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VARIATIONAL FORMULATIONS FOR THE VIBRATION
OF A PIEZOELECTRIC BODY
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Abstract. This paper presents a systematic discussion on the variational principles
for the vibration of a piezoelectric body. It is shown that there exist four types of
variational formulations depending on the internal energy, electric enthalpy, mechan-
ical enthalpy, and enthalpy, respectively. The one depending on the internal energy
is in a positive-definite form which immediately leads to a few important properties
of the lowest resonant frequency.

1. Introduction. In classical elasticity, there are two types of variational principles
for the free vibration of an elastic body. One is associated with potential energy, the
other with complementary energy [1-3]. A variational formulation for the free vibra-
tion of a piezoelectric body is given in [4], which is related to the electric enthalpy. In
this paper, three other variational formulations are given for the free vibration of a
piezoelectric body which are related to the internal energy, mechanical enthalpy, and
enthalpy, respectively. The one depending on the electric enthalpy in [4] is presented
in a more general form in this paper. These variational principles can be considered
as generalizations of the corresponding variational formulations in classical elastic-
ity. Because of the presence of the electric fields, there can be four generalizations
for the two formulations in classical elasticity. They each have a different set of in-
dependent arguments, which allow different but equivalent formulations of the same
eigenvalue problem. The variational principles are given without constraints. They
can be reduced to various constraint variational principles. The constraint internal
energy formulation is in a positive-definite form, which can be used to show a few
properties of the lowest resonant frequency.

2. The eigenvalue problem. Let the region occupied by the piezoelectric body be
V', the boundary surface of V' be S, the unit outward normal of S be n;, and S
be partitioned in the following way:

S,US;=S,US, =S8,

1
S,NS;=8,n8,=0. ()
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Then the eigenvalue problem for the resonance of a linear piezoelectric body is [5]

2 .
-T, ,=po’u, inV,

—Di’,.=0 iV,
~Sij+%(ui,j+uj‘i):0 inV,
E+¢,=0 inV,
-T; +66§1 0 inV,
(2)
OH

D’+a_E:O an,

-u;=0 onS§,,

TﬂnJ—O on S,

—¢$=0 onS§,,
Din;=0 onS,,

where u; is displacement, S; ; strain, T;; stress, ¢ electric potential, E; electric
field, D, electric displacement, p mass density, and @ resonant frequency. H =

H(S,; B Ei) is the electric enthalpy function for the piezoelectric material. Since we
are only considering linear materials, H and the corresponding linear constitutive
relations assume the following form:

H = 3¢,61S:1Su = 16, E:E; — € EiSjc (3)

ei jk

T = ¢jirSer — €xijExs

(4)
D, =¢,E +e;,5S,,

where the elastic moduli ¢, ki electric permitivity g; T and piezoelectric constants

e are material constants with the following symmetry properties:

Cijkt = Cikt = Cijik = Ckiij» (5)
Cijik = Cikj>  &ij = &jis
and for any nonzero symmetric tensor 4;; and vector b,

Cijki%i; 4, >0, ¢&,;b;b,>0. (6)

Given p and H, values of w® are sought corresponding to which nontrivial

solutions of u,, SU, o ¢, E;,and D, exist.



FORMULATIONS FOR THE VIBRATION OF A PIEZOELECTRIC BODY 97

3. The electric enthalpy H(S,;, E,) formulation. We first give the formulation
involving the electric enthalpy H(S; D E,) in a form that generalizes what is in [4].
Let

A, S,.T,, 6. E,D)= /V[Tiju,.J +D,¢ ,+H(S,, E)+ED,~T,S,1dV

—/S Tj,.njude—/S D.n¢ds,
u )
1
l"l(ui)=/V§puiuidV,
_ Al(u,‘a S 711’ ¢5Ei’Dj)

0,(;, S, ;0 6, B, D,) = )
1

(7
To obtain the stationary conditions of II, with all its arguments as independent
variables, we begin with

oI, = %(FIJAI — A8T))
1

8)
1 A, (
= 171 <<5Al - F}—él’,) .
Therefore JI1, = 0 implies
A
oA, - =1éT, =0. 9)
I

With integration by parts, we can obtain

oH oH
SA, = /V {—Tj,.,jéui - D, ,6p+ (5S—j - T,.j) 3S,, + (3_5,- +D,.) SE,

+ [%(ui’j +u; ) —S,.]] 67}j+(E,.+¢,,.)6Di}dV
(10)

—/ uide,.nde+/ Tj,-njéu,.dS—/ ¢6DinidS‘+/ D;n;é6¢dS,
s, S, s, Sp
oI, =/ pudu;dv .

v

Since all the variations of du,,dsS,

i 6TU, 0¢, 0E,, and JD, are independent,
oI1, = 0 implies
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—pl_, inV,
D,’.=O 1nV
—Sij+2(u,j+u J)=0 inV,
E+¢,;
E)H

=T +6S =0 mV, (11)

_— = inV
D, + 9E, =0 inl,
-u;=0 onS§,,
ﬂ n; =0 onS,,
—-¢=0 onS§,,
Din,=0 onS,.
Comparing (11) to (2), we have the following variational principle: the stationary
condition of II; gives the eigenvalue problem (2), with the stationary value of I, as
2
w’.
The above variational principle has no constraints. If we choose our admissible
functions to satisfy
-8+ %(u jtu; )=0 inV,

E+¢,=0
0H .
-T,; + W =0 inV,
8H (12)
D + 6_E =0 1in V,
-u;=0 onS§,,
—¢$p=0 on Sy
then II, reduces to
Hav
m, - fy (13)
I, Souu v’
and the stationary condition of II, becomes
=T, ;= pr inV,
=D, ;=0 inV, (14)
Tﬂn] =0 onS;,,

Din, = 0 on SD.

This constraint version of A, is equivalent to what is given in [4]. The above H
formulation can be considered as a generalization of the potential energy formulation
for the vibration problem in classical elasticity.
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4. The mechanical enthalpy M (7}, E D;) formulation. The mechanical enthalpy M

can be introduced through Legendre transform from H as
M=MT;,D)=H+ED,-T,S, (15)

ij~ij»
which generates the following constitutive relations:

oM oM
Sif“a_T,.j’ Fi=%p,"

For this formulation, we need to introduce (when w # 0)

(16)

ai=—w2ui, c//=—w2¢. (17)

We note that the physical meaning of a; is acceleration. Let
Ay(a;, T, v, D)) /( ji j% %Paiai—Di,i'/’)dV"‘/S T;;n;a;dS
T

+/ D;n,ydsS,
% (18)

lj’ /M lj’

M@, Ty, v, D,)

F(]:j’D) ’

where independent arguments are now a;, T;; T2 and D, . Since

M, T,, v, D,) =

SA, _/[ T, ,+pa)oa, - D, v +ha, j+a, )3T, +v D)V
_/s“ aiéTﬁnde+/S Tjinjéa,.dS—/S(ﬁ t//éDinidS+/SDDini6t//dS, (19)

oM
‘SFZ‘/V(aTU‘ST aD(SD)dV

6I1, = 0 implies

=T ;+prq =0 inV,
—D,.,i—O inV,

nVv,

>
o5
<

%(ai,j+aj’i)=

(o5}
-

2

A, oM
vi= r ap, ™" (20)
-a;=0 onS,,

TﬂnJ—O on S,

—w=0 onS§,,

Din;=0 onS,,
which is an equivalent system of the original eigenvalue problem (2) (when w # 0).
Equations (20)3, 4 can be obtained by multiplying both sides of (16) by »® and by

e
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substituting (2); 4 and (17). Hence, the stationary condition of the functional II,

gives the eigenvalue problem (20) with the stationary value of II, as . If we

choose the admissible functions to satisfy
=T, +pa;=0 inV,

Jisj
-D, ;=0 inV,
Tjinj=0 onS,,

Din;=0 onS§,,

then II, reduces to

L = Jy—3paa,dv
2 J, Mav
and the stationary condition of Il, under constraints (21) gives
A, OM .

1 2
5@ .+a, )=="=—=— Inl,
2\ J,i 1"2 aTij

A, oM .
v, = T";E)_D, mV,
-a;,=0 onS§,,
—w=0 onS,,

with the stationary value of I, as .

(21)

(22)

(23)

This M formulation can be considered as a generalization of the complementary

energy formulation for the vibration problem in classical elasticity.

5. The enthalpy G(7;;,

H as
G=G(T;, E)=H-T;S,;,
which generates the following constitutive relations:
L. = - ﬁ N D = - E .
’f oT; ! OE,
We introduce
a=-wu P =-0'D,,

and let

Ay(a;, T, ¢, E;, D) = /V[_Tji,jai + 3000, + 2 ;+DE)V
+/s Tj,.njaidS—/s Dnpds,
T ¢

O, E) = [ 6T, E)av,

ij?
As(a;, T, 8, B, D)
I,(T,.E,)

ij>

y(e;, T, 6, E;, F)) =

E;) formulation. The enthalpy G can be obtained from

(24)

(25)

(26)

(27)
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We have
SA, = /[( T, +pa)ia— D, 3¢+ (a, ;+a, )T+ (E+ 6D+ DSENAV

Ji,Jj

—/ aéT M dS+/ njéaidS—/ ¢69inid5+/ Dnopds,
s, S, Sp

9G
ar3_/y(6—TU(ST 6E(5E)dV

Hence JI1; = 0 implies

(28)

-T;,;+pa;=0 mV,
_9;',1‘ 0 inV,
E+¢,=0 mV,
oG .
3@ ta; )= r—ja—u inV,
A, G . (29)
9, = 1_, 3 E inVv,
-a,=0 onS,,
Tjinj =0 onS,,
—¢$=0 onS,,
Din;=0 onS,,
which is another equivalent system of the original eigenvalue problem (2). Hence the
stationary condition of Il, gives the eigenvalue problem (29), with the stationary
value of II; as w? . If we choose our admissible functions to satisfy
T, j+pa =0 inV,
E +¢
Tﬂn ;= 0 on Sy,

—-¢=0 onS,,

>

(30)

then I, reduces to
I = Iy —3pa,9,dV
3 [, Gav ~°
and the stationary condition of II; becomes
- 9,., ;=0 inV,
ﬁ oG
I, 0T, ;
A, 0G . (32)
i = T:;EE- mV s
-a;=0 onS,,
Dn;=0 onS,.

(31)

%(a,.’j+aj,i)= inV,
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This G formulation can be considered as another generalization of the comple-
mentary energy formulation for the vibration problem in classical elasticity.

6. The internal energy U(S;

i D,) formulation. The internal energy U can be
obtained from H as

U=US,;, D)=H+ED, (33)
which generates the following constitutive relations:
ouU oU
Ti=3s,> Fi=%p, (34
Let
AW, S,.T,.6.D)= [ [T,u, =D, $+U(S,.D)~T,5,1dv

_/s Tjinju,.d5'+/s D;n¢ds,
u D

(35)
1"4(ul.)=/ spuu;dv,
4(u,‘9S,'ja 7-',],¢’D,)
4(u1’S,_,9 U,d),D)_ r\4(ui) .
Then
oU oU
5A4=/V{ T, ou,- D, ‘”’*(as T,.j)css,.j+(aD +¢ )
1
+[5(ui,j+uj’,.)—S,.j]5Tij}dV 36)
_/S udTﬂnde'+/ njéuidS‘—/S ¢6Din,.d5'+/s Dn,s¢ds,
¢ D
6T, = / pududv .
Vv
Hence 6I1, = 0 implies
—Tji’j=pl_—:u, inV,
-D, ;=0 inV,
—S,.j+l( jtu; )=0 inV,
oU .
-7, +6S =0 mV, )
oU .
¢ +6D =0 inV,
-u;=0 onS§,,
T;n; =0 onS;,
—¢=0 onS§,,

Din;=0 onS§p,
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which is also an equivalent form of the original eigenvalue problem (2). The station-
ary condition of I, gives the eigenvalue problem (37), with the stationary value of

I1, as w? . If we choose admissible functions to satisfy
-D;, ;=0 inV,
—Sij+%(ui’j+uj’i)=0 inV,
-u;=0 onS§,,
Din;=0 onlS,,

(38)

then 1'14 reduces to
f,, vdv
n=——— (39)
YL Spuudv

and the stationary condition of Il, becomes
— p4 ;
—Tj,.,j—pr—u inl,
oU .
T + oo 6S =0 inV,
40)
ouU . (
¢+ oD, =0 inV,
Tﬂnj =0 onS,,
—¢=0 on S¢.

This U formulation can be considered as another generalization of the potential
energy formulation for the vibration problem in classical elasticity.

Finally, we note that from (33), (3), and (4) the internal energy can be expressed
in a positive-definite form in terms of S; ; and E; as follows:

U=H+ED,
1
= 5CijktSijSki ~ 23UE Ej— ek EiSi + Ei(e B +e,Sy) (41)
1
=5 CijkrSi Sk + 28UE,EJ

Since the internal energy function U is positive definite, the constraint I, is bound-
ed from below. Therefore, the lowest resonant frequency must be a minimum. Fol-
lowing some standard arguments in variational analysis [6], we have the following
immediate properties.

The lowest resonant frequency will increase if any of the following happens:

(i) S, increases;

(i1) S, increases;

(ii1) p decreases;

(iv) ¢, increases toc;;, such that (c[,, — ¢;;)a;a, > 0 for any nonzero

symmetric a;; ;
(v) ¢, increases to ¢;; such that (e, —¢;,)bb, > 0 for any nonzero b, .
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Some of the above properties may be considered as generalizations of the correspond-
ing properties in classical elasticity.
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