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Abstract. Applying bifurcation theory, we construct various phase portraits of the

FitzHugh differential system and describe the set of parameters for which this system

has periodic solutions.

1. Introduction. In the paper [1] FitzHugh proposed the following system of differ-

ential equations as a model of nerve conduction in the squid giant axon:

x = y — x3/3 + x + p,

V = P(a — x — by).

The system (1) was investigated by several authors (see [2] and references therein).

The existence of periodic solutions is a central problem in the investigation of system

(1). The goal of this paper is to state a condition under which a system equivalent to

(1) has nontrivial periodic solutions.

Following [1, 2], we suppose that the parameters in (1) satisfy the conditions

p, a £ R, 0 <b < I, and p > 0. (2)

Let x^ be a real root of the equation

xl/3 ~xn + xn/b -a/b- [i = 0,

i.e., xM is the i-coordinate of the steady state of the system (1). The steady state is

unique because b < 1. Suppose that inequalities

0 < pb < 1 (3)

are valid. Let us make the following change of coordinates

u = x — x^, v = y + pbx - pbxM + x^/b — a/b,
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and take variables j3 =\/b — l,ry — x^, and 770 = \/l — pb as new parameters.

We obtain the system

u = v - (u3/3 + rju2 + {ji2 - r]l)u),
(4)

v=(rft- l)("3/3 + W2 + {V2 + 0)u),

where

P > 0, 77 € R, and 0 < 770 < 1; (5)

see [3, 4],

The system (4) is equivalent to the system (1) and the first one is a Lienard-type

system. Taking into account the latter reason, J. Sugie obtained the following result in

[2]-

Theorem 1.1 [2]. Suppose that assumptions (5) are satisfied. Further, suppose that

either

T]4 - Arfr/l + r)o + 2Pv2 ~ + 4/32 > 0; (6)

or

2(%2 + /3)3<t?V + 3/?)2. (7)

Then the system (4) has no nonconstant periodic solutions.

The region (6) or (7) in space (/3 = const) is shown by the shaded area in

Fig. 1. Its boundary consists of the straight line segment OA and of the curve Q which

Fig. 1
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is given by the relations

V2>fc 2(?7o + (3)3 = r]2(r]2 + 3f3)2. (8)

For all (3 > 0 the curve Q is upwards convex, monotonically increasing, and tangent

to the bisector t/q = rj1 at the point A(f3;(3). A concrete view of the curve depends on

the value of (3. In Fig. 1 the curve Q is plotted for /? = 0.2.

In the present paper we are going to define exactly the position of the curvilinear part

of the boundary of the parameters' values region in which the periodic solutions do not

exist.

2. Bifurcation set for the system (4). We describe the various phase portraits

of (4) as the parameters (3,77, and rjo vary according to (5). This description is based on

bifurcation theory [5, 6, 7]. We take [6] as a standard for the presentation of results.

It is convenient to construct the bifurcation set in (r/2, t/q, (3) parametric space: the set

of points for which the system (4) is structurally unstable. We describe the bifurcation

set in the three-dimensional parametric space if we describe its typical two-dimensional

sections by a plane (3 — const, (3 > 0. Such a section for [3 < 1 is sketched in Fig. 2.

First, we note that in the whole parametric space there is a single fixed point u = v = 0.

This fact follows from the inequality (3 > 0. The fixed point is a sink if rfo < rj2 (region

I), and it is a source surrounded by a stable cycle if t?q > rj2 (region 1). The existence of

such a cycle is proved in [3].

Fig. 2
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Structural instability occurs in three distinct ways in system (4):

(i) the Andronov-Hopf bifurcation;

(ii) the generalized Andronov-Hopf bifurcation;

(iii) the double-cycle bifurcation.

(i) The Andronov-Hopf bifurcation can be obtained by conventional linear analysis.

Let A and a be the determinant and the trace, respectively, of the Jacobian matrix of

the system (4) at the point 0(0; 0):

A = (1 ~Vo){il2 +P)-, a = vl-ri2. (9)

We see that a = 0, A > 0 on the bisector rjg = r)2. So, on the bisector the fixed

point becomes nonhyperbolic, having a pair of pure imaginary eigenvalues with nonzero

imaginary part: an Andronov-Hopf bifurcation occurs. A limit cycle surrounding an

equilibrium point emerges from the equilibrium in this bifurcation. The direction of the

bifurcation and the stability of the cycle is determined by the sign of the first Lyapunov

value 11 which we calculate following [7, p. 198]:

h = ir(r]2 — /3)(1 — ?7(2)/(4A3/2). (10)

If rj2 < 0 then 11 < 0, and the Andronov-Hopf bifurcation is supercritical; a stable cycle

emerges upcrossing the bisector t]q — rj2. If r?2 > /3 then > 0, and the bifurcation

is subcritical; an unstable cycle emerges downcrossing the bisector (interior to a stable

cycle already existing).

(ii) Further, the generalized Andronov-Hopf bifurcation of codimension two is ob-

served. There is a complex focus with l\ = 0 at the point A((3\($). In this case, the

stability of the focus is determined by the sign of the second Lyapunov value 12 where

h = -5jt/(144/V20(1-/?)); (11)

see [7, p. 199]. We have I2 < 0 for all parameters; so the complex focus is stable. The

point A(P; /3) specifies a border between soft and sharp loss of stability.

(iii) It is known that near the point A there exists a double-cycle bifurcation curve K

tangent to the bisector at A, on which a pair of closed orbits, one an attractor and the

other a repellor, coalesce and vanish. Points of the curve K correspond to double cycles

(stable outside, because I2 < 0).

Let us note that the phase portraits in region I near AB and near the 7y2-axis are

not topologically equivalent: the former has two limit cycles while the latter does not

have limit cycles at all (this fact follows, say, from the result of J. Sugie). We come

to the conclusion that there exists a bifurcation curve which corresponds to the global

codimension-one double-cycle bifurcation and divides region I into two subregions 2 and

3 and coincides with the curve K mentioned above. This conclusion is in good agreement

with our numerical investigation.

The curve K is tangent to the bisector rj2 = t)q at the point A(0; (3) and separates the

bisector and curve Q from (8).

It is impossible to give explicit formulas for K except for its segment from a neigh-

borhood of the point A. We shall return to this segment later.
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It is possible to make some estimates of the position of the curve K. For example, we

know that K lies between the bisector and the curve Q. As we see below this estimate

is very good for points located near the point A.

Further, the next claim is easily proved from a standard phase plane analysis.

Suppose that assumptions (5) are satisfied. Further, suppose that

(Vo -V2)2 +4(??o - i)^2 + P) > 0, V2 > 1. and (5 < I. (12)

Then, the system (4) has no nonconstant periodic solutions.

Inequalities (12) imply merely that a single sink 0(0; 0) is a stable node. The claim

follows immediately from the fact that, in this case, the angle

{(it, v) e R2: u > 0, {rj2 — rfo)u/2 <v]

is the w-invariant set of the system (4).

From the claim results the conclusion that the double-cycle curve K cannot intersect

the horizontal line t)q — 1 at points whose ^-coordinates are more than 1. On the other

hand, it is obvious that the curve K cannot intersect the bisector t/q = tj2. Because of

this, we conclude that the point B( 1; 1) is the second endpoint of the double cycle curve

K.

We found the other points of the curve K except its endpoints A and B numerically.

We used the LINBAS program authored by A. Chibnik in our investigation.

The LINBAS program is dedicated for investigation of the bifurcations of periodic

solutions of differential systems with several parameters. The program constructs bifur-

cation curves in the parametric space; see [8].

As an example, for (3 = 0.2 our calculations lead to the table:

(3 = 0.2 T]2 T)o (curve K) t]q (curve Q)

0.2 0.2 0.2

0.3 0.295863 0.295289

0.4 0.387085 0.384804

0.5 0.476718 0.471287

0.6 0.566814 0.555953

0.7 0.659984 0.639431

0.8 0.761365 0.722087

0.9 0.876840 0.804149

0.99 0.987519 0.877622

1.0 0.885767

1.1 0.967043

1.14065 1.00000

For comparison, in the third column of the table we exemplify the r^-coordinates of

points of the curve Q for (3 — 0.2 and for corresponding values of r/2.

From the table one can see that the curves K and Q are very close to each other when

r]2 is not too far from (3.
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Fig. 3

In Fig. 2, K is plotted for (3 = 0.2.

The bisector and the curve K divide the plane of parameters rf, rft into three regions:

Fig. 2. Corresponding phase portraits are sketched schematically in Fig. 3 (an unstable

cycle is dotted).

Periodic solutions in the system (4) for (3 < 1 are absent if the parameters are from

the region 3 (shaded in Fig. 2). Thus, for (3 < 1 the actual boundary of the region in

which oscillations do not exist consists of two parts: the straight line segment OA and

the double-cycle curve K.

Some points from the regions 2 and 3 were found in [2] with the help of computer

simulation. In Example 4.3 of [2] the point C(.8; .75) was found numerically as a point

whose coordinates do not satisfy (6) or (7) for f3 = 0.2, but nevertheless system (4) has no

periodic solutions by corresponding parameters' values. The point C(.8;.75) is located

between the curves K and Q.

If /3 > 1 then the situation is trivial. In this case, the curve K is absent in Fig. 2;

and the whole bifurcation set consists of the Andronov-Hopf bifurcation curve, i.e., of

the bisector t/q = rj2 only. The system (4) has phase portraits as in the regions 1 and 3.

3. The asymptotic formula for the double-cycle curve. The asymptotic for-

mula is valid for the segment of K that adjoins to the point A:

if yj4A — a2 — 8nl2(T = 0 (M2 < 0), (13)

where A, a, l\, and I2 are given by (9)—(11); see [7, p. 199]. After substitution of (9)—(11)

into (13) we obtain the asymptotic expansion

r)l = P + (r)2 - P) -- f3)2 + o{ri2 - (3)2, r?2 > (3. (14)

We used REDUCE to obtain (14).

For the points of the curve Q located near the point A, we have from (8):

Vo=/3+(r}2-/3)-^(v2-/3)2 + °(v2-0)2, r)2>/3. (15)
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If we compare (14) and (15) and take into account the results of our numerical simula-

tions we conclude that the curves K and Q are very near each other in a neighborhood of

the point A. Therefore, as regards analytic formulas that are valid in this neighborhood

we agree with a final remark in [2]: "Although Example 4.3 suggests that a better result

than Theorem 1.1 exists it would be difficult to achieve a satisfactory one."

On the other hand, near the line t/q = 1 the curves K and Q are distinguished

noticeably. So, it is possible to improve the result of J. Sugie for such parameters' values.

For example, the conditions (12) give some points in the parametric space where cycles

are absent and which do not belong to the region (6) or (7).

Remark. It is proved in [4] that system (4) has exactly one asymptotically stable

limit cycle, if parameters satisfy the conditions:

Vo — or Vo — 6/3 and t/q > rj2. (16)

As already noted, limit cycles in system (4) are absent, if conditions (6), (7), or (12)

hold.

Naturally, assumptions (5) are taken to be satisfied in all cases.

If the conditions (5)—(7), (12), or (16) are not satisfied then there may exist some more

even numbers of limit cycles (stable and unstable cycles coupled). Hence, we investigated

the system (4) " with an accuracy of even numbers of limit cycles". Such an investigation

is a commonplace in the qualitative theory of planar differential systems.
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