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VARIATIONAL FORMULATIONS FOR THE VIBRATION
OF A PIEZOELECTRIC BODY
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Abstract. This paper presents a systematic discussion on the variational principles
for the vibration of a piezoelectric body. It is shown that there exist four types of
variational formulations depending on the internal energy, electric enthalpy, mechan-
ical enthalpy, and enthalpy, respectively. The one depending on the internal energy
is in a positive-definite form which immediately leads to a few important properties
of the lowest resonant frequency.

1. Introduction. In classical elasticity, there are two types of variational principles
for the free vibration of an elastic body. One is associated with potential energy, the
other with complementary energy [1-3], A variational formulation for the free vibra-
tion of a piezoelectric body is given in [4], which is related to the electric enthalpy. In
this paper, three other variational formulations are given for the free vibration of a
piezoelectric body which are related to the internal energy, mechanical enthalpy, and
enthalpy, respectively. The one depending on the electric enthalpy in [4] is presented
in a more general form in this paper. These variational principles can be considered
as generalizations of the corresponding variational formulations in classical elastic-
ity. Because of the presence of the electric fields, there can be four generalizations
for the two formulations in classical elasticity. They each have a different set of in-
dependent arguments, which allow different but equivalent formulations of the same
eigenvalue problem. The variational principles are given without constraints. They
can be reduced to various constraint variational principles. The constraint internal
energy formulation is in a positive-definite form, which can be used to show a few
properties of the lowest resonant frequency.

2. The eigenvalue problem. Let the region occupied by the piezoelectric body be
V, the boundary surface of F be 5, the unit outward normal of S be ni, and S
be partitioned in the following way:

SUUST — S<i)USD — S,

SunST = S,nSD — 0.
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Then the eigenvalue problem for the resonance of a linear piezoelectric body is [5]

~Tjij = Pa>2ui inV'

-Diti = 0 in V,
-SU + j(uij + uj,i) = ° in
E, + <f>j = 0 in V,

~T" + §§-'° inF'
di>'i (2)

Dl + §§-=0 inr,

- «, = 0 on Su,
Tjjfij = 0 on ST,

-0 = 0 on ,
Dini = 0 on^,

where ut is displacement, S:j strain, 7V stress, <f> electric potential, E{ electric
field, Di electric displacement, p mass density, and u> resonant frequency. H =
H{Stj, E() is the electric enthalpy function for the piezoelectric material. Since we
are only considering linear materials, H and the corresponding linear constitutive
relations assume the following form:

H = tmSAr - kiJEiEJ - eiJkEfiik' (3)

Tij - cijklskl ekijEk' (4)

Di = 'ift + eijkSjk,

where the elastic moduli cjjkl, electric permitivity e( , and piezoelectric constants
ejjk are material constants with the following symmetry properties:

cijki ~ cjiki ~ cijik ~ cklij'
(5)

eijk eikj' £ij £ji'

and for any nonzero symmetric tensor atJ and vector bt

cijkiauakj>°> eijbibj > 0• (6)

2Given p and H, values of co are sought corresponding to which nontrivial
solutions of w(, S(,, Tjj , <j>, Et, and Di exist.
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3. The electric enthalpy , Et) formulation. We first give the formulation
involving the electric enthalpy 7/(5"^, £ ) in a form that generalizes what is in [4],
Let

A, («,-, , rw fi + />,*.,+ H(S,y ,*,) + - W

- f TjjHj Uj dS - f Dp fidS,
JS. J Si

nI(«i,sw,ry,^£/,i)i) =
S,7, 7V, </>, £>,)

r,(«,)
(7)

To obtain the stationary conditions of n, with all its arguments as independent
variables, we begin with

Mi1 = p(r,iA1-A,arl)

it a \ <8>_ _ (m. - jwr.) .

Therefore <511, = 0 implies

A<5A,-^r,=0. (9)
1 i

With integration by parts, we can obtain

*A. = I {-Tvj'", -Du»++{W;- T>) ss; + (If + D) SE'

+ \W:i + "j,/> "S«l ir« + <£i + *,W] ̂L J J (10)

- f ujSTjjnjdS+ f TjiitjduidS— j cpdDinjdS + f Dini8(t)dS,
J su JsT Js^ J sD

= [ puiSujdV.
Jv

Since all the variations of Suj, SStj, S Ti;, dip, SE{, and SDj are independent,
<511, = 0 implies
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rji A 1 [/~TjiJ = f> Tui mV>
1 l

-Da = 0 inV,
-Sij + {(uiJ + ujJ) = 0 inV,

+ $, i = ® '

~TiJ + dS~ = 0 inF' (11)

Dl + ||=0 inV,

- u. = 0 on 5U ,
= 0 onST,

-0 = 0 on^,
Djni = 0 on SD .

Comparing (11) to (2), we have the following variational principle: the stationary
condition of Hj gives the eigenvalue problem (2), with the stationary value of II, as
o2.

The above variational principle has no constraints. If we choose our admissible
functions to satisfy

~Sij + l(uij + uj,i) = ° inV'
Ej + 'P i = 0,

T» + Mt=° mV■
A + = 0 inF,

' oEj
Uj = 0 on Su ,

-0 = 0 on S,,

(12)

then n, reduces to

n, = 7i^-, (,3,
fv jPUjUj dV

and the stationary condition of II, becomes

'Tji,j = PT^u> in V>
1 i

= 0 in V, (14)
Tjiitj = 0 on5r,
Djni = 0 on SD .

This constraint version of A, is equivalent to what is given in [4], The above H
formulation can be considered as a generalization of the potential energy formulation
for the vibration problem in classical elasticity.
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4. The mechanical enthalpy M{Ttj, Dt) formulation. The mechanical enthalpy M
can be introduced through Legendre transform from H as

M = M(Ttj, Dt) = H + E Di - 7V StJ, (15)
which generates the following constitutive relations:

dM dMS'i 0V E- 8D,' (16)

For this formulation, we need to introduce (when a> / 0)
2 2

alf = -w ut^ = -®f (17)
We note that the physical meaning of a. is acceleration. Let

A2(flf, Ttj, y,, Dt) = Jv(—TjijOi + \pafr - Difiyt)dV + ^ T^ a,

+ f Diniij/dS,
Js„

r2<-T,j,D,) = M(Tjj, D,)dV

n2(a,, r(., v/, /),)

(18)

A2(a;., Tu ,y/,Di)
r2(TiJ'Di) '

where independent arguments are now at, 7. , y/ , and Z>(.. Since

= fu-Tjij + ■)£«,■ - Di,i*v + i(aij + aj,i)STij + y,fiDi\dv

- at8Tjtnj dS + T^rij Sa^dS - y/5D^dS + y/dS, ^ j

tr f (dM dM \
- Jr[aruiT» +&>,">> r-

<5I12 = 0 implies
-Tji,j + Pai = ° inF>
-Di i = 0 in V,
■ . . A2 9Af .
2{Ui j + aj j) — =- ay in

«-W ->■"
- a. = 0 on ,
Tjinj = 0 onSj.,
- y/ = 0 on ^,

Djni = 0 on 5^,
which is an equivalent system of the original eigenvalue problem (2) (when co / 0).
Equations (20)3 4 can be obtained by multiplying both sides of (16) by oj and by
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substituting (2)3 4 and (17). Hence, the stationary condition of the functional n2
gives the eigenvalue problem (20) with the stationary value of Yl2 as a> . If we
choose the admissible functions to satisfy

-Tjij + Pai — 0 in V,

-Dti = 0 inF,
Tjinj = 0 on ST,
Dini = 0 on SD,

(21)

then n2 reduces to
_ JjL-jpa1aidV

2 fv MdV '
and the stationary condition of n2 under constraints (21) gives

1 / \ ^2 ■ T/+ mV-

KdM

(22)

= inF' <23>

-ai = 0 on Su,
-i// = 0 on Sf,

2with the stationary value of Il2 as co .
This M formulation can be considered as a generalization of the complementary

energy formulation for the vibration problem in classical elasticity.

5. The enthalpy G(Tj ., £■) formulation. The enthalpy G can be obtained from
H as

G = G(Tij,Ei) = H-TijSij, (24)
which generates the following constitutive relations:

5 D =-— (25)
* J d Ttj ' > dEj ' ^ '

We introduce
= -co2ui, 3>i = -a)2Dj, (26)

and let

A3(a,, Tu ,<(>, E., 2.) = J i~Tji j a, + \pa,.a, + + 2E^dV

+ f Tjtnj at dS - f ^nrfdS,
JsT

r3<r«.£() = Jr<HTll,ElW,
AJan T ., (/>,£■,-, ^,)

(27)
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We have

<5A3 - J [(-TJIJ+pai)dal-9ifidtl>+kaiJ+ajfi)6Tij+{Ei+<l>ti)69ri + 3ri8Ei\dV

-f aiSTJinjdS+ f Tj^Sa^-f 4>S2inidS+ f ^n^cpdS,
Jsu JsT Js^ JsD

Hence £I13 = 0 implies
- Tji j + Pa, = 0 in V,
-2Jji = 0 in V,

Et + <t> t = 0 in F,
,, . A3 8G . __
-2(ai,j+aj,J = r3dT: inV>

dG _ ' (29)

(28)

' r. in V,
3

- at = 0 on Su,
Tjln] = 0 on ST,
-<p = 0 on S^,

3>ini = 0 onS^,
which is another equivalent system of the original eigenvalue problem (2). Hence the
stationary condition of n3 gives the eigenvalue problem (29), with the stationary
value of n, as w . If we choose our admissible functions to satisfy

-Tjij + pai = 0 inV,

Ej + 4> > t = 0,
Tjini = 0 on5r,

-<f) = 0 on S.,

(30)

then n3 reduces to
5v -jPa^jdV

fv GdV
and the stationary condition of Il3 becomes

-3fiti = 0 in V,
i, . A3 dG ■ Tr= f^ inr

n3 = r2;X' , (3i)

<* = ***£ in F (32)' r3^( inK'

- a. = 0 on ,
. = 0 onSfl.
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This G formulation can be considered as another generalization of the comple-
mentary energy formulation for the vibration problem in classical elasticity.

6. The internal energy U(S^, Z);) formulation. The internal energy U can be
obtained from H as

U = U(Sij,Di) = H + EiDi, (33)
which generates the following constitutive relations:

T = E = ™ (34)
dSu ' ' dDi ' ( '

Let

A, S„, T„fjlTy u, j - D, J + U(S,J, D,) - T„S,,]dV

- [ TJlnJuldS+ f D,n^dS,
J S„ J Sn

r4(",•) = [ iPUjUidV,
Jv

n4("/ ' Sij ' Tij ' ^ > £>,) =

(35)

A4(ul,SlJ,TIJ,4,,Dt)
'W-iJ.-r,-,, r4(M()

Then

+ [^u,J + uJJ)-S,l]sT,1}dV ^

-f uidTjinjdS+ f T^rij Suj dS - ( <j>SDinj dS + f DfrSjdS,
J S„ Sf~ J s. Jsn

^r4 = [ pufiu^dV.
Jv

Hence SYl. = 0 implies

~Tji,j = Pp-ui inF'
1 4

-DiJ = 0 in V,

~sij + j(uij + ujj) = ° in V,

-ru+™-o inv,

^+fzr=°inr'
-ui = 0 on Su ,
Tjinj = 0 on ST,
-(p = 0 on^,

Dini = 0 on SD,

(37)
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which is also an equivalent form of the original eigenvalue problem (2). The station-
ary condition of 114 gives the eigenvalue problem (37), with the stationary value of
n4 as <y2 . If we choose admissible functions to satisfy

~Dj, ( = 0 inF,

~SlJ + \{uiJ + Uji) = ° inV,
-w. =0 on S.., (38)

Dini = 0 on^,

then n4 reduces to
JyUdV

fv {pup^
and the stationary condition of fl4 becomes

n4 = 7 T   (39)

- Ta.i = ppj»i in v'

-T"+wr° i"v-
*.<+§wr°mV-
Tjjttj = 0 on ST,

(40)

-0 = 0 on^.

This U formulation can be considered as another generalization of the potential
energy formulation for the vibration problem in classical elasticity.

Finally, we note that from (33), (3), and (4) the internal energy can be expressed
in a positive-definite form in terms of StJ and £ as follows:

U = H + EiDi

= 2CijktSijSkl ~ 2 EijEiEj ~ eijkEiSjk + EAeijEj + eijkSjk) (41)

= 2C'jkl^ij^kl + 2eijEiEj '

Since the internal energy function V is positive definite, the constraint n4 is bound-
ed from below. Therefore, the lowest resonant frequency must be a minimum. Fol-
lowing some standard arguments in variational analysis [6], we have the following
immediate properties.

The lowest resonant frequency will increase if any of the following happens:
(i) Su increases;

(ii) SD increases;
(iii) p decreases;
(iv) cijkl increases to c'ijkl such that (c'ijkl ~ cijki)aijaki > ® f°r anY nonzero

symmetric aij;
(v) E-j increases to e'tJ such that (e't] - £,J)bibj > 0 for any nonzero bi.
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Some of the above properties may be considered as generalizations of the correspond-
ing properties in classical elasticity.
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