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Abstract. The objective of this paper is to justify rigorously the ray method orig-

inally developed by Keller [6] for linear water waves over a two-dimensional gently

sloping beach. The approximate formula for eigenvalues of the linear water wave

problem and the uniform ray method expansion at and near a shoreline are all con-

sequences of the justification.

1. Introduction. The problem of linear water waves over a uniformly sloping beach

was completely solved by Ursell [1], Peters [2], and Roseau [3]. An interesting account

of the history and a detailed derivation of the solutions of the problem can be found

in Stoker [4]. Let a> be the eigenvalue parameter in the time-reduced problem and

let k be the nondimensional wave number along the shoreline. For 0 < k < 1, there

is a continuous spectrum of co and the solution behaves like a progressive wave at

infinity. For k > 1, there is a discrete spectrum of of, which consists of finitely

many eigenvalues, and the number of eigenvalues increases as the slope of the beach

decreases. The corresponding eigenfunctions decay exponentially in the direction

perpendicular to the shoreline. For 0 < k < 1 the solution with a finite amplitude

at the shoreline behaves like the zeroth-order Bessel function of the first kind. The

same behavior of a solution to the shallow water equations was also discovered [5],

For the problem of linear water waves over a general variable bottom, Keller [6]

developed a ray method to solve the time-reduced problem under the conditions that

co is large and the bottom topography changes slowly. In this method a wave-like

solution consisting of an amplitude function and a phase function is assumed. The

phase function satisfies an eiconal equation which can be solved by the method of

characteristics and yields a family of rays. Along each ray a transport equation can

be integrated to determine the square of the amplitude function to the first-order

approximation. This work was extended to the calculation of the eigenvalues of

the water wave problem by Shen, Meyer, and Keller [7] on the basis of Keller and

Rubinow [8], The ray method expansion fails at a shoreline and a caustic where

the amplitude function becomes infinite. Following some ideas due to Kravtsov [9]

and Ludwig [10], a uniform ray method using a solution of a comparison equation
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was constructed by Shen and Keller [11], The comparison equation for the uniform

expansion at a shoreline is just the first-order Bessel equation as expected. Up to now

the ray methods developed are formal in the sense that the expansions in terms of the

negative integral powers of a large parameter are only assumed but not justified, even

though the approximate solutions obtained by the ray method compare favorably with

the existing exact solutions for a uniformly sloping beach.

The objective of this paper is to provide a rigorous justification of the ray method

for linear water waves over a two-dimensional gently sloping beach with a nonzero

slope at the shoreline. We show that the wave function determined by the ray method

is a uniform approximate solution of the exact linear equations governing the motion

of the fluid for the beach with small slope. Also each eigenvalue derived from the ray

method is close to the spectrum of the linear operator of the water wave problem. The

point of departure is an integral representation due to Zhevandrov [ 12] motivated by

the original results of Miles [13]. Some ideas due to Maslov and Fedoriuk [14] for a

caustic in the WKB method will be used for the justification. However, the singularity

at a shoreline is quite different from that at a caustic. In fact, a function equivalent

to the optical refraction index in linear water wave problems becomes infinite at a

shoreline. A suitable contour must be chosen so that the integral representation is

meaningful.

We formulate the problem in Sec. 2. An integral representation of the solution

of the problem is constructed in Sec. 3. An approximate expression to the integral

representation is verified in Sec. 4., where an approximate spectral formula for the

eigenvalues in [7] is also obtained. In Sec. 5, we justify the ray method expansion

away from a shoreline [6] and the uniform ray method expansion near and at a

shoreline [11]. A discussion about the validity of the spectral formula is also given.

2. Formulation. We consider a two-dimensional gently sloping beach with a non-

zero slope at the shoreline. A coordinate system X, Y, Z is chosen so that the plane

Z = 0 coincides with the equilibrium surface and Z increases upward. The depth

of the seabed is Z = -H{X), a function of X only. The shoreline corresponds to

Z = 0, X = 0, and H(0) = 0. The linear theory of water waves is based on the

equations in [4]:

®xx + ®YY + ^zz = 0 in 0 > Z > —H(X), (1)

+ £<DZ = 0 atZ = 0, (2)

0Z + HX0X = 0 at Z = -H(X), (3)

where 0(X, Y, Z, t) is the velocity potential, t is time, and g is the constant

gravitational acceleration.

Assume that the slope is small and negative, that is, H'(X) < 1 and H'{X) > 0,

which generally characterizes oceanographical topographies, and the function H(X)

has the form H(X) = k~[h(x) where x = ekX, e = H'{0) << 1 , and k is the

wave number along the shore; let

0(X, Y, Z , t) = exp(i(a>t - ky))4>{x, z, e),
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0ZZ + e2</> - 0 = 0 in 0 >z>-h(x), (4)

with y = Y and z = kZ . Then Eqs. (l)-(3) become

.-0 = 0 in0>z>

0z = Xcp at z = 0, (5)

0Z + e2hx(f)x = 0 at z = -h(x), (6)

where X = a> /(gk).

The approximate integral representation of a solution satisfying Eqs. (4) and (5)

due to Zhevandrov [ 12] assumes the form

0,(x, z) = / exp(/px/e)(cosh(/ez) + Xk 1 sinh (Kz))f(p)dp, (7)
Jc

2 1/2
where k = (p +1) , f(p) is an unknown function, and C is a contour in the

complex p-plane. Equation (7) can be obtained formally as follows. Extend Eqs. (4)

and (5) evenly to x < 0 and take a (1/e)-Fourier transformation [14] of Eqs. (4)

and (5) with respect to x to obtain

4> - {p2 + 1)0 = 0 in 0 >z>-h(p),

where

Therefore,

and

0 — A0 = 0 at z = 0,

00, Z) = ( 2^i) / ^x' z)exp(-ipx/^dx-

4>(p, z) - /(p)(cosh(/cz) + Xk ' sinh(Kz))

0(x, z) = 2^7^ J 0(/>, z)exp(ipx/e)dp.
2nei

which equals Eq. (7) formally up to a multiplicative constant.

From Eq. (7), f(p) cannot be chosen to have compact support in p if the intent

is to study the behavior of the solution near a shoreline. The reason will be given

later. Thus, by the exponential growth of the functions cosh(Kz) and sinh(/cz) a

proper contour C must be chosen so that Eq. (7) is meaningful. From now on we

assume f(p) is bounded and C is the contour shown in Fig. 1 (see p. 246), where

R is a large positive number to be chosen later.

Therefore, 0,(x, z, e) inEq. (7) is well defined for x > 0 since f{p) is bounded.

Obviously by substituting Eq. (7) for 0, (x, z) in the equations, it is easy to see that

Eqs. (4) and (5) are satisfied. By Eq. (6), we need

Lexp(ipx/e)[Xcosh(K/?(x)) - k sinh(fc/i(x))
c (8)

+ iehx(x)p(cosh(Kh(x)) - Xk~{ sinh(ich(x))))f{p) dp = 0.

But it is impossible to find f(p) so that Eq. (8) is satisfied. Instead we construct

f(p) so that the left-hand side of Eq. (8) is small up to some order of e. Then

0j(x, z) defined in Eq. (7) is an approximate solution of Eqs. (4)-(6) for small e .
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Im p

Re p

Fig. 1. The contour C

3. Construction of the solution. Let us denote the left-hand side of Eq. (8) as I(x)

and

L(x, p) = Acosh(/c/z(x)) - k sinh(K/?(x)),

M(x, p) = hx(x)p(cosh(Kh(x)) - Xk 1 sinh(K/i(x))).

Thus,

I(x) = J exp{ipx/e)(L(x, p) + ieM(x, p))f{p) dp. (9)

Following the ideas from Maslov and Fedoriuk [14] we let

f(p) = a{p) exp(~iS{p)/e),

and Eq. (9) becomes

I(x) = I exp(i(px - S(p))/s)(L(x, p) + ieM(x, p))a(p) dp,

where a(p) and S(p) are bounded. By integration by parts and noting that x > 0

and exp(ipx) —> 0 exponentially as p —> oo along C, we have

exp(i{px - S(p))/e)F(x, p) dp

= exp(i(px - S(p))/e)F{Sp , p) dp (10)

+ ie J exp(i(px - Sip^/e)^(F)(x, p)dp,
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where F(x,p) is sufficiently smooth in x and analytic in p on C, and

0 (F(x,p)-F{SD,p)\
9r{F){x,p)

dp y x~Sp

(11)

= jf'((1 - »,) „)«>,* + (1 - • *)*«,.

By using Eq. (10) several times, we have

I(x) = ^exp(/(px - S(p))/e)

x (a(p)L(Sp , p) + z'&T" (oL)^ , p) - e2^2(aL)(x, p)

+ ieM(Sp, p)a(p) - e2^(aM)(x, p)) dp,

where

y2{f){x,P) = jf' jf1 (0?o - 0l)(i - e2)^/XXXJC + e\{\- e2)sppfxxxp

+ 0,(1 - 0\)2S2ppfxxxx + 0,(1 - + 2(1 -

+ 0l/«W)(»I®2(*-^)+^.l')^.^2-

In Eq. (11), the terms of zeroth- and first-orders of e are zero if we let

L(SP,P) = 0, (12)

(aL){Sp , p) + M(Sp , p)a(p) = 0. (13)

First let us solve Eq. (12) for S(p) by the method of characteristics. Let P = Sp .

Then

^ = hx(P)(X2 - (p2 + l))cosh((p2 + 1 )l/2h(P)), (14)

^ =pcosh((p2 + \)l/2h{P)){h{P) + A(1 - A/z(P))(p2 + I)-1), (15)

^ = P/*X(P)(A2 - (p2 + l))cosh((p2 + l)l/2h(P)), (16)

with initial condition (p0, P{), 5„) at o — aQ satisfying L(PQ, p0) = 0 . But to solve

P from L(P, p) = 0 for every real p, it is straightforward to show that X must

be greater than zero and less than tanh/z(oo) < 1 . Then if p is real or |p| is large,
2 2

X - (p + 1) 7^ 0 and from Eq. (14) we can use p as a parameter instead of a . Thus

we let p0 = 0 and S - S0 at p0 = 0.

Then Eqs. (14)—(16) become

^ =p(h(P) - X2h(P)(p2 + lr1 + X(p2 + 1 )-l)(hx(P)(X2 - (p2 + l)))-1, (17)

g -K (It)
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It is more convenient to solve L(P, p) = 0, (17) and (18) and we have

h(P) = i(p2 + 1 )~1/2 In ((Cp2 + 1)1/2 + X)/«p2 + 1)1/2 - A))

= //(/>)•

The logarithm in Eqs. (19) has no singularity since X < tanh/z(oo) < 1 . For large p ,

it is not difficult to show that II(p) is an analytic function of p . If we assume that

h(P) is analytic near P = 0 and h'{0) / 0, then for large \p\,

P = h~\ll(p)) (20)

is an analytic function for large p where h 1 is the inverse function of h which is

well defined since h\x) > 0 for x > 0 by the assumption H'{x) > 0 for H(x).

Therefore, by P(p) ~ 0{p~2) as \p\ —► oo ,

S(p)= [" P(p) dp+ S0,
Jo

(21)

with S(p) analytic for large \p\. Thus we have solved Eq. (12) for S(p) with

complex p.

Next let us solve Eq. (13). We can rewrite Eq. (13) as

\a{p)Lxx{Sp, p)Spp + ap(p)Lx(Sp , p) + a(p)Lxp(Sp , p) + M(Sp, p) = 0. (22)

By some straightforward calculation, Eq. (22) can be expressed as

ap(p)(X2 - (p2 + \))hx(Sp)

= a(P)(-kSnnhxx{Sn){X2 -(p2+ 1)) - ph (S )(X2(p2 + I)"1 - 2)

Then

2 pp xjo

■xJp)

1 c
2 pp'^xx^p)

2 , t ,2.-1/2,,-1/2

-phx{Sp){\-X2(p2 + \)X))

= a{p)(-\sDBh(sD){x2 - Cp2 +1)) +phx (SJ).

a(p) = a0(p-' + 1-X-') "\hx(Sp)Y

= a0(p2 + 1)-1/2(1 - X2(p2 + 1 yl)-l/2(hx(Sp))-l/2 „
(23)

2 2  1  1/2  1/2
since (1 — X (p + 1) ) (hJS„)) is an analytic function for large p . Note

X p

that a(p) must be of the form (23) if Eq. (13) holds and from L(x, p) = 0, p must

be large when x is small. Thus if we need a solution near x = 0, we cannot assume

that a(p) has compact support in p .

From Eqs. (21) and (23), we have

<t>i(x, z) = L exp(ipx/e)(cosh(Kz) + Xk 1 sinh(/cz))

x ^exp (~i[f P(p)dp + S0^ jej^Ja0(p2+ l)~l/2A(p)dp (24)

= J III(p) exp ^ P(p)dpSj j(p2 + 1 )~l/2dp,

where A(p) = (l-X2(p2 + l)~[)~y/2(hr(Sn))~l/2. Since we know that h(x) is analytic
X p

near x = 0, we see that for p complex with large p , the factors inside the integral
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2 — 1/2
are all analytic except (p + 1) ' which is analytic for Imp > 0 with a slit from

p = i to p = ioo along the imaginary axis. Therefore, <fil (x, z) is well defined for

a: > 0 and R can be any real positive number greater than R', where for \p\ > R'

and Imp > 0, the integrand in Eq. (24) is analytic.

4. Approximate solution. Now we need to verify that 4>x{x, z) defined by Eq. (24)

is an approximate solution of Eqs. (4)-(6). Before doing that, we first show that we

can choose some X so that 4>x(x, z) is finite as x —> 0+ .

As we have already seen, the convergence of the integral in Eq. (24) depends on

x > 0. If we let

C;+ = {p = Pr + iPj \Pr = Q+ and Pt > R},

C~ = {p=pr + ip. \pr = 0~ and pi > R},

Cj = Cf U CJ , and CR = C\C7, then from Eq. (24)

0i(x, z) = ^Jc+ + jc_+Jc ^ (///(p)exp(-i' P(p) dp^j je^j (p2 + 1)~1/2^ dp.

(25)
The first two terms of Eq. (25) are

iv {x, z) = (///(p)exp(-j (j* p(P)dPy £yp2+1 ri,2yP

= £+!'III{p)exp("'((/- +L °°)p(p)dp)/e)(P2 + 1)"1/24'

III(p) exp (-/ ( + ^+°°) P(p) dp^j j(p2 + 1) 1/2 dp.+

Since P(p) is even in p and analytic in p for p large,

r0++Ri

IV(x, z) = f IH(p) exp f-i f f P(p)dp] / e) {p2 + 1)"
«/0++ooj \ \J+oo J I /

x ^exp (-i ^ P(p) dp^j j

-exp p(P)dP^j /e + Q))) dp'

1/2

rj—c

where a — (2n + 1)tt for an integer n since (p + 1) ' has a branch point at

p = i. Therefore, if we let
f+OO

P(p) dp - ae, (26)
-OO

which determines the values of A, then IV(x, z) = 0 for all large R and Eq. (25)

becomes

</>,(*, z) = exp (^i (px - Qf P(p)dp + S0^ ja0{p2 + l)'l/2A{p)

x (cosh(Kz) + Ak_1 sinh(Kz)) dp.



250 S. M. SUN and M. C. SHEN

From Eq. (27), we see that as x —> 0, <j>x{x, z) is finite, and <f>l(x, z) is independent

of R for large p . In the following we always assume that Eq. (26) holds.

Now we show that <£,(x, z) defined in Eq. (24) is an approximate solution of

Eqs. (4)-(6). Equations (4) and (5) are satisfied obviously. We substitute Eq. (24)

for </>, in Eq. (6) to obtain Eq. (11). By our construction of S(p) and a(p), we

have

I(x)= - e2 ( {^r2{aL)(x, p) +^r(aM)(x, p))

(28)
x exp ^px - {fo P(p">dp + So)) /e) dp'

Let 2(aL) + (aM) = B(x, p){p2 + l)-1^2. It is not difficult to check term-by-
_2

term in B(x, p) that B(x,p) is analytic in p for large \p\ and if x = Cx\p\ ,

then \B(x,p)\ < C2 where C, is any positive constant, \p\ is large, and C2 only

depends on C( . Thus by Eq. (26), the integrals in Eq. (28) from 0~ + iR to 0~ + zoo

and from 0+ + ioo to 0+ + iR cancel each other and Eq. (28) becomes

I(x) = -e2 [ D(x, Re'e)Rie'6 dd - e2 f D{x,p)dp,
Jjt J-R

(29)

where D(x, p) = B(x, p)(pz + 1) 1/2 exp(/(/?x - (/0P P(p) dp + S0))/e). But P(p)
2

d{/p for |p| large where dt is a positive constant; then

d±

\P\

and if p = pr + ipt with pr, pi real,

/'Jo
p(p) dp ~ d2 - p!j■, d2is real,

px - P(p)dp + S^j =px + (djp){ 1 + 0(\/p)) - {d2 +S0)

= pr(x + dl\p\ 2(1 + 0{\/\p\)))

i-2
+ iPi(x - dx\p\\\ + 0{\/\p\))) - {d2 + S0).

Thus if we let xR2 = d3 with 1 - {Id^/d^) >1/2 in Eq. (29), then for large \p\,

—£2 [ D(x, Re'e)Rie'6 dd < C2e2 [ exp(-(Rx/2)smd/e)dd
Jn Jo

< (2c2tie /Rx)(\ - e\p(-Rx/2e)).

Also if p is real, then B(x, p) is even for p and

f D(x, p)dp < [ B{x,p){p2+ 1)"1/2
J-R JO

x ^exp ^/?x - P(p) dp +

+ exp (i (-px + f P(p) dp - Sr.) / e ) ) dp
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2 2  1/2
for xp <d^ and B(x, p) = C5 + B{(x, p)(p +1) ' where Bx(x,p) is bounded

and C5 is a fixed constant. Thus,

j J D(x, p)dp < C5{p2 + l)~1/2cos (^(px - P(p)dpSj jdp

+ J B{{x, p){p2 + 1)_1 cos - j P(p) dp^j jf^J dp

Since B{ (x, p) is bounded in [0, R] and the critical point of px - /q P(p) dp is in

[0, R], by the stationary phase method we have

j Bt(x, p)(p2 + I; 'cos ((px - J P{p)dp\ /1\dp <c/12,

where C6 is a fixed constant. Now we consider

J {p2 + 1) 1/2 cos ((px-J^ P(p) dp^j jej dp .

= |/ (q2 + x)~1/2cos ^(x1/2/e) ^q + x~l/2J P(p)dp^dq

I K2
= / J\{x, q) dq

\Jo

I raix'12 fP I ra3

< / Jl(x,q)dg + / Jl(x,q)dq + \ Jx{x,q)dq
| JO Ja,x1/2 \Jp

where a( is large and [i is small, and they are fixed numbers to be chosen. Choose

a, so large that when p > a,

P(p) = (dl/p2)(l + 0(l/p))

with 1 + 0(p 1) > I and2

+oo

[ P(p)dp = {djp)(\ + 0{p ')).
J P

Also let

-1 -1/2t = q - x [ P(p)dp = q + {djq){\+0(xl/2q '))
J ax '/qx

if x~l/2q > a, and /? is small so that dx/dq > K > 0 for QjXl/2 < q < /? where

K is a fixed constant. After having found a{ and /?, we have q = Q(r) and

f Jl(x, q)dq = f Q\t)(Q2{t) + x)~1'2
Jalx1' J tq

x cos ̂ (x'/2/e) l+x 1/2 J P(p)dp^j dx
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where

1/2 /
rn = x a,x

/ + OO

P(p)dp

(r+oo

p-x~1'2 P(p) dp
Jbx-'i2

Q'(t) is uniformly bounded for T0 > t > T, and small x , and r0 = 0(x^2). Also

for small r,

(2(1) = )(1 + 0{T)) , Q\T) = (l/rf,)(l + O(T)).

By Eq. (26),

/*T i

/ J{(x,q)dq = / 0'(t)(02(t) + x)~1/2 sin((x1/2/e)T_1)rfr
Ja,xl/2 \j r„

<

/* T

/ (\/ d x){{t / d {)2 + x)~1/2sin((x1/2/e)r~')^r
•'Ta

+ / '/,(t)((T/^)2+x) 1/2sin((xI/2/e)r ')</t

rTo

= /.+//,,

where /.(r) ~ <9(r) as t —♦ 0 and is bounded. But

A = 11/2 (l/d^ai/dy +y2)~l/2y~l sm(y/e)dy
X Tn

< a

and

//j < AT,|t, - t0| < A",

where A^ and A^ are fixed constants. Thus

I rP
/ Jx(x,q)dq

J a.x1/2

< A for small x.

Then

and

,«"2

[ J{{x,q)dq < [ (q2 + x) 1/2 dq < K
Jo Jo

jl/2

fi
/ J(x,q)dq

Jb
<(1 IP)d\,2<K.

Therefore, | J| < A" for x < x0 with sufficiently small x0 and AT is a fixed number.

Also if x > x0 > 0, then by the definition of J and the stationary phase method, it

is straightforward to show

|/|<*(x0)e1/2,
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where K(x0) depends on x0 only. Thus,

rR

I.D(x, p) dp
R

< K for all x,

/

R

D(x, p) dp
R

< K(x0)e^2 for x > xQ.

From Eq. (28), we see that if x > x0 , then |/(x)| < K(x0)e5^2 and |/(x)| < Ke2 for

all x . Hence </>,(x, z) defined in Eq. (27) is an approximate solution of Eqs. (4)-(6)

up to order 0(e2) for all x and up to order 0(e5/2) for x > x0 > 0.

Now we are in a position to show that X defined by Eq. (26) is also an approximate

eigenvalue. Let

ft = {(x, z) | -oo < x < +oo, 0 < z < -h(x)},

and define an inner product and L2-norm by

(f,g)= [ fgdxdz, ||/||2 = [ \f\2 dx dz,
Jn Jn

and a Hilbert space H by

H = {/ l ll/ll < +oo}-

Then by using the ideas in [15], we define an operator sf with

D{s/) = {f eH\f e H2(Q), fz + e2hxfx = 0 at z = -h(x)}

where H (Q) is a usual Sobolev space in Q and

*f = -fzz-*2fxx + f■

Define the operators T and T in D(s>f) such that

Tf = fz{x,z) |z=0 and Tf = f(x,z) |z=0.

Let the restriction of j/ to the set of all / in D(.$f) for which /z(x, 0) = 0 be

the operator . By using the Lax-Milgram theorem, it is not difficult to show that

sf0 is selfadjoint and positive with bounded inverse in H. Therefore, is well

defined. By a straightforward argument, these operators satisfy all the conditions

stated in [15] except compactness of the operators. Therefore, if we define

91 =j/01/2r_1rj/0~1/2 in H,

then 91 is selfadjoint and nonnegative. Equations (4)-(6) can be transformed into

an operator equation

92y/(x, z) = X\//(x, z) (30)

where y/ e H, and if <j>(x, z) is the generalized solution of Eqs. (4)-(6), then

y/(x, z) = jtf0l,2(t>(x, z). Thus by definition of <j>{{x, z), we know that 4>\(x, z)
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2
defined in Eq. (27) is an approximate solution of Eqs. (4)-(6) up to order e in the

sup-norm in Q. From Eqs. (9) and (28), at z = —h(x)

I{x) = <t>lz + e2hx<t>Xx

= -e2 JcB{x, p)(p2 + l)_1/2exp (px - (J P(p)dp + S0^ jdp.

The critical point pc of px - (f£ P(p) dp + SQ) satisfies x - P(pc) — 0 which implies

^ = (P2C + l)'/2tanh((pc2 + l)1/2/z(x))

by the definition of P(p). But X < tanh/?(oo). So for large x, say x > x0,

x = P(pc) will have no real solution pc. Therefore, if x > 2x0 , |x - P(p)\ /0 or

equivalently |x - P(p)\ > A^0|x| for p e C. By using integration by parts once, for

x > 2x0

|/(*)l = |fi2 B(x, p){p2 + l)'/2exp (px - ^ P{p)dp + S0Sj^j ja) dp

= \e jc^B(x,p)(p2+rt-^r1)

X exp (i (px - ( [ P{p) dp + s0)} /e) dp
o

< A^2|x| 'e3

since the function inside the integral over C is of the order exp(-x|p|/2) as p goes

to +/oo, where K2 is a constant independent of e and x . Finally using integration

by parts n times, we have that at z = —h{x)

l^iz + fi2MiJ ^ forx>2x0,

where n is any positive integer and AT is a constant independent of £ and x.

Therefore, if we can get an estimate in the sup-norm, the same estimate is true

for the L -norm. Thus, by the definition of </>,(x, z) in Eq. (27), if ^t(x, z) =

</20,(x, z), then

l(
for all f £ H, which implies

\(3?y/Ax, z) - Xy/.(x, z), /(x, z))| < ATe2||/||

||3?y/l(x, z) - Xy/j(x, z)|| < Ke2.

Also by using the stationary phase method

Kell2<Ml{x,z)\\<\\j/0ll24>l\\ = |k,||.

Let us denote the spectrum of 31 by a{31), and let d(X, a((31)) be the distance

between X and o(3l). Then by Lemma 13.1 in Maslov and Fedoriuk [14],

d(X, o(3l)) < Ke3'2,

where X is defined by Eq. (26). Therefore, for small e we have that there is a A0 in

the spectrum of Eqs. (4)-(6) so that X0 = X + 0(e3'2) . Thus, X defined by Eq. (26) is

an approximation of the spectrum of Eqs. (4)-(6) up to order e3/2. The approximate

eigenfunction is </>j(x, z) defined by Eq. (27). Finally, we summarize the results as
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Theorem 1. The function defined by Eq. (27) is an approximate solution of Eqs. (4)-
2 5/2

(6) up to the order e for all x > 0 and up to the order e ' for x > x0 > 0, and

the distance between X defined by Eq. (26) and the spectrum of Eqs. (4)-(6) is of

the order e3^2.

Note that in this theorem we have to assume that the depth profile H(x) depends

on x only, which means that the bottom of the beach is uniform in the y-direction.

5. Discussion. First let us show that the formulas used by Shen, Meyer, and Keller

in [7] can be derived from Eqs. (26) and (27). From Eq. (27), if x > x0, by using

the stationary phase method,

2

<t>{{x, z) ~ ^]exp (i ^xp - ^ P(p)dp + S0j"j ja0(p2 + l)1/2A(p)

7=1

x ^cosh(zcz) + cosh(ich(x)) sinh(Kx)^
P=gj(x)

where gj{x), j = 1, 2, are two roots of P{p) = x for p . Thus,

z) ~ (exP (' (xgji*) ~ ' P{p)dp + Sje^j a0(gj + 1 )~l/2A(gj)

x cosh~'((g2 + l)1/2/z(x))cosh((g2 + 1 )1/2(z + h(x))).

But if k(x) = (gj + 1)1/2 and T(x) = xg^x) - (f0Sj P(p) dp + S0), then Tx = g.(x),

T2 + 1 = k2(x), and by (12)

k(x) tanh(/c(x)/z(x)) = A.

These expressions for Tx and k(x) correspond to Eqs. (22)-(24) in [7], Also by

Eq. (26), P(p) — x , and letting a be P(0),

/+oo r+oo

P(p) dp/s = 2 P(p) dp/e
-oo J 0

= (2/e) (j>Wlo°° - ^ pP'{p) dp^j

= (2/e) (- J g{ (x)dx\ = (2/e) (k2(x) - \)X'2dx,

which is the formula (31) in [7],

Next we show that the uniform expansion of <j>(x, z) in [11] can be derived from

Eq. (27). From Eq. (27) we have

<l>l(x,z)= exp (j(px-[fQ P(p)dp + Sje^j a0{p2 + iyl/2A{p)

x (cosh(Kz) + Xk~X sinh(/cz)) dp (31)

with xR2 = c?3. Since k = (p2 + 1)1/2 , we let

cosh((/?2 + l)l/2z) + X(p2 + 1)_1/2 sinh((/?2 + 1) 1/2z)

= ,4,(x, z) + (x - P(p))A2(p, z, x),
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where A2(p, z, x) is bounded on CR ,

Ax(x, z) = cosh({p2 + l)l/2z) + A(/?2 + l)~1/2sinh((p2 + l)1/2-^)|p=p+

+ cosh((p2 + 1 )1/2z)+ A(/?2 + l)_1/2sinh((p2 + \)X'2z)\p=p- ,

and p+ , p~ are the roots of x = P(p). By integration by parts and letting R —> +00

for the first term, Eq. (31) becomes

<M*> z)

= At(x, z) exp [px- ^ P(p)dp + S^j jej a0{p2 + 1 )~l/1A{p)dp + O(e)

= Al(x,z) j exp [i (px - ^ P{p)dp + S0Sj^eSja0(p2+l)~l,2A{p)dp + O{e)

= 2Ax(x, z)e'S°/e J cos ̂ (px ~ J P(P)dp^!^j a0(p2 + l)~l/2A{p)dp + 0(e).

We use the following change of variable:

px+ f P{p)dp = Q~2(x)q+ (l/q),
Jp

where Q(x) is the positive root of P{p) — x; then dp/dq / 0, and choose q so

that dp/dq > 0. Let p = v(q) and q = V(p). Note that v(q) and V(p) may

depend on x . Then

<t>x{x, z) = 2At(x, z)exp(iS0/e)

X jm COS ̂ Q~2(x)q + (l/q) ~ p(P)dP^j jfi j

x a0(v2(q) + 1 )~l/2B(q)dq,

where F(0) > const > 0 for small x and B(q) = A(v(q)) is bounded. Let

(v2(q) + l)~l/2B(q) = q~XBx{q,x),

and Bx(q, x) is bounded since q ~ xQ (x)p for p large. Write Bx(q,x) as

Bx(q,x) = CQ(x) + (l/q)Cx(x) + (Q~2(x) - (1 /q2))C2(x, q),

where the derivative of C2(x, q) in terms of q has order (l/q ). Hence by using

integration by parts,

<t>x(x, z) = Ax(x, z)exp(iS0/e)

+00

(C0(x) + (l/q)Cx(x))
F(0) (32)u

X cos((Q 2(x)q + (l/q))/e - nn - (n/2))q 1 dq ] + 0(e).
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[ cos((Q~2(x)q + (1 /q))/e - nn - (tt/2))^-1 dq
JV( 0)

r+oo , .

= / sin(«2(x)e) q + (l/q))(-l)"q dq
J V(0)e

= [ {-^)n(l~lsm{(Q2(x)E2)~[q + {l/q))dq + 0(e)
Jo

= (-l)"nJ0(2(Q(x)e) ') + 0(e) ,

where J0(z) is the zeroth-order Bessel function of the first kind. Moreover,

r+oo

/ cos((£T (x)q + (l/q))/e - nn - {n/2))q~ dq
J V (0)

= e [ (-1)" sin((22(x)e2)-1^ + ( \/q))q~2 dq
JV( 0)e

= e [ {-\)n sin((Q2{x)£2)~lq + (l/q))q~2 dq + 0{s)
JV( 0)e

= e [ (-\)"+\sin({Q2(x)E2ylq)co${l/q)
J V(0)e

+ cos{(Q2(x)Eylq)sin(l/q))d{l/q) + 0(e)

= Q~2(x)(- 1)" [ sin((Q2(x)e2)~1 q + (l/q)) dq + 0(e).
JV(0)£

Finally, by Eq. (32)

(f)x(x, z) =Ai(x, z)exp(iS0/e)(-\)n(nJ0(2(Q(x)E)~1)C0(x)

+ C{(x)Q~2(x) f sin((Q(x)E)~2q + (\/q))dq) + 0(e),
Jo

where O(e) is uniformly small with order e for x near zero. By noting that

Q~2(x) ~ (x/fif,) for small x, we have that if Q2(x)e2 ~ O(l) or Q2(x)e2 > 0(\),
2  2 2

which means that x is comparable or smaller than e , then Q (x) < 0(e ) and

Q~2(x) [ sin((Q2(x)e)~Xq + \/q)) dq ~ 0(e2).
Jo

So the first term in Eq. (33) is the dominant term. If Q2(x)e2 < 0(1), which means

that x is larger than e , then by using the stationary phase method,

nJ0(2(Q(x)e)~l)c0(x) + Cl(x)Q~2(x) [ sin((Q(x)e)~2q 4- (1 /<?)) dq
Jo

~ Co*(x)/o(2(0(x)£)^) + C;(x)Jl(2(Q(x)e)~l) + 0(e),

where Cj(x) and C*(x) are two new functions only dependent on x. Since Eq. (33)

is valid uniformly for all x < K with K as a small constant independent of e , by

(33)
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the above discussion we may assume <f>x{x, z) in Eq. (33) has the following form

uniformly in x:

cj)x(x, z) = e\p(iS0(x)/e)(Dl(x, z)J0(2{Q(x)e)~l)

+ D2(x, z)Jl(2(Q(x)e)~l)) + 0(e). (34)

D2(x, z) could be zero when x is zero and

D2(x, z)Jl{Q(x)e)~l) ~ 0(e2)

if Q{x)e ~ 0( 1) or (2(x)e » 0( 1). Here D{(x, z) and D2(x, z) are two unknown

functions. Thus, to obtain a uniform expansion of the solution of Eqs. (4)-(6),

Eq. (34) is an appropriate form of the solution at least up to the first order. Equation

(34) is the form used by Shen and Keller in [11] to derive the solution for more

general situations.

Finally let us discuss the validity of the eigenvalue equation (26). Note that when

we write Eqs. (12) and (13), we already use the fact that X ~ 0(1) implicitly since

we retain the terms Acosh(K/z(x)) and Xk~x sinh(/c/z(x)) in Eqs. (12) and (13) re-

spectively. If we want to have X ~ (9(e), then Eqs. (12) and (13) are incorrect and

the justification fails. Therefore, from the derivation, the assumption X ~ 0(1) is

necessary and by Eq. (26), (2nn + n/2)e ~ 0(1) which implies that n ~ 0(l/e). But

surprisingly enough, the formula works very well for X ~ 0(e) as well. Zhevandrov

[12] uses the ray method to obtain higher-order terms of X and finds that for small n

the eigenvalue expansion is still correct by comparing his results with Miles's results

[13] which are valid for X ~ 0(e). The extended range of the applicability of the

eigenvalue formula has been recently justified by Zhevandrov [16].
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