

the boundary. We apply the Fourier transform method and show that, if the relaxation

function G satisfies restrictions i)—iii), the quasi-static problem with dynamic boundary

conditions still admits one and only one solution.

In Section 2 we consider a boundary condition of the form <r(x)u(x, t) + T(x, t) -n = 0,

where er(x) > 0 represents the elastic constant of the boundary force, whereas in Section

3 we consider mixed boundary conditions: we fix u = 0 on To C dil and assume

A(x)ii(x, t) + T(x, t) • n = 0 on Ti = dfi\ro, where A(x) > 0 is the viscosity coefficient.

Finally, the case when To = 0 is discussed. The latter is especially interesting since, in

general, such a problem cannot be solved and, in particular, nonuniqueness of solutions

arises (as in the similar problem with Neumann boundary conditions); nevertheless, the

viscosity at the boundary guarantees uniqueness of the solution among functions that

are L2 in time and also ensures its existence provided the volume force and its impulse

are L2 in time.

2. Elastic constraint on the boundary. Let us consider the quasi-static problem

of a viscoelastic body of the type (1.1) occupying a bounded region (fi is an open

connected subset of R3) and subject to an elastic force on the boundary dtt (which is

supposed to be sufficiently regular). Such a problem has the form

V • T(x, t) + f(x, t) = 0 (x, t) G Vl e M,

cr(x)u(x, t) + T(x, t) • n = 0 (x, £) 6 x R, ^ ^
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where n is the outward normal to cKl and <x(x) > 0 Vx 6 dfl is the elastic constant

relative to the force on dfl. Here the volume force f £ L2(R. L2(fl)) plays the role of the

supply. Substituting (1.1) into (2.1) we obtain the integro-differential problem

J V • ^Go(x)Vu(x, t) + /0°° G(x, s)Vu(x,< — s)ds^ + f(x, t) = 0 (x, i) £ x R,

icr(x)u(x,i) + Go(x)Vu(x,i) • n + J0°° G(x,s)Vu(x, t — s) • nds = 0 (x,t) £ dfl x R.

(2.2)
We first seek weak solutions for the integro-differential problem (2.2). They and their

functional spaces as f £ L2(R, L2(£l)) will be determined through the following definition

(see [11], chap. Ill, Theorem 3.A):

Definition 2.1. A function u is said to be a weak solution of the integro-differential

problem (2.2) with f £ L2(R, L2(fl)) if u £ L2(R, H1 (fi)) and if the problem in variational

form

J ^Go(x)Vu(x, t) + J G(x, s)Vu(x, t — s) ds^j • Vv(x) dx

/ (j(x)u(x, t)v(x) da = / f(x, £)v(x) cbc
J do. Jn

(2.3)
is satisfied Vv € H1 (f2) and € ]R.

In order to prove existence and uniqueness of solutions we consider the Fourier trans-

form of (2.2). From now on, we identify G(x, •) with its causal extension to R. that is,

we consider G(x, s) = 0 when s < 0, so that the Fourier transform G of G can be related

to its "sine" Gs and "cosine" Gc Fourier transforms as follows:

G(x,w) = Gc(x,lj) - iGs(x,u/). (2.4)

Therefore, if G denotes the following fourth-order symmetric tensor:

G(x,w) = G0(x) + G(x,lo),

the transformed problem of (2.2) is defined for each w € R as

J V • (G(x,w)Vu(x,w)) -(- f(x, oj) = 0 x £ fi,

1 cr(x)u(x, to) + (G(x,u)Vu(x,u)). n = 0 x £ d£l.

+

(2.5)

In this way, we reduce the study of an integro-differential problem to a family of elliptic

problems depending on a parameter lj £ R.

Definition 2.2. For each fixed w,u is said to be a weak solution of problem (2.5) if

u £ Hl (fi) and for each v £ we have

[ G(x, w)Vu(x)Vv*(x)c!x + I <r(x)u(x)v*(x) da. — f f(x, w)v*(x) dx.
Jn Jon Jn

(2.6)

Remark 2.1. Observe that the Fourier transform and its inverse are continuous map-

pings of L2 onto itself. Therefore, if u is a weak solution of (2.2) then u(-, w) is a weak

solution of (2.5) for almost all ui £ R, whereas if u(*,o;) is a weak solution of (2.5) for

almost all w £ R and u £ L2(R, //1(fi)), then u is a weak solution of (2.2).
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Theorem 2.1. If G satisfies i)—iii) then, for each fixed and for each f(-, u>) £ L2(£l),

there exists one and only one weak solution u(«, u>) £ of (2.5).

Proof. For the Lax-Milgram theorem, the thesis is proved if the bilinear form

a(u,v;w)= f G(x,u)Vu(x)Vv*(x) dx + f <r(x)u(x)v*(x)
J n Jd n

is coercive ([12]) in i/1(f2), namely,

|a(u,u;w)| > C(w)||u||?n.

(Henceforth || • ||S£> will denote the norm in the functional space HS(D) and || • ||,£> =

II • ||o,d will denote the norm in L2(D).)

Consider first the case to = 0.

By (1.4)2, since G00 (x) = G0(x) + Gc(x, 0) and a = infxean a(x) > 0 we obtain

a(u,u;0) > 7oo||Vu||2n + cr||u||29n. (2.7)

When lo ^ 0, since the tensor G(x, w) is bounded, there exists a positive bounded function

K(uj) > 0 such that

|G(x,w)Vu(x)Vu*(x)| < A"(w)|Vu(x)|2.

Moreover, (1.5) implies that there exists a positive function 7s(w) such that

—Gs(x, w)Vu(x)Vu*(x) > 7s(o;)|Vu(x)|2 for uj > 0 if Vu 7^ 0; (2.8)

therefore, we get the following two inequalities:

|a(u,u;w)| > Re{a(u, u; a;)} > -A'(<x))||Vu|||2(n) + cr||u||^2(an), (2.9)

|a(u,u;w)| > | Im{a(u, u; w)}| > 7s(^)|| Vu|||2(q), (2.10)

where 7s(w) > 0 Vw ^ 0. After some simple calculations, from (2.9) and (2.10) it follows

that

|a(u,u;w)| > a(w)[||Vu||2n + ||u||2sn] (2.11)

where

<•("> = 7,(„)+(2|K(a,)| ' Ml'"> > °' (2J2)

It is easy to show (see, for instance, [11], chap. Ill, Theorem 5C) that, if u £ i/J(f2)

(with bounded and sufficiently regular) then its //'-norm in fi is bounded by the

L2-norm of Vu in Q and the L2-norm of the trace of u in dfl, i.e., there exists a constant

C\ (fi) > 0 such that

[l|Vu||2n + ||u||29Q] > Ci(17)||u||f j-j (2.13)

Vu £ H1(fi). Thus the norm defined by the left-hand side of (2.13) is equivalent to the

norm of H1(fi). By virtue of (2.11) and (2.13) the coercivity of a(u, u;u;) is proved for

each wtl, □

On the basis of the previous result we can state the following theorem.
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Theorem 2.2. If G satisfies i)-iii) then, for every f G L2(R, L2(J7)), the integro-

differential problem (2.2) has one and only one weak solution u G L2(R, H1 (fl)).

Proof. By Theorem 2.1, Vw such that f(-,o;) G L2(Jl), problem (2.5) admits one and

only one weak solution u(',w) G HJ(fi) and we have

|o(u, u; w)| = [ f(x,w)u*(x)
Jn

dx. < ||f||,n||u||ifj < ||f||,n||u||i,n- (2.14)

(2.17)

(2.18)

By some energy estimates for the transformed problem (2.5), we show now that, if

f G L2(K, L2(Q)) then u G L2(R, Hl (fi)). By virtue of (1.4) and of the continuity of

G"(x, •), one can find wi,w2 >0 such that

[G0(x) + Gc(x,w)]Vu(x)Vu*(x) > 7i|Vu(x)|2 VuG[-ui,ui], (2-15)

[G0(x) + Gc(x,w)]Vu(x)Vu*(x) > 72|Vu(x)|J V|w| > u>2. (2-16)

Inequalities (2.15) and (2.16) imply, respectively,

|a(u,u;w)| > Re{a(u, u; a;)} > 7i II Vu||2fi + <r||u||fan

> ai[||Vu||2n + ||u||2an] Vw G [-wi,wi],

|a(u,u;w)| > Re{a(u,u;w)} > 72||Vu||2n + a||u||2an

> a2[||Vu||2n + ||u||2an] V|u>| > ll>2-

If we denote / = [a>i,u>2] and a — min{ai, a2,inf|cu|e/ a(a;)}, ^ is easy to check that

a > 0; moreover, (2.11), (2.17), (2.18), and (2.13) yield

|o(u, u; w)| > aCi(fi)||u(a;)||f)n.

This and (2.14) lead to the following inequality:

||u(a;)||i,n<[l,aC1(n)]-1||f(a;)||in. (2.19)

If f G L2(K, L2(fi)), then f G L2(K, L2(f2)) too, and ||f||,n G L2(R); therefore, by virtue

of (2.19), we have u G L2(R,H1(fi)). Since the Fourier transform and its inverse are

continuous mappings of L2 onto itself, the thesis follows. □

Finally, well-known results about elliptic problems imply that, if G, a, and dfl are

sufficiently regular, the weak solution u of (2.2) is indeed a classical solution, i.e., u G

L2(R, H2(Q)). Before stating the next theorem let us recall some properties of G :

Proposition 2.1. If G satisfies i)-iii) then, for each fixed wGl, the bilinear form

ai(u,v;w) = I G(x, w)Vu(x)Vv*(x) dx (2.20)
J n

is strongly elliptic and its coefficients are uniformly Lipschitz. Moreover, there exist

7, K > 0 such that

Mu,u;w)| > 7l|Vu||2n VweE, (2.21)

IGijfc^xxjw) - Gijfc/(x2,w)| < K\x.i - x2| Vxi,x2Gft Vw G K. (2.22)

Proof. Inequality (2.21) follows immediately from (2.8), (2.15), and (2.16). In fact,

we have 7 = min{7x,72,inf|w|e/7(u>)} > 0. Besides, i)2 implies that G(*,u;) is uni-

formly Lipschitz on for each fixed uGl, whereas i)i implies that G(x, •) is absolutely

continuous on R and lim^^oo G(x,u;) = Go(x).

This is sufficient to ensure (2.22). □
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Theorem 2.3. If G satisfies i)—iii), a G C1 (dft) and dft is of C2-class then, for every

f G L2(R, L2(ft)), the integro-differential problem (2.2) has one and only one solution

u G L2(R,H2(ft)).

Proof. In fact (see [8], Theorem 2.4.2.6), if G satisfies i)—iii), a G Cl(dft) and dft is

of C2-class and f(*,w) G L2(ft), then the solution u(-,u;) of the elliptic problem (2.5)

belongs to H2(ft). Moreover, the following a priori estimate holds for each wGl:

HfiMlkn < C"(«)(||f(a;)||in + ||u(W)||1,n). (2.23)

C' depends on cu through the ellipticity constant of ai (u, v, to) and the Lipschitz constant

of its coefficients; so (2.20) and (2.21) ensure that supweR C' M = C" < oo. Hence it

follows that

lluHlb.o < C"(||f(W)||,n + ||uM||ltn). (2.24)

By the properties of the Fourier transform, f G L2(R, L2(ft)) and (2.19) imply u G

L2{R,H2{ft)). □

3. Viscous boundary conditions. We now consider a viscoelastic body occupying

a bounded domain ft when a subset T0 of its boundary dft is fixed and the remaining

part F | = dft\T0 is subject to a viscous force. In this case quasi-static behaviour of the

material is governed by the following system:

V • T(x, t) + f(x, t) = 0 (x, t) G ft x R,

u(x, t) = 0 (x,i)Gr0x]R, (3.1)

A(x)u(x, t) + T(x, t) ■ n — 0 (x, t) G Tj x E,

where A(x) > 0, Vx G Ti represents the viscosity coefficient corresponding to the dissi-

pative stress on Ti. Substituting the constitutive equation (1.1) into (3.1) we obtain the

following integro-differential problem:

'V • ^Go(x)Vu(x, t) + J"0°° G(x, s)Vu(x, t — s) dsj + f(x, t) = 0 (x, t) G ft x M,

u(x,t) = 0 (x, t) G T0 x K,

, A(x)u(x, t) + G0(x)Vu(x, t) • n + /0°° G(x, s)Vu(x, t - s) • rids = 0 (x, t) G Ti x R.

(3.2)
In treating such a kind of mixed boundary conditions (see [13]) we make use of the

functional space V = Hq (ft U Ti) which denotes the closure, in the H1 norm, of C°°(ft)

functions whose support is a compact subset of ft U Ti.

Following Lions ([9]) we define a weak solution for problem (3.2) as follows.

Definition 3.1. A function u is said to be a weak solution of the quasi-static problem

(3.2), with f G L2(R, L2(ft)), if u G L2(R, V) and if, Vv G V and V£ G R, it satisfies the

following equality in variational form:

J ^Go(x)Vu(x,<) + J G(x, s)Vu(x, t — s) • Vv(x) dx

+ — f A(x)u(x, i)v(x) da = f f(x, f)v(x) dx.
dt J rj J n

(3.3)
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Then the Fourier transformed problem of (3.2) is defined for each u G R as

V • (G(x, w)Vu(x, uj)) + f(x, uj) = 0 xeO,

u(x,w) = o x e r0, (3.4)

iu;A(x)u(x,a;) + (G(x,w)Vu(x,w)) • n = 0 x G Fi.

Definition 3.2. For each fixed w € R, u is said to be a weak solution of problem

(3.2) if u G V and if

f G(x, w)Vu(x)Vv*(x) dx + iuj f A(x)u(x)v*(x) da = f f(x, w)v*(x)dx
J n J ri J n

(3.5)

holds for every v G V.

Definitions 3.1 and 3.2 are strictly related like the corresponding definitions of the

previous section, in the sense explained in Remark 2.1.

We denote by meas(Fo) the measure of To in the <9f2-measure and discuss separately

the cases meas(Fo) > 0 and meas(Fo) = 0. We shall see that these cases are fairly

different in that the first one is always well-posed if f G L2(R, L2(f))), whereas the

second needs further requirements in order to be solved.

Theorem 3.1. For each fixed uj G R, if G satisfies i)—iii) and if meas(Fo) 7^ 0, then

Vf(*,<x>) G L2(fi), there exists one and only one weak solution u(*,w) G V of (3.4).

Proof. As in the previous section we show that the bilinear form

a(u,v;u;)= / G(x, w)Vu(x)Vv*(x) dx. + iuj / A(x)u(x)v*(x) da
Ju J

is coercive in V, i.e., there exists /3(w) > 0 such that

|a(u, u; u>)\ > /3(w)||u||i

For this purpose, let us remark that, if meas(Fo) 7^ 0, Poincare's inequality

||Vu||2n>C2(Q)||u||?^ (3.6)

holds for every u G v (see [13], Lemma 1.46).

When w/0, since A = infxSr, A(x) > 0 and

Im{a(u,u;w)} = - / Gs(x,w)Vu(x)Vu*(x) dx + uj / A(x)u(x)u*(x) da,
Jn JYi

(2.8) and (3.6) yield

|a(u,u;w)| > | Im{a(u, u; w)}| > 7s(w)||Vu||2f2 + A|w|||u||2an > ^(a;)||u||f n (3.7)

where (3(u>) = C2(fi)75(u;). On the other hand, when uj = 0, by (1.4)2 we obtain

|o(u,u;0)| > Re{a(u, u; 0)} = [ Goo(x)Vu(x)Vu*(x) dx > 700||Vu||2n > /?oo||u||2n.
J n

Hence a(u, u; uj) is coercive for each fixed uj G R, and the thesis follows. □
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THEOREM 3.2. Under the hypotheses of Theorem 3.1 on G and r0, for every f G

L2(R, L2(U)), the integro-differential problem (3.2) has one and only one weak solution

u G L2(R, V).

Proof. By Theorem 3.1, for each lu such that f(*,u>) G L2(Q), problem (3.4) admits

one and only one weak solution u(*,w) G V and we have

|o(u,u;w)| = [ f(x,w)u*(
Jn

x) dx ^ P||,n||u||.n < ||f||,n||u||i,n. (3.8)

Moreover, by virtue of (2.15), (2.16) and Poincare's inequality (3.6), we obtain

|a(u,u;w)| > Re{a(u,u;w)} > 7i||Vu||2n > /3i]|u||?if2 Vw G [-wi,wi],

|a(u, u;a>)| > Re{a(u,u;w)} > 72||Vu||2n > /?2||u|li,n V|w| > u2.

If I = [u>i,a;2] and /3 = min{/?i,/32, infiwi6/ /3(w)} > 0, then (3.7) and the latter inequali-

ties lead to

|a(u,u;w)| > /?||u(w)||? n.

In this way, combining the last inequality with (3.8) we conclude that

||u(w)||i,fi </3"1||f(w)||in- (3.9)

Since f,f £ L2(R, L2(f2)), (3.9) ensures that u G L2(R, V).

The Fourier transform is an automorphism on L2. Therefore, this is sufficient to prove

the existence of one and only one weak solution u G L2(R, V). □

Finally, we consider problem (3.2) when To = 0. In this case V = H:(fi).

Observe that such a problem is not solvable in general; more precisely, its solution is

not unique. (In fact, bounded functions of the type u(x, t) = const, satisfy (3.2) with

f = 0 if To = 0.) Nevertheless, we shall see that the homogeneous problem, associated to

(3.2), only admits the trivial solution within the functional space L2(R, Anyway,

in order to ensure existence of solutions in such a functional space, it is no longer sufficient

that f G L2(M, L2(fl)), but one must require also that the impulse

g(x,t)= f f(x, s) ds (3.10)
J —OC

belongs to the space L2(R,L2(£l)). The difficulties arising in (3.2), when To = 0 and

F[ = <9f2, are physically reasonable, because, by virtue of (3.2)3, the material is neither

fixed nor elastically attracted on the boundary, whereas the integro-differential equation

(3.2)i involves at most the displacement gradient. In some problems of this kind (such as

the similar one with Neumann boundary condition) the solution is unique only among the

functions with vanishing spatial average, and its exists only if the supply f has the same

feature; this is because, roughly speaking, the problem cannot control the "displacement

on the whole" of the body.

On the contrary, the boundary viscosity (3.2)3 controls, at least in part, the "motion on

the whole" of the body because it depends on the displacement velocity. In this way one
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can find solutions to the problem (3.2) with nonvanishing spatial average. Unfortunately,

the nature of the boundary force requires that the impulse g, associated to f by (3.10),

belong to H1 (R, L2(tt)), in order to obtain solutions in L2(R, H1^)).

Finally, observe that if g £ L2(Q)) then f £ L2(R, L2(Q)) must have vanishing

time-average on R, but not every function f £ L2{R, L2(fi)), with vanishing time-average

on R, is such that g £ Hl (R, L2(£l)) (consider, as an example, f(t) — g'{t) — —t(t2 +

I)"5/4 and g(t) = 2(t2 + l)"1/4).

Theorem 3.3. Under the hypotheses of Theorem 3.1 on G, for each f such that g,

defined by (3.10), belongs to /f1(R,L2(fl)), the integro-differential problem (3.2) with

To = 0 has one and only one weak solution u £ L2(R,

Proof. First of all observe that, when To = 0, Theorem 3.1 still holds for each

uj / 0. In fact, by (2.13), inequality (3.7) can be easily proved if we take =

Ci(fi) •min(7s(a;), A|w|). In this way, the Fourier transform of the homogeneous problem

associated to (3.2) with To = 0 only admits the trivial solution u(*,w) = 0 Vw / 0.

Since such a solution can be extended, by continuity, to lo = 0, and since the Fourier

transform is injective, this implies that the solution to (3.2) with To = 0, if it exists in

L2(R, i/1(0)), is unique. Besides, by virtue of (3.7), (2.15), and (2.16) we can find two

positive constants ui\ and UJ2 such that

2|a(u, u; w)| >| Re{a(u, u; w)}| + | Im{a(u, u; ")}|

>7i||Vu||2n + A|w|||u||2an > ACi(n)|w|||u||?in V|w| £ ]0,wi],

2|a(u, u;w)| >| Re{a(u, u; w)}| + | Im{o(u, u; ")}|

>72||Vu||2n + A|a;|||u||29n > -y2Ci(O)||u||f ^ V|w| > u>2.

Remarking that (3(u>) > 0 for |w| £ [u>i,u>2], from (3.8) one gets

(3.11)

(3.12)

lluHlli.fi < C73(n)||f(w)||,n V|w| > uiu (3-13)

||u(fi)||i,n<2[AC1(fi)|a;|]-1||fH||,n V|w| £ ]0,Wl]. (3.14)

If f has a primitive in the sense of distributions and g £ iJ1(R, L2(f2)) is defined by

(3.10) then ||f(w)||,fi = |ti;|||g(cb>)|]^ so that from (3.14) it follows that

||u(w)||i,fi < C4||g(u;)||iSi V|u>| £ ]0,uj{\. (3.15)

Estimates (3.14) and (3.15) ensure that, if g, f £ L2(R, L2(f2)), then there exists a

function u £ L2(R, H1^)) such that u(-,u;) is a solution of (3.4) for each u for which

f(*,w) £ L2(fi). By virtue of the Fourier transform and of its inverse, the integro-

differential problem (3.2) has one and only one solution u £ L2(R, H1(fi)) whose Fourier

transform is u. □

Finally, if G, A, and dG are sufficiently regular, we can state that the weak solution u

of (2.2) with F0 = 0 is indeed a classical solution, i.e., u £ L2(R, H2(tt)).
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Theorem 3.4. If G satisfies i)—iii), A € and dfl is of C2-class, then for every f

such that g, defined by (3.10), belongs to H1(R, L2(£l)), the integro-differential problem

(3.2) with To = 0 has one and only one solution u £ L2(R, H2(ft)).

Proof. By using the same argument as in Theorem 2.3 we can say that, if G satisfies

i)-iii), A € Cl(d£i), d£l is of C2-class, and f(*,w) € L2(Vi), then the solution u(*,w)

of the elliptic problem (3.4), with To = 0, if it exists, belongs to H2{fl) and satisfies

inequality (2.24). Theorem 3.3 and (2.24) imply that u € L2(M, H2(£l)); by properties

of the Fourier transform the thesis follows. □
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