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Abstract. The series expansion of the prolate radial functions of the second kind,

expressed in terms of the spherical Neumann functions, converges very slowly when the

spheroid's surface coordinate £ approaches 1 (thin spheroids). In this paper an analytical

series expansion in powers of (£2 — 1) is obtained to facilitate the convergence. Then,

by using the Wronskian test, it is shown that this newly developed expansion has been

computed with a double precision accuracy.

Introduction. The prolate spheroidal radial functions satisfy the following differen-

tial equation [1], [2]:

i ty " !) - (A™ - h2¥ + ^rr^) Rmn(h,Z) = 0,

m = 0,l,2,..., n = m, m + 1, m + 2,...

where £ is the spheroid's radial coordinate (£ > 1), and Xmn is the spheroid's eigenvalue

for the given h parameter, i.e., h = kF where k = 2-k/X is the operating wavenumber

and F is the semi-interfocal distance of the spheroid. According to Flammer [2] the

second solution of the above differential equation, which can be expressed in terms of the

associated Legendre functions of the first and second kinds, is given by

{oo OO \

dr(h)QE+r(o+ E'
r=2m,2m+l r=2m+2,2m+l J

(2)
where denotes the summation over even or odd values of r if n — m is even or odd.

Also, the expansion coefficients and follow the recursion relations given in [2]

along with the spheroid's joining factor Kmh{h) [2, p. 33]. Another representation of the

prolate spheroidal wave function of the second kind is given in terms of the following

spherical Neumann expansion [2]:

' f^ar(h)nm+r(hO, (3)
V ^ / r=0,l
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where a™n are the normalized expansion coefficients, and nm+r(/i£) are the spherical

Neumann functions.

Equations (2) and (3) are the main interest. It is historically well known that the

series in (3) converges very slowly when /i£ is small. According to Morse and Feshbach

[3, p. 1506], "the series does not converge well for h£ small, in fact it is an asymptotic

series not being absolutely convergent for any finite value of /i£." Recently, Sinha and

MacPhie [4] summed this series up to 40 terms and replaced the residual series by an

integral. However, the integrand of this integral is a curve-fitting function which may

not be reliable for large to or n.

In this paper we focus on the series given by (2) expressed in terms of the associated

Legendre functions of the first and second kinds. Here, due to the lack of the development

of the Q™+r(£) function, Flammer [2] expanded the prolate spheroidal function of the

second kind in powers of (£2 — 1) by using that of the first kind and the Wronskian of

Rmh(h,{;) and Rmh{h,£). However, Flammer's prolate spheroidal wave expression of the

second kind is cumbersome and complicated, and is limited to some lower values of m.

For the above purpose we first derive the representations of the associated Legendre

function of the second kind Q™+r(£) for any integer m + r (r — —2m, —2m + 1,...,

m — 0,1,2,...). By using the linear hypergeometric transformation, Q™+r{£) is given

in closed form for —2m < r < — 1. However, for r > 0, Q™+r(£) is explicitly expressed in

terms of the associated Legendre functions of the first kind. By using these representa-

tions it will be proved that the prolate spheroidal radial function of the second kind can

be expressed in terms of its first kind. Nevertheless, when £ is near to 1 an analytical

series expansion in powers of (£2 — 1) is obtained and all the expansion coefficients are

expressed in closed forms in terms of the d™n and coefficients.

2. Closed form expression of <517(0 {v > —to). First, for v = —to, —to +

1,..., -1, we start with the general definition of Barnes [5, Ch. XV, p. 326] for positive

integers m as follows:

= sin(/z + to)tt T{u + m + l)F(l/2) (£2 - l)m/2

" sin utt 2"+1r(is + 3/2) 1

„ /v m v m 1 3 ,_9\ . ..
' F ( o + TT + 1) o + ~o~ + o' V + o ' £ )' l£l —

(4)

where F(a, 6; c; z) is the hypergeometric function with z = £~2, a — v/2 + to/2 +1,6 =

v/2 + to/2 + 1/2, and c = a + b — m. By using the linear hypergeometric transformation

for to = 1, 2,3,..., F(a, 6; c; z) is given [6, p. 560, Eq. 15.3.12] as follows:

F(a b. a+b — m- z) — r(m)r(a + 6-m)(1 - z)— Y (a ~ rn)k(b - m)k _ k
r (a,o,a+o m,z) r(a)r(6) 1 ' k\ (1 - m)k [ '

_(_pm r(a + 6 - to) y, (g)k(b)k

F(a — m)T(b — m) fc! (fc + to)!

- V(k + 1) - V(k + to + 1) + V(k + a) + <S>(k + 6)]
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for m = 1,2,, | arg(l — z)\ < n, |1 — z\ < 1, where ^(a:) = j-[InT(a;)] is the Digamma

function. In our case F(a — m) = T{v/2 — to/2 + 1), T(6 — m) = T(v/2 — to/2 + 1/2)

and, since u — —to, —to + 1,..., —1, the Gamma function T(a — to), or T(6 — to) with

argument 0, —1, -2,..., tends to infinity. Hence, (5) is reduced to

m—1

F(a b-a + b-m-z)= ^ [ ^ ~ ' (1 - z)-m V — — )k[ ~ ,k fj _ z)k
[ ' ' + ' ' r(a)r(6) 1 j ^ fc! (1 — m)fc ( j '

m = 1,2,... . (6)

If we now substitute (6) into (4), then Q™(£) (i/ = m + r) is given in closed form as

follows:

o- IC) I 1 ra-'fo, +V,„+rK)-( i) •! l™ 1). £,+1 Zj fe! (1 — m)t {" ' (7)

r — —2m, —2m + 1,..., —1.

If to = 1 and r = —2, by using (7) we obtain Q—i(0 — —£(£2 ~ l)"1^2) which agrees with

that which is derived by using the recursion formula of the associated Legendre functions

[6, p. 334, Eq. 8.5.3],
For v = 0,1,2,..., from the definition of Hobson for the associated Legendre functions

of argument greater than 1 [5, p. 325],

OT = (^-ir/2^, (b)

where the Legendre function of the second kind Qv{£) [2, p. 36] is given by

QM) = (f±i) - (9)

wherein [\{v — 1)] denotes Gauss' notation of the largest integer in |(i/ — 1). By sub-

stituting (9) into (8) and then using Leibniz's theorem [6, p. 12] for the mth derivative

of the product of two functions Pv{i) ln(|3j), the associated Legendre function of the

second kind Q™(f) is expressed in terms of the associated Legendre function of the first

kind as follows:

<T(0 = \ in iT(0 +\D"1)*"1;
ml t~i\k/2 /^+i\fc/2

iTi) ~ \T=i)k(m — k)\

1)1
9u — Ak — 1

(10)
Of course, in (10) -P^(£) follows the Hobson definition [5, p. 325] for ]£] > 1, i.e., P^(£) =

-1 Y^sp^o/di1.
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( o\

3. Power series representation of Rmn(h, £). If the expressions for Q'" (£), given

by (7) and (10), are used in (2), the prolate spheroidal function of the second kind

is computed with ease for arbitrary argument £. However, as £ approaches 1, it is very

useful to express Rmn(h, £) as a power series in (£2 — 1). However, the associated Legendre

functions are first expressed in terms of the hypergeometric function of argument 1 — £2

[2, p. 36] as follows:

Pl+2s(0 = (£2 - l)1/2f (—s, 1/2 +s + l;l + 1; 1 - e), (11)

p!+2s+1(0 = - l)1/2^(-^ 3/2 + S + l-l + 1; 1 - £2)- (12)

If we use <2™(£) giyen by (10) and (7) in (2) it is straightforward to prove that the
(2)

prolate spheroidal radial function of the second kind Rmn{h,(,) has the following form:

R[±M

2 „L2> (h\ Umn !)M' (» -m)even'

(f^i) + TT5f77;(^2 " 1)"f E C"(C2 - i)". (n-m) odd,
^ Kmn^J \s / Kinn\<l) _ q

(13)

where Rmh (h, £) is the prolate spheroidal radial function of the first kind and is obtained

from the prolate spheroidal angle function of the first kind Smn(h, £) by the relation [2, pp.

32-34] R^l 0 — ^inn(^i^)/^mn(^) with ^mn(^) being the joining factor. Klammer

deduced the above form without recognizing his factor Qmn{h) — Kmh{h)/Kmh(h) [2, p.

35]. In view of (2) and (13), the power series expansion given in (13), i.e., hmn(h,£) =

E^o<5™™(£2 ~~ following form from (2) and (13):

OO

hmn{h,0 = Y,6™n^-lY
fi=0

£ <CnW

_r= — 2m,— 2m-\-l

= (r1Umn + l-Umn)(e-l)m/2

■ {^+r(0-|ln(f^)p^+r(0}+ ^rWPT-m-1 (0
^ / ' r — 0rrt-i-0 Orri -U1r=2m+2,2ra+l

(14)
where umn is defined by

f 1, (n-m) even,
Wmn — S (15)

1,0, (n — to) odd.

From (7), (10), (11), and (12), with the hypergeometric functions expressed in powers

of £2 — 1, the right-hand side of (14) can also be verified as a power series of (£2 — 1).

To find the expansion coefficients S™n, both sides of (14) are differentiated /j times with

respect to (£2 — 1) with £2 —> 1. Hence,

1 dv

^ = J^.l^odx^^r,ln^,^, x = £ ~ - 0-^)
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It is shown in Appendix A that the differentiation process (// times) is rather tedious

but straightforward. After the differentiation, by retaining only the coefficient associated

with the zeroth power of (£2 — 1), the expansion coefficients <5™n can be expressed in terms

of the coefficients d™n(h) and d™£(h) as follows:

-2,-1 oo oo

6™n= D^mnd™n{h)+Y^{D^mn+D^mn)d™n(h)+ D^mnd^{h).

r=—2m,—2m+l r=0,l r=2m+2,2m-fl

(17)

4. Closed form expressions of DlrtJrnn (i — 1,2,3,4). The coefficients IJ'rfimn

(i = 1,2,3,4), which are independent of h, are derived in Appendix A. Their closed form

expressions are given by

TTl 1 / 1 \ fc / | \

=(-1)""2"-"-'("'-1)l g - mi - m)k {r+2k+1W-

fi — k > 0, (18)

22m-

^ (fe-l)!(2ro + r-fc)! J 1 V' (s/2)!
^ 2k(k + r)! (m — fc)! V h'°> ̂  ^ 8\ {k - s)\ (s/2 - t)\t\

(k + r •UmTi)/_2(At-m+fc-t) + l(r k + 2 TO + 1 + UrorO^-m+fc-t)-!

2 ^(/x tti H- k £)! {rn k + 1)n—m-\-k—t

(s±1 _ y \\
\ o Ujmn)-

k .1-2k~umn] /s+1

S s\{k-s)\(^-umn-t)\t\

1

2~2t(/x - to + k - £)! (to - k + l)M_m+fc_t

{k+r— l+umn) _2(n-m+k-t)+i(r ~ k+2m+2 — wmn)2(M-m+fc_t)_1j

l^ — m + k — t> 0, (19)

D3Mmn = (-l)M-m+1 '|(^+r)l 2(TO + r)-4fc-l (2m+r-2fc-l)!

22^~mm\ (/j, - to)! (to + l)^_m (m + r — k)(2k + 1) (r — 2fc — 1)!

(r — 2k — 1 — Mmn)-2(M-m) + l(r — 2/c + 2to — UTOn)2(M_m)_1, /X > TO,

(20)

=  (r - !)!  (r + 0" ~ 2TO - 1 - -Umn)/_2(/J-m) + l

22^~mm\ (r — 2m — 1)! (/x — to)! (to + l)M_m

H>m, (21)

where the notations (a)fc, {ct)'2k_1, ~{a)'-2k+1 are defined by

(a)0 = 1, (a)k = a(a + 1) ■ • ■ (a + k - 1), A: = 1,2,...,

(a)'_ i = 1, (a)2fe-i =a(a + 2)(a + 4)---(a + 2k-2), k = 1,2,..., (22)

"(a)i = l, "(a)-2fc+1 =a(a-2)(a-4)---(a-2fc + 2), k = 1,2,....
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mnTherefore, having the coefficients £)^m™ (j = 1,2,3,4), the expansion coefficients #

are determined from (17) and the power series of Rmh{h, £) given by (13) is completely

specified.

5. Recursion relation among the 6™n coefficients. In addition, there exists a

recursion relation among the S"lrl coefficients. To find it we substitute (13) into (1) to

obtain the following inhomogeneous radial differential equation:

(£2 ~~ + ~ £2 _ i ~ Xmn + h2 + h2(Z2 ~ !) {(£ — Oumn + 1}

(£2 - 1 )-m/2hmn(h,Z) = 2KW(h)±RW(h,Q. (23)

It is noted that (23) was also obtained by Flammer [2, p. 35] using the Qmn{h) coefficients.

The pro

follows:

The prolate spheroidal radial function of the first kind Rmb(h,£) can be expanded as

i 00

nS&M = "71)777{(£ - ^ - I)m/2E(-1)^2TW(^2 - i)fc, (24)
Kmn{h) k=0

where the expansion coefficients C%ln(h) are given in closed forms in [2, pp. 23-24], The

final step is to substitute the expansion of /imn(/i,£) into (23) with the use of (24) to

obtain the following recursion relation:

- m)6™n + [{2n - m - 2 + umTl)(2^ - m - 1 + umn) - \mn + /i2]^"1™, + h26™™2

( —l)r_m2(2/x - m)C%?__2m, (n - m) even,

(_l)r-m-i2(2/x Tn \)C^_2m_2 + (-1)^2(2^ - m)C%?_2m, (n - m) odd.

(25)

The relation (25) was also obtained by Flammer [2, p. 36] using the Qmn coefficients. It

is noted that the above relation breaks down when ji = m. In this case 6""' must be

calculated from (17) with Dlrmmn (% = 1,2,3,4) given by (18), (19), (20), and (21).

6. Numerical results. For thin spheroids Table 1 shows the convergence character-

istics of the prolate spheroidal radial function of the second kind in terms of the number

of truncated terms N of the infinite series of (13) with h = 2 for m — 1 and n = 11. The

table also indicates that the computation time of the prolate spheroidal radial functions

becomes faster as £ approaches 1 since only a few terms are needed. Table 2 records the

values of Rrnn(£) for £ = 1.005,1.00005,1.0000005, associated with h = 2 and m — 1

when (n — m) is even. To verify the accuracy of the prolate spheroidal radial func-

tions, the computed Wronskian Rmh(h, £)Rmh {h,0 - Rmn{h,0R^n (/i, £) is compared

to the theoretical Wronskian ■ There is agreement to double precision accuracy.
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Table 1: Convergence characteristics of the prolate spheroidal radial function of
(2^

the second kind FQnn{h,£) in terms of N (number of terms in the series of (13))

with h = 2 for m = 1 and n = 11 in the neighborhood of £ = 1.

f = 1.005

-8.103142281 x 109

-1.202751218 x 1010

-1.215921863 x 1010

-1.216091045 x 1010

-1.216091723 x 1010

-1.216091723 x 1010

£ = 1.00005

-2.191651531 x 1011

-2.191690437 x 1011

-2.191690450 x 1011

-2.191690450 x 1011

-2.191690450 x 1011

-2.191690450 x 1011

Table 2: Values of the prolate spheroidal radial function of the second kind

Rmn(h, £) with h — 2 for m = 1, n = 1,3,..., 11 in the neighborhood of f = 1.

1

3
5
7
9

11

£ = 1.005
-4.079018848

-4.027260647 x 101

-1.792041263 x 103

-1.941032704 x 105

-3.855695141 x 107

-1.216091723 x 1010

£ = 1.00005

-4.030309738 x 101

-4.406578580 x 102

-2.187624904 x 104

-2.675135913 x 106

-6.055346991 x 108

-2.191690450 x 1011

f = 1.0000005

-4.029237720 x 102

-4.415280389 x 103

-2.198377442 x 105

-2.698260340 x 107

-6.134558366 x 109

-2.231482592 x 1012

Appendix A. Derivation of the coefficients Dlrfirnrl. Prom (7), (10), (14), (16),

and (17) the coefficients DlrfJ,mn are found to have the following expressions:

1 -fM
D^mn = ^ am — [{(r1 -1 )umn +1}(^2 -1 r/2Q™+rm,

x = £2 — 1, r = —2m, —2m + 1,..., —1,

(A-l)

1 ^ |

= v - iK-+n(«2 - ir i/2

£-l\fc/2 /^ + l\fc/2

PZ+rtt) . (A-2)
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(±(m+r-l)]

D3 nmn = _ 1 Um V-
u\ x—>0 ^

2 (m + r) — Ak — 1

fc=o

dxv

(m + r — k)(2k + 1)

x ^[{(r1 -1)«mn + me -i)m/2p™+r_2fc_1(0],

(A-3)
1 dP

D4rnn = - lim —K(r1 - 1)*W + 1}(£2 - l)m/2i^m_i(0]. (A-4)
ju! x—>o ctef1

To derive the coefficients D^mn for r = —2m, —2m + 1,..., — 1 the closed form ex-

pression of Q™+r(0> 35 given in (7), is substituted into (A-l) yielding

(A-5)
But the last factor in (A-5) is

lim -j—
x^o dx^

(& —

{(£ - 1 )umn + 1} ^2fe+r+l

= lim Jj^(£2 - 1 + l)-fe-(r+^«+1)/2(^2 - l)fc

= lim — V
x—»o dxf '

f=0

I+i+Mmn \ (A-6)

2 >r

— ( I)*1 fc2M-fc(M - fc)! + 1 + + 2fcW-*)-i' ^

with (ck)^ As)_i being defined in (22). The substitution of (A-6) into (A-5) gives (18),

where the equality (| + l)fc(§ + |)fc = 2~2k(r + 1)2^ has been used.

Next, for the coefficients D'^irnrl given by (A-2), by using

k f(s+l)/2] , ,,

E' E {*)({'+l)/3)iLjCL, k even, or
s=l t=0

[(C - l)fc - (4 + l)fc] = 2^
k [(s—1)/2]

E' E 0 (('~*1)/2)€(^2 - 1)S fceven, (A-7)
s=l t—0

k [5/2]

E'EOffXMf, fcodd,
5=0 t=0

and (from (11) and (12))

■g-WWlg - 1)°^ Hp,m - - k + 1;1 -?),

0"'(0

2m-

(fc + r) even,

an.-lSV(^r)!^a-i)^^(-j£±Fi.T»-^: + i;TO-fc+1;1-0.
(A: + r) odd

(A-8)
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in (A-2), it is straightforward to show that D^J-irnn is given by (19) after taking the

/jth derivative with respect to x and with x —> 0. Of course, to facilitate the limiting

process the hypergeometric functions in (A-8) have been expanded in a power series of

2 = (£2 - 1) by using the expansion formula F(a, 0; 7; z) = Y^k=0 ̂ kT$JiT zh-

Similarly, for the coefficients Dl/mn, i = 3,4, defined by (A-3) and (A-4), by express-

ing P™+r_2k-i(0 an(l P™-m-1(0 in terms of the above-mentioned power series of the

hypergeometric functions, as given by (11) and (12), we can show that D:'^Tnn and D^ran

are given by (20) and (21).
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