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Abstract. The general initial-value problem for the linear Kelvin-Helmholtz instabil-

ity of arbitrarily compressible velocity shear layers is considered for both the unmagne-

tized and magnetized cases. The time evolution of the physical quantities characterizing

the layer is treated using Laplace transform techniques. Singularity analysis of the result-

ing equations using Fuchs-Frobenius theory yields the large-time asymptotic solutions.

The instability is found to remain, within the linear theory, of the translationally convec-

tive or shear type. No onset of rotational or vortex motion, i.e., formation of "coherent

structures" occurs.

1. Introduction. The Kelvin-Helmholtz instability caused by tangential velocity

shear in homogeneous fluids and plasmas is of interest in investigating a variety of space,

astrophysical, and geophysical situations involving sheared plasma flows. Configurations

where it is relevant include the interface between the solar wind and the magnetosphere

(Sen, 1965; Southwood, 1968; Southwood, 1974; Bridge, et al., 1979; Ness, et al., 1981;

Pu and Kivelson, 1983; Bull, 1984), coronal streamers moving through the solar wind, the

boundaries between adjacent sectors in the solar wind (Parker, 1963; Sturrock and Hartle,

1966; Jokipii and Davis, 1969), the structure of the tails of comets (Dobrowolny and

D'Angelo, 1972; Ershkovich, et al., 1972; Ershkovich and Chernikov, 1973; Brandt and

Mendis, 1979), and the boundaries of the jets propagating from the nuclei of extragalactic

double radio sources into their lobes (Turland and Scheuer, 1976; Blandford and Pringle,

1976, Begelman, et al., 1984).

Early investigations of the Kelvin-Helmholtz instability were concerned with the in-

stability caused by a tangential velocity discontinuity or jump (or vortex sheet) in in-

compressible and compressible fluids and plasmas (Landau, 1944; Fejer, 1964; Sen, 1964;

Miles, 1957; Gerwin, 1968).

The unmagnetized vortex sheet is found to be unstable at all wavenumbers for modes

sufficiently transverse to the zero-order flow, or for modes along a flow with Mach number
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less than 2y/2. In the presence of a magnetic field parallel to the flow the instability of

the incompressible vortex sheet is completely stabilized unless the velocity discontinuity

exceeds twice the Alfven speed. A magnetic field transverse to the flow has no effect on

the instability.

Lerche (1966) emphasized the importance of considering the finite thickness of the

shear layer. The linear Kelvin-Helmholtz instability of shear layers (a region of finite

width over which the velocity change occurs) for flows with a subsonic velocity change

was considered by Chandrasekhar (1981). An incompressible shear layer having a "hyper-

bolic tangent" profile was considered by Michalke (1964). He found a criterion kL < 2

for instability, with k being so short wavelength modes were stabilized for the finite-

width velocity shear. The stability characteristics of finite-width unmagnetized shear

layers have been considered by several authors (Blumen, 1970; Blumen, et al., 1975; Ray,

1982; Miura and Pritchett, 1982; Roy Choudhury and Lovelace, 1984). The finite-width

shear layers exhibit unstable traveling wave nodes satisfying radiation boundary condi-

tions. These modes are absent for the unmagnetized vortex sheet, and present for the

magnetized vortex sheet in a very small range of Mach numbers. The presence of the

traveling wave modes means that the finite-width layer is unstable at all Mach numbers.

In addition, standing wave solutions analogous to the "warping" modes which occur for

the vortex sheet are also present at long wavelengths and small values of the Mach num-

ber. Magnetized shear layers described by the MHD formalism have been considered

for a linear velocity profile layer (Roy Choudhury, 1986; Ray and Ershkovich, 1983; Roy

Choudhury and Lovelace, 1986) with both standing and traveling wave solutions, and for

a hyperbolic tangent velocity profile (Miura and Pritchett, 1982) for only standing wave

modes. A magnetic field parallel to the flow is found to stabilize both classes of modes.

Computer simulation studies of the Kelvin-Helmholtz instabilities of planar, magnetized

shear layers (Nepveu, 1980; Tajima and Leboeuf, 1980; Miura, 1982; Pritchett and Coro-

niti, 1984; Miura, 1984), and of cylindrical axisymmetric jets (Norman, et al., 1982)

have also been carried out. Velocity shear of zero and finite thickness have also been

considered in anisotropic plasmas (Talwar, 1965; Roy Choudhury and Patel, 1985). The

results are analogous to the MHD case with larger instability growth rates. Other recent

work has been reviewed by Larosa and Moore (1993).

In this paper we study the general initial-value problem for the linear Kelvin-Helmholtz

instability of arbitrarily compressible velocity shear layers for both the unmagnetized and

magnetized cases via the use of Laplace transforms. To our knowledge, this has not been

studied previously. The simplest example of the solution of the general initial-value

problem for linear stability analysis of a fluid flow has been given by Case (1960a,b).

Our treatment will follow that analysis to obtain the time-asymptotic solutions for this

instability. The qualitative long-time features of the instability are deduced from these

solutions. In particular, we find that there is no occurrence of rotational motion, i.e., the

instability remains of the shear or translationally convective type.

The remainder of this paper is organized as follows. Section 2 describes the initial-

value problem, with some of the mathematical details being contained in Appendices A

and B. In §3 we obtain the long-time limit of the solutions, and discuss their implications

for the behavior of the unstable modes.
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2. The initial-value problem. The fluid-dynamical equations for a compressible,

inviscid, neutral fluid with an adiabatic equation of state are

| + v.w = o,
dv ^ /i\

"Tt = ~Vp' (l>

Iton-o.
with d/ctt = (d/dt + v -V). The equilibrium we considered has a constant density p,

pressure p, and temperature T.

The first-order perturbation quantities are of the form f(x) exp[i(kyy + kzz — ut)\.

The frequency lo is assumed to have at least a small positive imaginary part so that the

solutions correspond to those of an initial-value problem. The linearization of Eq. (1)

gives

i(kzvz - u)p8vx = —8p',

i{kzvz — ui)8p + p(iky8vy + ikz8 vz + S u'x) = 0,

i(kzvz - Lu)p8vy = -iky8p, ^

i{kzvz - ijj)p8vz + pv'z8vx = —ikz8p,

8p "f8p

p p

Here vz,p,p and the adiabatic exponent 7 are the equilibrium quantities. The prime

denotes a derivative with respect to x.

Given the value of 8p(x,t = 0),8i/x(x,t = 0),8uy(x,t — 0),8vz(x,t = 0), and 8p(x,t =

0), we require the solution for all t > 0. This is the initial-value problem we now solve.

Defining the Laplace transform of a variable 8^{x, t) as

/*00

T(x,s) = / e~st8^(x,t)dt (3)
Jo

by the capital symbol, Eqs. (2) become

SP-8p(x,t — 0) ikzVzP p., Tr •. TT „/! „ N
 ^ 1 ^ I" pl^kyVy + ikzVz + Vx\ — 0, (4a)

p[sVx - 8ux(x, t = 0)] + ikzvzpVx = -P', (4b)

p[sVz - 8uz{x,t = 0)] + ikzuzpVz + pu'zVx = -ikzP. (4c)

These may be combined into the composite equation

2 U'P'
U

U
+ K(uz -1 )p = —2pU'8i,x(x, t — 0) — U28p(x, t = 0)

(5)
+ ikzp8vz(x, t = 0),

with the dimensionless flow velocity U and adiabatic sound speed Cs given by

u = k-%^, (6)
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<7>

Given the initial data, the solutions of (5) will be unique except at discrete values of

s, which are the eigenvalues and for which P satisfies the homogeneous part of (5). The

solution of (5) as s approaches any eigenvalue will have the solution for P containing a

simple pole in s (for all x) (Case 1960, Kaup 1990). The solutions of the homogeneous

problem with radiative boundary conditions have been considered earlier by Roy Choud-

hury and Lovelace (1984). Note that one may consider the non-discrete or continuum

modes as the solutions of

P" -2^ + k2z(U2-l)P = 6(U),

with 6 the Kronecker or Dirac delta function.

The solution of (5) also has other singularities in s. These occur at the singular

points of (5) and depend on x. These will be found to also contribute to the time-

asymptotic solution. In order to consider these, it will be convenient to return to (2).

Notice that the assumed time dependence e~lut in these equations corresponds to Fourier

transforming in time (Krall and Trivelpiece, 1973). We will consider (2) and later obtain

the correspondence with the more standard Laplace transform in time above by setting

w = is, (8a)

so that (6) yields
kzVz ~ is k,vz - co , , .

u = ~^c~ = ^c~- (8b)
fi/Ug A/W g

Using Eqs. (2) (with e~luJt time dependence), we obtain the composite equation

gp„_2U^ = b2(1-U2)6p (9)

for the pressure perturbation. Here, the transverse wavenumber is

B = {k2y+kl)1'2. (10)

This equation has a regular singular point at U = 0. The solutions near this singular

point will be necessary later for the derivation of the time-asymptotic solution. This

solution, and its somewhat lengthy derivation, are contained in Appendix A.

For the case of a uniform magnetic field Bq parallel to the direction of streaming

(the ^-direction), the ideal magnetohydrodynamic (MHD) equations for a compressible

inviscid, perfectly conducting fluid are

| + v-W = o.

p^ = -Vp + ( VxJXj (11)

f =VX(.-<»1

S<w"7) = °. <12>

V-B = 0, (13)
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with + v ■ V. The equilibrium has a flow velocity V = zvz(x), constant density

(p), pressure (p), temperature (T), and magnetic field (B = zBq).

These equations may be linearized using first-order perturbations of the form

f(x) exp[i{kyy + kzz — cut)}

(corresponding to Fourier transforming in time and along y and z) yielding (Roy Choud-

hury and Lovelace 1986):

i(kzvz — u>)8p + p{iky8vy + ikz8vz + 6v'x) = 0, (14a)

i(kzvz - u)p8vx = ~8p + —(ikzbx - b'z),
47r

i(kzvz -u)p8vy = —ikySp + kzby - kybz),
47T

i{kzyz - w)p8vz + pv'z8i>x — -ikz8p, (14b)

8p 7 6p

P P

i(kzvz - uj)bx = ikzB08vx,

i{kzvz - u))by = ikzB06vy,

i(kzvz - u)bz = u'zbx - B0(6is'x + iky8vy), (14d)

(14c)

and

b'x + ikyby + ikzbz = 0. (14e)

Here, bx,by, and bz are perturbation amplitudes of the magnetic field components. Equa-

tions (14) may be combined into a composite equation (Roy Choudhury and Lovelace

1986, Miura and Pritchett 1982)

V*
u\-i

= K
{l+qZ)U%-l-U*U*

l(U\-l){(l + q2)Ul-l}
8p* (15)

for the total Reynold's (fluid) cum magnetic pressure perturbation

Here, K = (ky + k2z)x!2,

with the Alfven speed

and magnetization parameter

B06BZ
8p*=6p-]   . (16)

47T

(17)

vA = Bv/^p)1'2,

q = Va/Cs. (18)

The singular points of (15) and the solutions near those points are given in Appendix B.

Having described the Laplace transform of the general solution, we next proceed to

the long-time solutions.
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3. Time-asymptotic solutions and discussion. In this section, we look at the

long-time behavior of the solutions of Eq. (9). Note that

_ kzuz -u>

U~ kCs

is the negative of the angular frequency in the frame of reference of the fluid. Notice also

that we used a Fourier transform in Sec. 2 (all perturbation quantities were of the form

e~lwt). Hence, to consider the correspondence with the more standard Laplace transform

in time, we make the replacement (8a) or, in the moving frame,

kzvz-is\ i
jTri )=-!^-(s + ikzuz). (19)

/ Ay v_y g

Thus, small values of u correspond to small s and, hence, to long-time asymptotic solu-

tions. Similarly, around a singularity at u = a the dominant terms in powers of (u — a)

around the singularity govern the long-time asymptotic behavior from that solution.

From Eqs. (All) and (A12), the general solution of the fluid-dynamical pressure-

perturbation equation (9) around the singularity u = 0 is

6p = a0

Using (2) and (20a) yields

ft2 ii2
+ c*2 1 + ~+0(u4) (20a)

where

6vx(s) = constant, (20b)

6uy{s) = constant/r, (20c)

8vz{s) = constant/r, (20d)

r = s + ikz vz{x). (21)

There are two basic contributions to the solution of the initial-value problem: (i)

contours around the eigenvalues and (ii) for any fixed value of x, there will be a regular

singular point of the differential system (9).

The contribution from the eigenvalues will be a growing (global) eigenmode with

a frequency of Im(.s\,) and a growth rate of Re(sj), where Sj is the eigenvalue. This

contribution has been very well described in the literature (Roy Choudhury and Lovelace,

1984, 1986; Miura and Pritchett, 1982).

On the other hand, the pole singularities can also give a contribution. For example,

(20c) has a pole of order 1 about r = 0. Such a pole would give a nonzero contribution.

Using the identity (19), and noting that the dominant long-time asymptotic behavior

is obtained from the dominant small-u behavior in the Laplace transformed domain, we

may obtain the time-asymptotic behavior of the fluid-dynamical velocity shear layer by
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inverse-Laplace transforming (20). Letting a(s,x) be analytic in s near r = 0, one may

straightforwardly show that for large times (Kaup, 1990)

1 fH+l nti rl
cx^lstds = te-ik.vt(x)ta (_ikzVz(x),x) (22a)

r2(s,x)

1 rR+i°° r)
— / -y~4estds = e-lk^x^a(~ikzuz( x),x), (22b)

r{s,x)

rR+i°°
- / a(/3,x)est(lnr)ds —> 0, (22c)
1 J R-i°°

2m

1

27ri

where R is chosen so that the contour is to the right of all singularities in the complex

s-plane.

Using standard Laplace inversion formulae, (20a) yields

6p(t) ~ 6(t). (23a)

Next, using (20b-d) and (22) the long-time asymptotic behavior of the velocity pertur-

bations is

8vy{t) ~ e~ikzVz(x)tei(fe»y+^2)) (23b)

6vz(t) ~ e-ik*v*{x)tei{kyy+k*z\ (23c)

6vx(t)~6(t), (23d)

where the y and z dependences have been included. The time-asymptotic behavior of

the perturbations is thus fairly simple. The pressure and x-velocity perturbations 6p and

6vx die away to zero. On the other hand, the y and z-velocity perturbations approach

a constant amplitude and propagate in the y and z directions. In the z-direction, they

correspond to traveling waves propagating with the background flow, i.e., at the phase

speed vz (x). In the y-direction, they propagate at a speed kz vz (x)/ky at each value of x.

Similarly, using (B9) and (B10), the general solution of the magnetic pressure-pertur-

bation equation (15) around the singularity uA = 1 is

<5p* = ci[a0 + a2{uA - l)2 + 0{uA - l)4]

+ c2a0{uA ~ l)2 + 0(uA ~ l)4, (24)

and using (B21) and (B31), the solution of (15) around the singularity uA = l/-\/T+ q2

is

Sp* = di a°z + a°z2 + °(z3)

+ d2[c0 + c\z + 0(z2)], (25)

where z = uA —
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Proceeding analogously for the magnetized case, the inverse Laplace transform of (24)

(around ua — 1) yields

8pt ~ 6(t). (26a)

Using the linearized equations (14) of Sec. 2 in conjunction with (24) and (22), one

obtains the following large-time behaviors of some of the other physical variables (from

the singularity at ua = 1):

bx(t)~6(t), (26b)

by{t) ~ e-ik*v*(x)tei{kyy+k*z\ (26c)

bz(t)~6(t), (26d)

Svy(t) ~ ctie~ikzl/zt + faStf), (26e)

8p(t) ~ S(t). (26f)

Analogously, using (25), the linearized equations of Sec. 2, and (22) yield the following

time-asymptotic behaviors caused by the singularity ua = 1/ yl +12 some of the

relevant physical variables:

6p*(t) ~ 6(t), (27a)

bx(t)~6(t), (27b)

by(t)~6(t), (27c)

M*) ~ (27d)

fc/„(t) ~ a2e_ifc2^(x)t + Wit), (27e)

fip(i) ~ Q3e-^2(x)t + /335(t). (27f)

Prom (26) and (27), it is clear that, for the magnetized case, the time-asymptotic behavior

is similar to that found for the fluid-dynamical case. Some of the perturbations of the

physical variables die away at large times, while others approach traveling waves of

constant amplitude propagating in the ^-direction with the background flow at speed

vz(x), and propagating in the y-direction at phase-speed kzvz(x)/ky.

In particular, the results obtained above from the Laplace transform solution of the

initial-value problem for the linear Kelvin-Helmholtz instability establish that the linear

instability remains essentially a shear-instability, with translations occurring in y and z.

No rotational motion, or vortex or "coherent-structure" formation, in the regions of layers

of fluid near the singularities, occurs. This is in contrast, for example, to the rotational

vortex motion generated near the so-called "magnetron" singularity for shear-flows in

non-neutral pure-electron plasmas (Kaup, 1990). The reason for the absence of such

coherent-structure formation in our problem is not difficult to establish mathematically.

The singularities in our case occurred at u = 0, Ua = ±1,±(1 + q2)-1/2, and were

thus real. Imaginary singularities u = ±if2 are necessary for the establishment of vortex

motion with angular frequency ±f2 of any physical variable at large-time. Physically,

too, the complex interaction of the electromagnetic fields with the non-neutral fluid
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(electron plasma), leading to the formation of rotating vortices, is absent for our neutral

fluids. The analysis above demonstrates that this clearly precludes the onset of vortex

motion in the long-time behavior of the supersonic Kelvin-Helmholtz instability, at least

while the perturbation amplitudes are small enough for the linear theory to remain valid.

In the nonlinear regime, it is well known that this instability leads to coherent vortex

structures (Brown and Roshko, 1974; Winant and Browand, 1974; Aref and Siggia, 1981;

Norman et al, 1982; Aref and Tryggvason, 1984). Note that the contribution from the

eigenvalues, which have been considered earlier by normal mode analysis (Roy Choudhury

and Lovelace, 1984; Miura and Pritchett, 1982) gives growing or unstable solutions which

eventually become too large to be described by the linear theory.

Appendix A. Singularity analysis of pressure perturbation equation for su-

personic fluid-dynamical shear layers. The equation for the pressure perturbation

was derived in Sec. 2 and it has the form

Oil'

6p" 6p' = B2( 1 — u2)6p, (Al)
u

where
/ d n

= —, u = lAx — w.
ax

Here, we assume a linear velocity profile (Roy Choudhury and Lovelace, 1984; Ray, 1982).

= 2A. Replacing dx byBy taking the derivative of u with respect to x, we get ^ = 2A. Replacing dx by in

(Al), Eq. (Al) takes the following form:

i{6p) ' HiSp) + ^ " °'

Letting = Bt and 6p = p, our differential equation takes the form

§-;S+B;("!-1)!,=a (A2)

This differential equation has a regular singular point at u = 0. Rewriting (A2) in the

form
d?p p{u) dp q(u) oX

+ + = (A3)

we have p(u) — —2,q(u) = B^(u2 — 1 )u2. The functions q(u) and p(u) are analytic at

u — 0, where (A3) has a regular singular point. Thus, we may expand p(u) and q(u) in

Taylor Series about that point:

OO OO

P(u) = 5~2PnUn = ~2' = B2(u4 - u2). (A4)
n=0 n=0

From PnUn = —2, we get p0 +p\u + p2u2 = —2, which implies

p0 = -2, pi=p2=p3 = ... = 0. (A5)
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Prom X)nL0 1nUn = B2{uA — it2), we get q0 + q\U + q2U2 + • • • — —B^u2 + B^u4 which

implies

9o = 9i = 93 = <?5 = 96 = •• • = 0, qi = ~B2, q4 = B2. (A6)

We use the Fuchs-Frobenius method (Ince, 1956; Bender and Orszag, 1978) to find

the solution of (A3) about u — 0. Let p(u, a) = Y^^Lo anUn+a> where a is the indicial

exponent to be determined. By substituting the Taylor expansion of p(u,a) in (A3), we

^ ^ + a)un+a_1> = X] a"^n + a^n + a ~ l)un+a~2,

n=0 n=0

oo oo oo

an(n + a)(n + a - 1 )un+a 2 - 2 ^ a„(n + a)un+Q 2 + B"l(u2 — 1) anun+a — 0,

n=0 n=0 n=0

oo oo oo

J2 an(n + a){n + a - 3)un+a"2 + B2 ^ anw"+Q+2 - B2 ^ anu"+a = 0, (A7)

71=0 71=0 71=0

oo

a—1^ an(n + a)(n + a — 3)un+a 2 = aoa(a — 3)ua 2 + aj(l + a)(a — 2)i

71=0

+ 02(2 + a)(a — l)ua + 03(3 + a)aua+1

OO

+ ^ ] ara+4(n + 4 + a)(n + a + l)un^a~'~2, (A8)

n=0

00

anun+a = aoua + aiM1+a + ^ an_|_2U™+Q:+2- (A9)

n=0 n=0

Substitution of (A8), (A9) into (A7) and rearrangement of terms yields

aoa(a — 3)ua~2 + a\(a + l)(a - 2)ua~1 + [a2(a + 2)(a — 1) - B2a0\ua

+ [a3(a + 3)a — B2a{\ua+l

OO

+ y^[flra+4(^ + 4 + a)(n + a + 1) — B2(an+2 — an)]un+a+2 = 0.

71=0

By setting the coefficients of ua~2,ua~1 ,ua,ua+1 ,un+a+2 equal to zero we can find the

values of a and we can derive the recursion relation

a0a(a - 3) = 0 : ua~2,

ai(a + 1)(q - 2) = 0 : ua_1,

a2(a + 2)(a - 1) - B2a0 = 0 : ua,

03(0 + 3)a — B2a\ = 0 :ua+1,

O-n+^ip- + 4 + a)(n + Ot + 1) — jB2(Oti+2 — an) ~ 0 : Un+a+2.

By assumption a0 ^ 0, therefore a(a — 3) = 0, which implies c*i = 3, (*2 = 0. From

ai(a + l)(a — 2) = 0, we conclude that a\ = 0 since (a + l)(a — 2) ^ 0 for a — 0, a = 3.
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B2
Prom <12(01 + 2)(a — 1) — Bjao = 0, we conclude a2 = (a+2)(*a_i)ao in the equation

0,3(0. + 3)a — B'la\ = 0. Since a\ — 0,03(0; + 3)a = 0, there are two cases to be

considered.

Case 1) a = 0; then 03 is arbitrary; and

Case 2) a = 3; then 03 = 0.

The recursion relationship can be written as

— ^* (Q"~2 ~ Q") „ _ n 1 9 "i
^n+4 / . s. , ^ U,l,z,o,....

(n + a + l)(n + a + 4)

We discuss the existence of linearly independent solutions in Frobenius form. So we

check both sides of the following equality (Bender and Orszag, 1978):

N-1

0 . aN = - ^2 i(a + k)PN-k + qN-kW, (A10)
k=0

where TV = a\ — 03 = 3, a — 0:2 = 0;

2

0 • a3 = - 2^[/cp3_fc + q3-k\ak = -[0 + qs]a0 - \p2 + q2]a1 - [2pi + q,]a2

k=0

but from (A5), (A6) we have <73 = 0,p2 = 0,q2 = -B%,pi = <71 = 0,ai = 0. Therefore,

(A10) would read

0 • 0,3 — —[0 + 0]ao — [0 — B^] 0 — [0 + 0] 02 — 0

or a3 is arbitrary. There are thus two linearly independent solutions of (A3) around the

regular singular point u = 0 in Frobenius form (Bender and Orszag, 1978).

Consider the various cases separately:

a = 0,

do 0 by assumption,

ai = 0,

Bla0 , „ -B\
®2 = 7— 7\ when Q = °' °2 = ao.

(a + 2)(a — 1) 2

a3 is arbitrary, recursion relationship ar
Bv(dn+2 &n)

n+4 (n + a + 1) (n + a + 4)'

For this case, a — 0; so we have

(@n+2 Or 1)
^n+4 —

(ra + l)(n + 4) '
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Setting n — 0,1,2,..., we can calculate 0,4, as, ag,...:

n = 0 : a4 = —* ̂   — but a 2 = —2^°°' an<^ a^er substitution we have

Blf-Bl \ ~Bl . <2
04 — ( 2 a° ~ aoJ — g (-B* + 2)a0,

Bi(as - ai) , ^ , . ,
n = 1 : <25 =   but ai = 0, and 03 is arbitrary,

Bl
a5 = "Wfl3'

B2Aa4-a2) Blf-Bl, , . Bl
n — 2 : ae — — _T-^__(B<i+2)ao + Tao

= s(-s-l2+ 4)«» = ̂ <2
Bl(a5-a3) BlfBl \ B\ , o2 in,

n = 3 : a7 = — = — — a3 - a3 = — (5, - 10)a3,

Bl(ae, - a4) n d2, , , ox *
n = 4 : a» =  ^  = 777 T77(2 " 5>o + "ir(B* + 2W ,

28 28 V 10 / 280

36 - 04) = Bl /Bt_

40 40 \144

as = -^(-B$ + 20Bl + 36)ao.

For a = 0, we have a solution of Frobenius form:

OO

p(u, 0) = anun = ao + a\u + a,2U2 + a3u3 + a^u4 + a^u5 + • • • .

71=0

Substituting the values of 01,02,0.3, the solution corresponding to a = 0 takes the form

p{u, 0) = a0 (l-^2) -^-(Bl + 2)u4 + ^(2-Bl)ue

+ 57gQ (~Bt + 20 Bl + 3 6)a0u8 + ■

a^ + §u5 + Wo{B*-10)u7 +

We consider the case when a — 3 next:

OO

p(u, 3) = ^2anun+3; to find an's we use the recursion relationship;

71=0

Bl(an+2 — an)
an+4 = 7—  —T7—  —t. Setting a - 3 we have

(n + a + l)(n + a + 4)

an+4 — 7 * t7—~~t 1 where ai = 0 and a3 = 0, ao ^ 0. Also, for a — 3
(n + 4)(n + 7)

Blao Bla0

(All)

(a + 2)(a-l) 10
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We also have

B2M2 - ao) _ Bl (Bla0 _ Bl ,_2
n=0:^ = ^t^ = #l-ir-ao; = ^-10^

BKa-.-a,) Bl x Bl
»=1:«5 = 40 = 40 (°-^) = -40 "i'

B';tai-aA _ «; (liitrsi -vs) B*\ ■ BJ, d2

„ = 3 : a, = 5|k^2) = S f ZS01 _ 0) = =S01,
70 70 \ 40 ) 2800

„ = 4 : a8 = «f|p> _ | (_3L(B. _ 38)(io - |j<« - «0-o) , or

«'= 13^60^-92B-+540>°-

The Probenius solution for the case when a = 3 has the form

p(u, 3) = ao + a\u + a,2U2 + a^u3 + u4 + a^u5 + ■ ■ ■ .

Substituting the values of ao,ai,a2,a3,a4,as, etc., in the above expression and taking

into account that ao ^ 0,ai — 0,a,3 = 0, the second linearly independent solution of

Probenius type takes the following form (Bender and Orszag, 1978):

p(u,3) = (l + ^u2 + §(Bl - loy + ^(Bl - 38)u6

+ 13^560(S' " 92B* + 540)u8 + ''' ) 00

-§u5 - + 70)«9 + • • • W (A12)
40 2800 302400

The general solution to (A3) is a linear combination of p(u, 3) and p(u, 0).

Appendix B. Singularity analysis for magnetohydrodynamic pressure equa-

tion. It was shown in Sec. 2 that the total pressure perturbation corresponding to the

magnetized case satisfies the following equation:

VP*)'
' = K2

(1 + q2)u\ - 1 - u2u2

_(UA ~ 1)((1 — - 1)

Rewrite the above equation in the following form:

6p*

(fa)"--tf^ri(sp.y = K-
\UA ~ L) ((i + q2)u\ — i)

6p*. (Bl)

The singular points of this equation occur where uA — 1 = 0 and where (1 +q2)uIA — 1 = 0
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The vanishing of the factor {u\ — 1) can be written as the following:

2 k Cs kcs (kzvz td \ kzvz ^
UA - 1 = 0, UA —  u =

kz vA kzvA \ kcs kcs J kzvA

Upon substituting in u\ - 1 = 0 we get (w - kzvz)2 = (kzvA)2, which is the local disper-

sion relation for shear Alfven waves which propagate relative to the fluid at the speed

vA parallel to the magnetic field. This is called the Alfven singularity in magnetohy-

drodynamics (MHD). The vanishing of the factor [(1 + q2)u\ — 1] corresponds to wave

propagation relative to the fluid (in the z-direction) at the slow magnetosonic wave front

propagation speed vq = vA{\ + q2)~"1/2 where q = vA/cs (magnetization parameter).

Equation (Bl) has two other critical points, corresponding to the vanishing of the

numerator of the right-hand side of (Bl). The vanishing of the factor [(1 + q2)u\ — 1 —

u2u\j occurs at two values of u2A which correspond to the fast and the slow magnetosonic

waves that propagate relative to the fluid in the z-direction at phase and group velocities

given by this relation. The vanishing of the factor u\ — 1 = 0 corresponds to = ±1,

using the relationship uA = MAx — Wa where MA — 2vzm/vA, vzm = vz (x > 1/2),

and vz(x) is the equilibrium flow velocity in the z-direction. MA is the reduced Mach

number defined previously. Differentiating the relationship uA = MAx — WA, we have

duA/dx = Ma and

v d ,c_ \ d(6P*) duA „ , d(sP*)
(6p.) = ~(6P.) = —— =

,t \// d m d(fip*yduA d2(^)/SJ. N ^2d2(tp*)

(Hp,) =S(«P.) = ~du^~~dx = ^ =

Upon substituting these in (Bl), this differential equation reduces to

Ml £!%d - 2 ma - ma f
(1 + q2)u\ - 1 - w2"'2 1

(l + q2)u2A-l
8p». (B2)

du2A u\ — 1 duA

In the vicinity of uA = 1, ua + 1 ~ 2, setting uA = 1 in the right-hand side of (B2) we

further simplify (B2) to

- 2MA^£-. UA&^ = e
duA uA — 1 duA

Here

(1 + q2)u\ - 1 - u2u\

(l + q2)u2A - 1
6p*. (B3)

k,cs
ua = ~r( — )u,

kz vA

where q — vA/cs (magnetization factor), q ^ 0. Setting uA = 1, we get

u = fcj 1 _ /u\ 2 _ 1 _ _ A:2 - fc| _

q k ' \q J k2 k2 k2

Upon substitution in the right-hand side of the above equation, (B3) simplifies to

d2(6p*) 1 d(6p*) k2

du2A uA — 1 duA M'a
6p*. (B4)
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We further make the change of variables z = ua — 1- Then duA — dz and (B4) takes the

final form

Equation (B5) has a regular singular point at z — 0. We assume a Frobenius solution of

the form 6p» = anZn+a where a is the indicial exponent, which is to be determined.

Also, substituting

+ oi)anzn+ol~l, d = ^2(n + a)(n + a - 1 )anzn+a~2

n=0 n=0

into (B5), we have

OO CO OO

y^(n + a)(n + a - 1 )anzn+a~2 — + a)anzn+a~2 - (32 ^ anzn+OL = 0.

n=0 n=0 n=0

By putting the first two terms under a common summation we get

OO OO

y~^(n + a)(n + a — 2)anzn+a~2 — /32 ^ anzn+a = 0. (B6)

71=0 71=0

The first term further can be written in the form

+ a)(n + a - 2)anzn+a 2=a(a-2)a0za 2 + (a + l)(a - l)a\zl

71=0

OO

+ + Q)(n + 01 + Z)an+2Zn+a.

71=0

Upon substituting in (B6) we can calculate the indicial exponent a as follows:

OO

a(a — 2)aoza~2 + (a + l)(a — 1)a^za_1 + + a)(n + a + 2)an+2Zn

71=0

OO

- P2 J2 anzn+a = 0.

71=0

Putting the last two terms under a common summation, we further get

a (a — 2)aoza~2 + (a2 — l)ai^a_1

OO

+ ^2((n + ot)(n + a + 2)an+2 - (32an)zn+a = 0. (B7)

71=0

Setting coefficients of za 2,za 1,zn+a equal to zero we can find the a^s and derive the

recursion relationship. The assumption is that cto ̂  0. From a{a — 2)ao = 0 and do ^ 0
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we conclude ol\ — 0, a2 = 2. The vanishing of the term (a2 — l)ai = 0 implies that

ai = 0. By setting (n + a)(n + a + 2)an+2 - /32an = 0, we derive the indicial equation

f32
&n+2 = 7 j w i i o\®n'

(n + a)(n + a + 2)

Two cases are to be considered: a — 0 and a = 2. When a = 0, the recursion relation

P2 f
n(n+2)

takes the form an+2 = 2)an:

(32
n = 1 : a3 = —-ai, but ai = 0, and therefore a3 3= 0;

o

/32
n = 2 : <14 = -a-2, where a2 is an arbitrary constant not equal to zero;

8

f32
n — 3 : = —as — 0, from which we conclude

15
«1 — &3 — a5 — a2n+l — 0;

/32 P4
n = 4 1 06 = 24°4 - 192a2'

Therefore, the solution for the case a = 0 takes the form

6p*(z, 0) = ^anzn = a0 + a\z + a2z2 + a^z3 + a4z4 -I ,

71=0

P2 P2 ( P2 B2
8p*(z, 0) = a0 + a2z2 + — a2z4 + ~--a2z6 ^ — ao + a2 I z2 + —z4 + ~^.z6 +

192 V 8 192

Let

OO

p(z) — — 1 = ^2pnZn, which implies po — -1 ,Pi = 0 Vi ^ 0,

n=0

00

q(z) = —p2Z2 = ^ qnZn, which implies q2 = — P2, qt = 0 Vi ^ .

n=0

Checking the Bender/Orszag equality,

N — l

0a^v = - ^ [(a + k)pN-K + QN-K}a-k,

k=0

a = 0, N = a\ — a2 = 2 — 0 = 2,

1

0a2 = - ^[fcp2-fc + 02-fcW = — ao - \pi + 1i}a\ = P2a0 ± 0.

k=0

(B9)
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This is case 11(b) (I). Therefore, there exists a second solution, not of Frobenius type,

00 d
y(z) = ^2CnZ™ ~ a~y(z>a)l«=2' (B8a)

da'
n=0

y(z,a) = ]Pan(a)

n=0

zn+a,

where

n—1

- E [(a + k)pn-k + Qn-kW

an(a) — 7 ~ \2 1 r Tw II mi ' ^ = 1,2,3,..
(a + n)1 + (po - l)(a + n) + q0

p(a) = a2 — 2a (indicial polynomial),

n—1

(kPn—k H~ Qn—k^)Ck

c„ = ——  , n^0,N,
p(n)

where Co, cjv are arbitrary and

N-l

p'(ot 1)
00 n'(n,A E [fcpiv-fc + <7jv-fcCk], a0 7^ 0.

fc=0

Upon substitution of the above values in (B8a), we get, for the second solution not of

Frobenius type,

8p*(z) = a0 + a2 Iz +—z +■■■ +a0lnZP z4 + --^+a0\nZ z2 + ^z4-^ + ---j yz - uA

(BIO)
The solution to (Bl) about the singularity ua = 1 is a linear combination of (B9) and

(BIO) with z replaced by ua — 1 or 8p*(ua) — Ci6p*(uA -1,0) + c26p*(uA - 1, 2) where

c\, c2 are arbitrary constants and

Sp*{ua - 1,0) = a0 + a2 ^(uA - l)2 + y (*M - l)4 + uA - l)6 + •■ • V

6p*(uA - 1,2) = a2 • ({uA - l)2 + ^-(uA - I)4 + t^{ua ~ l)6

(z = uA- 1).

B6(ua-1)s J%-1)8 , ,, w
9216 737280 ) + ooln^ - 1)

192

{uA - l)2 + ^(uA - l)4 +

(Bll)

Next, we look at the solutions of (Bl) about the singularity corresponding to the

vanishing of (1 + q2)u2A — 1 = 0, or u\ — 1 /\/1 + q2. Our approach will be the same as

above. Dividing both sides of (Bl) by M\ and setting k2/M\ — ff2. we have

d2(6p„) 2ua d(Sp*) _ 2

du2A u2a — 1 duA
p2

(1 + q2)u2j — 1 — u2u2

(l+q2)u2A - 1
6p*. (B12)
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We simplify (B12) by setting uA — 1/yl + q2 everywhere but in the denominator of the

right-hand side. Using

2 uA _ -2X/1+12
u'-l -J--1 ' <B13a)

-4 1 l+?2 J. 9

(1 + - 1 = (vTT- 1)(-\/l + + 1). (B13b)

Setting i/l + q2uA = 1, we get (1 + q2)u\ — 1 = 2(^/T+1j2ua — 1)> or

(1 + q2)u\ - 1 = 2^/1 +q2 - -^==^J . (B13c)

We further simplify the numerator of the right-hand side of (B12) to

(1 + q2)u\ — 1 — u2u2A = 1 — 1 — u2u2a.

Note that uA = Solving for u we get u = ^quA and, substituting in the above,

the numerator of the right-hand side simplifies further to

(1 + q>)u\ - 1 - *4 = - =$$$-. (B14)

Substituting (B14) and (B13c) into the right-hand side of (B12), this further simplifies

to

i-kVklW I (2{1 + e)in(UA_ 1 -*V  I 
(1 + q2)2 / rv H' I y/T+¥)J 2fcf(l+92)5/2 UA

V/l + 92

Setting -/32k2q2/(2k2z(l + q2)5/2) = a and —2-y/l + q2/q2 = r and substituting in (B12)

we get

2

= 2jTp_ =
uA - 1 1

02
(1 + q2)u21 - 1 - u2u2

(1 + q2)u2A - 1

—(32k2q2 1

2fc2(l + q2)b/2 uA - l/\/l + q2 uA - l/^/l + q2

(B16)

Substituting (B15) and (B16) into (B12) yields

d2(6p») d(6p+)

du\ duA uA - l/y/l + q2

Setting z — uA - l/^/l + g2, Eq. (B17) simplifies to

- 0. (B17)

£%> _ = 0. (B18)
azz dz z
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Equation (B18) has a regular singular point about z — 0. We assume a Frobenius type

of solution. Set 6p* — anZn+a, where a is the indicial exponent to be determined.

Substituting the series expression for 6p* in (B18) we get

^P= ^2 a"(n + a)zn+a~l, ^ 1^2*^ = XI a"(n + a^n + a~ 1 )zn+a~2,
dz J ' dz2

n=0 n=0

)zn+a-i^ an(n + a)(n + a - l)zn+a 2 — r ^ a„(n + a)2

71 = 0 71=0

oo

-(7^fl„zn+a-1 =0. (B19)

71=0

The first term can be written in the form

OO

a —2

) zn+a-\

an(n + a)(n + a - l)z"+Q 2 = a0a(a - l)z°

n=0

+ ^an+i(n + a)(n + a + 1)*

71=0

Substituting the above expression in (B19) yields

OO

a0a(a — l)za~2 + ^[a„+i(n + a)(n + a + 1) - r(n + a)an - uan]z1l+a~1 = 0. (B20)

71=0

We set the coefficient powers of za~2 and zn+a~1 equal to zero, a(,a(a — 1) — 0. Our

assumption is ao / 0 and, therefore, a(a — 1) = 0, which implies ai = l,a2 = 0, and

an+i(n + a)(n + a + 1) - [r(n + a) + cr]an = 0.

Solving for an+1,

(r(n + a) + cr)an
^n+l

(n + a)(n + a + 1)

Two cases are to be considered: a.\ — 1 and a2 = 0.

For a = 1, the recursion relation

(r(n + a) + a)
an+l — 7 I \7 I ! T\an

(n + a)(n + a + 1)

can be written in the form

(r(n + 1) + <j)
wn+l —

where ao 7^ 0:

an+l — I I 1\ / I n\
(n + l)(n + 2)

n (r + a)
n = 0 : ax = —-—a0,

(2r + cr) (2r + cr)(r + cr)
n = 1 : a2 =    ai = — a0,

(3 r + cr) (3r + cr) (2r + a) (r + a)
n = 2 : as — ~^~a2 =  — a0.
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Continuing in this fashion, all the a^s can be written as a multiple of ao- Therefore, the

Frobenius solution corresponding to the case a = 1 has the form

OO

8p* — ^ anzn+1 = a0zl + a\z2 + a2z3 + a^z4 H .

71=0

Substituting the values of ao,ai,a2,a 3 in the above expression, we get

r + a 2 (2r + a)(r + a) 3 (3t + a)(2r + a)(r + a) 4
6p* — aoz H  —aoz H — aoz H —— aoz + • • • ,

2 12 144

, t + <t_2 {t + a)(2r + a) _3 (t + <t)(2t + ct)(3t + (t)_4 ,
op* — \ z  —z H — 2  — z H ] a0.

(B21)

We rewrite (B18) in the following form:

d2(6p*) rzd az

p{z) = — rz, g(z) = —az.

Expressing p(z) and q(z) in power series:

OO

P(z) = ^2PnZn =Po +P\z +P2Z2 H = —tz,

71=0

which implies

Po = P2 = P'3 = • • • = 0, pi = -t.

Expanding q(z) in a Taylor series:

q{z) = ^2 tfn-z" = qo + Q\Z + q2Z2 + q3z3 H = -az

n=0

yields

<7o = 92 = 93 = •' • = 0, qi = -a.

We check the recursion relation (Bender and Orszag, 1978):

N-l

QaN = - ]P[(a + k)pN-k + qN-k]a-k, N - a.x - a2 = 1, a — a2 = 0,

k=0

or
0

0aN = - + qx-k\ak ~ ~qia0.

fc=0

From our assumption for the existence of a Frobenius solution, ao ^ 0,qi = —a ^ 0.

Therefore, the right side is nonzero. This is the case II (b) in Bender and Orszag (1978),
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Chapter 3. To find the second solution to (B18) we follow the discussion on p. 75 of

Bender and Orszag. The second solution has the form

00 0

fip*(z) = ^2cnZn - ^-8p*(z,a)|a=ai, (B23)
da

n=0

where Co and C\ are arbitrary, and

71—1

- Yj [("2 + k)pn_k + qn-k]ck

cn = ——'  7  —7 , a2 = 0, p(a) = a2 - a,
P{<*2 n

Cn —

n — 1

(kPn — k Qn—k^Ck
k=0

(n2 — n)

1

- E i.kp2-k + q2-k)ck f , \ ( , \
0 k=0 -?2Co - (Pi + q\)ci (r + (Tjci

71 = z : Co —   =   =  ,
2 2 2

2

- X) {kP3-k+q3-k)ck fo , \ In , \ I , Vo , A
 o . _ fc=0 _ -(2pi + <7i)c2 _ (2r + o)C2 _ (r + <r)(2r + <r)ci
71 — O I C3 — ~ — — —  .

6 6 6 12

To calculate the second term of (B23), we write the expression for p and then take its
OO

derivative with respect to a,Spt(z,a) = ^ an{a)zn+a, where
n=0

n—1

~ Z Ka + k)Pn-k + qn-k}ak

an(a) = fc=° ,2—. . , (B24)
[(a + n)z — (a + n)\

and

1
00 p

k=0

.,2

77—T V [("2 + k)pN-k + qN-k]ck■ (B25)
(qi)

Since p(a) = a2 — a, taking its derivative yields £>'((*) = 2a — 1. Setting a = a\ = 1, we

get p'(ai) = 1, N = a.\ — a2 = 1. Plugging these values in (B25),

OO

a-o — + qi-k]ck = qico-

k=o

But, qi = —a; hence, ao = —crco- Taking the derivative of 8p*{z,a) = an(a)zn+a

with respect to a, we get

d ^ 00 q
—Sp*(z,a) |a=Ql = lnz^an(ai)z"+ai + ^ —a„(a)|Q=QlX2c1+„. (B26)

n=0 n=0
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We further try to simplify expression (B26). Using (B24),

n—1 n—1

[(1 fyPn—k H~ Qn — k]^k [(^ fyPn—k H~ Qn—k\^k
an(ai) = on(l) = fc=0  = ^ .

(1 + njz — (n+lj n(n + 1)

We calculate some coefficients of an{ 1):

o

- EKi + AOPi-fc+gi-fcW , , \
1 ^ fc=o -(Pi+9i)fflo

n = 1 : ffli(l) =     =    , pi = -r, qx = -a.

Therefore, ai(l) = (r + cr)ao/2 but ao = — uco, and so ai(l) = —(r + cr)crco/2. Let n = 2

in (B24). Then
l

- X) K1 + fc)P2-/t + q2-k]ak
f-i\ k=0

02(1) = g ,

which upon expansion gives

— [O2 + 02]ao ~ [2pi + <7i]ai — [2pi + <?i]ai
a2(l) =

6 6
r + a (2r + cr)(r + a)a0

Pi = -T, qi = —cr, a! = —a0, a2 =  — .

For n = 3, we have

2

~ X K1 + fc)/>3-/c + 93-fcW r/n 1 n \ , Con 1 n \ 1 a , \ 1
k=0 ~~ [(O3 + 03jao + (2O2 + 02)a! + (3pi + q\)a2\

a3 =   —  

03

12 12

— (3pi + <7i)a2 _ (3r + a)a2 _ (3r + <t)(2t + cr)(r + <r)o0

12 12 144

It can be concluded from the above calculations that an can be written in the form

„ _ lIin(v + ir)}ao
(2n)"_1(n +1) '

Therefore, the first term of (B26) has the following expansion:

OO

In 2 an(ai)zn+1 = In z[a0z + ai(l)z2 + a2(l)23 + a3(l)z4 H ].

71=0

Substituting the above values of ai(l), 02(1), 03(1), we get

OO

\nz ^2 an(l)zn+1 = In2:

71=0

2 3

n(cr+ir) ri(o-+«-r)
(t + a) 2 j=i 3 , i=i 4

2 2; H 2 i z +
2 12 144

do-

(B27)
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We try to simplify the second term of (B26). We need to calculate ^an(a)|Q=Ql for

different n. With ao 0,

n —1

[(^ tyPn—k Qn — k\^k
„ / \ k=0
Ctrl ( CX )   , \ ft / \ '

(a + n)2 — (a + n)

Since qi — 0 Vi ^ 1, q\ — —a, pi = 0 Mi ̂  1, p\ = —r, the expression for a„(a) simplifies

to

t \ _ ~((Q + n ~ + <7i)an-i _ ((a + n - l)r + <r)aIl_1 _
an(aj / | \o / | \ / , \o / i \ ' ^ > ' '

(a + n)2 — (a + n) (a + n)^ — (a + n)

and ao 7^ 0 is an arbitrary constant. Also,

(t + 3<t). . ar + cr <9ai(a)
n = 1 : ai(a) = —  — ao

a(a + 1) u' da
o-o,

*=i *

o / x ((cv + l)r + CT)a1 . ar + a
n = 2 : a2(a) = -r——ry——and replacing ai = ——rT\ao we §et

(a + 2)(a+l) a(a + l)

(a2 + a)r2 + (2a + 1)tct + a2 da2(a)
02(a) —  ao,

a(a+l)2(a + 2) u' 9a

— (5r2 + 15rcr + la

,=i = 36"
-ao-

Using the same method, we calculate other terms, and we will have more complicated

expressions in terms of r and a. The second term of (B26), upon substitution of the

above values of ^ai(a)|a=i, J^a2(a)|Q=i, has the following form:

d 1+ d d 2 9 . .. 3
2^ g^an(a)\a=iz ^ = ^a0(a)\a=iz + ~ai(a)\a=iz + ^a2(a)|Q=iz +•••,

n=0

where ao is an arbitrary constant or -J^ao(a) = 0 and

OO

£ - (5^ + i5^ + r^)23 +, 1 Oo (B28)
da /|a~1 V 4 36

71=0

Substituting (B27) and (B28) into (B26) we get

d
^6p*(z,a) |a=i

= In z
(r + a) 2 , (2t + ct)(t + ct) ^3 (r + ct)(ct + 2t)(<7 + 3r) _4

2~^_2 + 12 2 + 144 2 +

(r + 3<t) 2 ( 5r2 + 15r<r + 7a2 \ 3

a 0

+ I ~ 4 - I  gg  I * + * • • I ao-

(B29)
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We expand the first term of (B23) as follows:

} Cnzn = Co + C\Z + c2z2 + c323 H ,

n=0

V~^ n (^~ ^) 2 (^~ H~0")(2t -f- (J) 3
2_^CnZ = Co + Ci-2 H   Ci2 H — Ci2

n=0

v~*v n / (t + (J) 2 + 0")(2r + cr) 3 \ /t3oa\
2_^cnz =co + ci(2H  —2 H — 2 +•••). (B30)

n=0 ^ '

If Co and Ci are arbitrary nonzero constants, substituting (B29) and (B30) into (B23),

we get the local series expansion of (B18) about the singularity Ua = 1/yl + Q2 (z = 0):

c t \ ( (r +cr) 2 (r + cr)(2r + a) 3
ftp*(z) — C() + C\ [z-\   z 4 — 2 +•

— In 2
lT + a\„2 , (2r + cr)(r + cr)^ , (T + CT)(cr + 2r)(cr + 3r)_4

Z-\—)z +    2 +  r;s 2 a o

(r + 3a) _2 (5r2 + 15rcr + rc72)_3 .
 ^ z 7^ ^ +••• ) a0, (B31)

where do = —(tcq, and 2 = ua — 1 /-y/1 + q2.
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