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Introduction. In [1] Naghdi and Vongsarnpigoon establish the following three the-

orems for shells of revolution suffering torsionless, axisymmetric deformation.

Theorem 1. The surface components of the strain... determine the coefficients of

the second fundamental form... of the deformed configuration.... Furthermore,

the deformation of the shell-like body (including the local rotation...) is then de-

termined.

Theorem 2. For a deforming shell which is nonshallow in the reference state... , if

the components of strain... and its first- and higher-order gradients are all infinitesi-

mal of 0(e), then the [relative] deformation is either infinitesimal or one with small

strain accompanied by large rotation. The latter necessarily involves an inversion of

the shell.

Theorem 3. For a shallow shell of revolution, if the components of strain... and

the first- and higher-order gradients are infinitesimal of 0(e), then the [relative]

deformation is at most one with small strain of 0(e) accompanied by moderate

rotation of 0(e1/2).

Naghdi and Vongsarnpigoon prove these using a Cosserat (director) model of a

shell, tensor analysis, the polar decomposition theorem, and results from general sur-

face theory. Note that these three theorems concern extensional (membrane) strains

only and thus hold regardless of what model—e.g., Kirchhoff-Love or director—is

evoked to compute deformations away from the shell reference surface.

My aim is to show that these theorems follow almost immediately from a sim-

ple compatibility condition given thirty-five years earlier by Reissner [2, Eq. (20)].1

Moreover, I show that one of the conclusions of Theorem 2 can be tightened and

that the last part of Theorem 3 should be modified to read "... then the relative
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'Reissner simplifies his kinematical results by assuming infinitesimal extensional strains and moderate

rotations after his Eqs. (15) and (16) of which his Eq. (20) is an exact consequence. Thus this latter

equation is valid for any smooth deformation of the reference surface.
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radial deformation is O(e) and the relative axial deformation, modulo a translation,

is 0(el/2), accompanied by a rotation that is moderate of 0(e1/2), modulo 2n

Finally, I show that only the gradient of the hoop strain need be 0(e).

Analysis. Let the reference surface of a shell of revolution be given in the vector

parametric form

3?:r = r(a)er{d) + z(a)tz, ae[0,L]. (1)

Here, a is arc length along an undeformed meridian of 31, and er and ez are

the standard orthonormal base vectors in the (r, z)-plane of the circular cylindrical

coordinate system (r,6, z). For simplicity, I assume that r(a) and z(a) and their

deformed images, 7(a) and ~z(o), are continuous with piecewise continuous first

and second derivatives on (0, L).

A unit tangent to a meridian of 3? is

r ,a(a,Q) = r'(a)er(6) + z'(a)ez

= cosa(a)er(8) + sina(cr)e_,

where a comma followed by a subscript indicates differentiation with respect to that

subscript. A unit normal to 31 is

b = - sina(<7)er(0) + cosa(a)e^. (3)

The first and second fundamental forms on 31 are, respectively,

dr ■ dr = da" + r2(a) dd2 (4)

and

—dr • db = a (a) do2 + r(a) sin a(a)d82. (5)

Under a static, torsionless, axisymmetric deformation, 31 goes into some new

surface of revolution

31 \ r = r(o)er(d) + z(a)ez, <re[0,L]. (6)

A tangent to a meridian of 3? is

f, a{o, Q) = r{o)er(e) + zV)ez

= A(o-)[cosa(cr)er(0) + sin5(<r)ez],

where I assume that A > 0; a unit normal to 31 is

b = - sina(cr)er(0) + cosa(<x)e,. (8)

Thus the first and second fundamental forms on 31 are

dr • dr = A2(ct) da2 + r2(a) d6" (9)

and

-dr ■ db = a (a) do2 + 7(a) sin a(o)dd2. (10)

Once the deformed tangent angle a, the meridional stretch X, and the deformed

radius 7 are known, the fundamental forms on 31 are known and, from (6) and (7),

r = r(a)er(6) + z(0) + / A(s) sina(s) ds
Jo
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Compatibility. By hypothesis, r(a) and z(a) have piecewise continuous second

derivatives on (0, L). Thus the vector compatibility condition

(F> e)>a= (F'a)'0 (12)

holds everywhere on & except, possibly, on a finite number of parallels. Inserting

(6), (7), and the differential relation e'r(d) — ez x er(6) into (12), I obtain the scalar

compatibility condition

~r = A cos a. (13)

This is equivalent to Eq. (20) in [2], Introducing meridional and hoop strains by

setting

A=l+ea and r = r(l + eg), (14)

and recalling that A > 0, by assumption, I may rewrite (13) as

cos5="-(,1+e«"', (15)
1+e,

which implies that

a = ±Cos ' •{ L J + ± 2kn, fc = 0, 1,2,..., (16)
[r( l+O]'

a

where Cos"1 denotes the principal branch of the inverse cosine function. Theorem

1 is an immediate consequence of this expression and (10). Sign changes in (16)

occur at points of inversion. The addition of multiples of 2n in (16) can occur

if a shell is folded over several times, as in Fig. 1, which shows a cylindrical shell

(a = ji/2) of length L that has been folded through an angle of n at a = (1/2)L

and through another angle of n at a = (5/6)L so that its final configuration is not

stretched. Thus, by (16), a = (1/2)71 if 0 < o < (1/2)L, a = -(1/2)71 +27t if

(1/2) < o < (5/6)L , and a = (l/2)n + 2n if (5/6)L < a < L .
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Fig. 1. Cylindrical shell folded on itself
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To establish Theorems 2 and 3, I set r = cos a and use (14) and half-angle

formulas to express (13) in the form

sin2(5/2) = sin2(a/2) 4- (1 /2)[ea cos a - (ree)']. (17)

To say that "the components of the strain and its first gradient are 0(e)" means, in

the present context, that ea , eg = 0(e) and that (reg)' = 0(e). Hence (17) implies

that

sin(a/2) = ±^/sin2(a/2) + O(e). (18)

Moreover, (14)2 yields

~ 0(e), (19)

which means that the relative radial deformation is 0(e). Further, if I assume that

the shell is translated axially so that z(0) = z(0), then (11) and (14), imply that

z - z i r _
= Y | sina(s) - sina(s)| ds + O(c).

L Jo
(20)

Theorems 2 and 3 now follow by noting that, at any fixed value of a , two cases may

be distinguished: (A) sin(a/2) = 0(ep), 0 < p < 1 /2, and (B) sin(a/2) = 0(s^2).

In case A the shell is steep (nonshallow), and (18) implies that

sin(a/2) = ± sin(a/2) + 0{el~"). (21)

Thus,

so that (20) implies

a = ±a±2kn + 0(el ") (22)

= 0(ep), 0 < p < 1/2. (23)
L

Equations (19), (22), and (23) constitute Theorem 2, strengthened by the tighter

bound of 0(ep) rather than 0{ 1) on the relative axial displacement.

In case B the shell is shallow, and (18) yields

sin(a/2) = <9(e'/2). (24)

Thus,

a = ±2kn + 0(s1'2) (25)

so that (20) implies

= 0(el/2). (26)

Multiples of 2n must be allowed in (25) to permit, for example, a deformation in

which a narrow ring plate is turned inside out twice (and so returned to its initial

configuration), as illustrated in Fig. 2. Equations (19), (25), and (26) constitute the

modified version of Theorem 3.

Remark. The assumption that the strain gradient (,reg)' is 0(e) is overly restric-

tive and not required for classical nonlinear shell theory to hold. For example, in a

sufficiently narrow ring plate turned inside out once, as in Fig. 2a, the strains remain
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(a)   a= it, (refi)' * 0(e)

o(b)   a = 2jc, (re0)' = 0(e)

Fig. 2. A narrow ring plate turned inside out (a) once and (b) twice

small, even though the strain gradient may be 0(1). Less restrictive theorems might

be obtained by removing the small bound on (reg)' but requiring that

h\a -a'\ = 0(e), h
sin a sin a

= 0(e), (27)

where h is the thickness of the shell, that is, requiring that the strains at the outer

fibers of the shell also be 0(e).
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