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Abstract. A mathematical model of a semi-infinite mode I crack that suddenly

begins to propagate at constant speed is constructed for a general linear viscoelastic

body. Expressions for the Laplace transform of the stress, displacement, and stress

intensity factor are derived for general loadings. A Barenblatt type process zone is

incorporated into the model and used to determine the total energy flux into the

crack tip. This energy release rate, G(t), is constructed for two specific loadings:

one following the advancing crack tip, the second remaining fixed as the crack tip

advances. In each case G(t) is analyzed by asymptotic and numerical methods to

determine its qualitative form and, in particulaf, its rate of decay to its steady-state

value. The effect of such simplifying assumptions as quasi-static propagation or an

elastic material is also illustrated. The second loading is intended as an idealized

model of the dynamic fracture experiments of Ravi-Chandar and Knauss [13-16].

1. Introduction. The analytical study of dynamically propagating cracks in linearly

viscoelastic material was begun by the Willis [26] study which constructed the dy-

namic steady state stress intensity factor (SIF) for a propagating semi-infinite, mode

III, (antiplane shear) crack in an infinite viscoelastic body modelled as a standard

linear solid. Extensions and generalizations of this work have been accomplished by

several researchers, e.g., Atkinson and List [5], Atkinson and Coleman [4], Atkinson

[3], Atkinson and Popelar [6], Popelar and Atkinson [12], Walton [20-24], Schovanec

and Walton [17-19], and Herrmann and Schovanec [9]. A synopsis of this previous

work can be found in Herrmann and Walton [10],

Herrmann and Walton [10] derived analytical expressions for the stresses, displace-

ments, and stress intensity factor for a semi-infinite mode III crack, initially at rest,

which begins to propagate at a constant speed under the action of suddenly applied

loads on the crack faces. The loads are completely general and can be time varying.

These were the first transient dynamic results for a very general class of viscoelastic
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material models which includes both the power law and standard linear solid vis-

coelastic models. Herrmann and Walton [10] also presented closed form expressions

for the Laplace transform of an energy release rate. A Barenblatt type process zone

behind the crack tip was incorporated into the model, and the energy flux into this

damage zone per unit crack advance was derived for time varying loadings which

follow the advancing crack tip and which have a particular spatial form. This energy

release rate was found to be the product of the response stress in the process zone

and an energy integral. An expression for the Laplace transform of each of these

functions was derived and the mathematical behavior of the energy release rate was

studied through asymptotic methods and through the consideration of special cases

such as quasi-static crack propagation or an elastic material model. Herrmann and

Walton [11] showed that these formulas could be generalized to the complex plane

and thus numerical Laplace inversion along a Bromwich path was valid. The numer-

ous graphs displayed in Herrmann and Walton [11] showed the effect on the energy

release rate of varying the different nondimensional parameters identified in these

formulae.

The purpose of this paper is to extend these models to the more applicable and

difficult case of transient dynamic mode I crack propagation. In particular, it is

intended thereby to model (at least qualitatively) the fundamental dynamic fracture

experiments described in Ravi-Chandar and Knauss [13-16], In these experiments,

a large plate with a starter crack had a fixed part of its crack faces loaded by a copper

strip which provided an opening mode pressure when a capacitor-inductor circuit

was discharged through the strip. The size of the plate was chosen large enough

so that reflected waves did not interact with the crack tip for the duration of the

experiment thus simulating an infinite specimen geometry in their experiments. It

was discovered from examining the caustics resulting from the crack tip stress field in

their birefringent material that the crack tip advanced at a constant speed even though

the stress intensity factor was varying. Furthermore, the initial acceleration phase of

the crack tip could not be observed since it occurred in a time period of less than

the 5 fi sec that the experiments high speed photography could resolve. Similarly,

in their studies of crack arrest no deceleration was observed since the arrest also

occurred in a time period of less than 5/i sec . Ravi-Chandar and Knauss concluded

from a series of experiments which varied the duration of the loading on the crack

faces that "the question of whether a crack will initiate under some applied loading

into unstable growth depends not only on the amplitude of the loading, but also on

the complete history of load application." Their observations support the value of

studying the constant crack speed model considered here.

Our mathematical model assumes a general viscoelastic material whose current

state of stress depends on the complete history of the strain of the material through

Riemann-Stieltjes convolutions of the shear modulus n and Lame modulus X with

the strain. For a semi-infinite mode I crack that begins to propagate at a constant

speed less than the glassy shear wave speed, the authors derive expressions for the

Laplace transform of the stresses, the displacements, and the stress intensity factor.

Furthermore, a Barenblatt type process zone is incorporated behind the crack tip,
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and an expression for the energy flux into this damage zone is determined. This

energy release rate is derived for two different loading schemes; the first assumes the

load on the crack faces follows the advancing crack tip as in the previous studies of

Herrmann and Walton (1989, 1991), and the second loading assumes that the crack

face tractions remain fixed as the crack tip advances. The energy release rate in each

case is found to be the product of the response stress in the damage zone and an en-

ergy integral. The Laplace transforms of each of these functions are determined for

complex values of the Laplace variable so that numerical Laplace inversion of these

expressions is valid. The behavior of these expressions is investigated by asymptotic

as well as numerical means. Moreover, the effect of such simplifying assumptions as

quasi-static propagation or an elastic material model is also examined. In particular,

it will be seen that the first 'oading scheme has the energy release rate quickly and

monotonically rise to its steady state value while the second loading scheme has a

quick monotonic increase to a peak value and then a monotonic decrease to zero. If

it is assumed that a minimum energy input to the crack tip is necessary for contin-

ued crack propagation, then this behavior of the energy release rate under the second

loading scheme, which reflects the essential features of that occurring in the experi-

ments of Ravi-Chandar and Knauss, suggests that the crack should slow or arrest if

the crack could be observed for a long enough time.

2. Problem formulation and reduction to a Riemann-Hilbert problem. The problem

to be considered is that of a semi-infinite mode I crack that begins to propagate at

a constant speed V in an infinite isotropic, homogeneous, linearly viscoelastic body

due to the sudden application of crack face tractions that travel with the crack. The

crack is assumed to initially lie along the negative Xj-axis and to begin to propagate

with a constant speed V at time t = 0. The deformation is assumed to be plane

strain and symmetric about the plane of the crack. The equations of motion are

pui = (7- . for x? > 0 and i — 1,2 (2.1)

with initial conditions

Ui(xl, x2 , 0) = 0, Ui{xl, x2 , 0) = 0, (2.2)

and boundary conditions

fr12(Xj, 0, t) — 0 for - oo < Xj < oo,

' x _ vt
g22{x{ , 0, t) = LeA ( 1 ,t) for xx < Vt,

ae (2.3)
u,(Xj, 0, t) = 0 for Xj > Vt,

2 2
cr( (x,, x2 , t) —> 0 as Xj + x2 —> oo,ijy

where u;- and ai} are the displacement and stress tensor components, p is the

mass density, and LgAe((xl - Vt)/ae, t) denotes the crack face normal traction.

Ap( ) is dimensionless while ae and Le have the dimensions of length and stress,

respectively. Also, while the crack speed is assumed to be constant, the driving load

is allowed to be time varying. The constitutive relations are given by

aij = 2p * deij + $tJX *dekk, (2.4)
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in which ejj are the strain tensor components, n and X are positive, decreasing

functions of t > 0, and p * de denotes the Riemann-Stieltjes convolution

p*de — / n(t - x)de(x) .
J — OO

We shall adopt the moving coordinate system (x, y, t) given by x = x{ - Vt.

y = x2 and define u(x, y, t) = u{x{ - Vt, x2, t) = WjC*,, x2, t) and v(x, y, t) =

u2(xl, x2, t). In the moving coordinate system, (2.1) becomes for y > 0

P dt dx

dt dx

2 q2 q2

u(x, y , t) = —j[{2p + A) * du] -t T[u * du]
dx dy

2 q2 q2

u(x, y, t) = —y [(2 P + A) * du] h 2[u * dv ]
dx dy

(2.5)

+ ^g-yK" + X)"du]-

A Helmholtz decomposition shall now be introduced. The potentials 6 and <p are

defined as the solutions to

2

6(x, y, t) - A[(2p + X) * d6],
d i, 9

' " % (2.6)

d d
~dt ~Vdx <P{x,y,t) = ^n*d(p],

2 2 2 2
where A = d /dx +d /dy . Equation (2.5) will then be satisfied by writing

d d
u{x, y, t) - Q^d(x ,y,t) + , y , 0

and

v(x,y,t) = ' y'')•

Application of the Fourier transform, f(p , y, t) = e'pxf(x, y, t) dx , to (2.6)

followed by the Laplace transform ~g(p, y, s) — /0°° g(p, y, x)e~ST dx, produces the

ordinary differential equations in y ,

p[s + iVpf b(p, y, s) =

p[s + iVp]2<p{p, y, s) =

d 2

df~P

d2 2

dy2 P

[(2/2 + X)(s + iVp)0(p,y,s)],

(2.7)

[(ju{s + iVp)1p(p,y,s)],

where j&(s) denotes the Carson transform ju(s) = p(0) + /0°°e dp(x). The solu-

tions of (2.7) are

t(p,y,s) = A{p,s)e~fi<{p's)y and f(p, y, s) = B(p, s)e~fi2(p's)y, (2.8)
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where

Px{P,s) =
2 p(s + iVp)2

(2 ii + l)(s + iVp)

1/2

and fi2{p,s)
2 p(s + iVp)2

p.(s + iVp)

1/2

must be chosen to have positive real parts to ensure that 9(p, y, s) and lp(p ,y,s)-+

0 as y —y oo .

In a similar manner the Fourier and Laplace transforms are applied to the bound-

ary condition crl2(xl ,0,t) = 0, -oo < x] <00, with the result that A(p, s) and

B(p, s) must satisfy

(2.9)
p +02(p,s)

Similarly, taking the Fourier and Laplace transforms of o22(xl, 0, t) — 0yy(x, 0, t)

one has that
r\

~5yy{P ,0,s) = (2ji +1)(5 + iVp)—t(p ,0,5) + {-ip)A(s + iVp)t(p ,0,5). (2.10)

From the Helmholtz potentials, it can be seen that

ii{p,0,s) =
— d

-ip9{p, 0, s) + Q^<P(P, 0, s) = -ipA - p2B,

v{p, 0,s) = - p{A + ipB,

and jjV(p ,0,5) = 1{A - ipp2B . Thus (2.10) may be written as

%,(/>, 0, s) + a~y{p, 0,s) = T{p)T)(p,0,s) (2.11)

where j{p) and f~(p) denote

rOO r0

f+(p)= e'pxf(x)dx and f~(p)= e'pxf(x) dx,
J 0 J—oo

and

T( __ 2ji(s + iVp)[^(p2 + Pi) - 2p2^p2] + A(J + iVp)(fi -p2){p2 + p22)
P P{(p2-P22)

Since v(x, 0, t) = 0 for x > 0 then v(p ,0,5) = # (p, 0, s). It is assumed a priori

(and is easily verified a posteriori) that v (p, 0, s) and ayy (p, 0, 5) have analytic

extensions v (z,0,s) and a*y(z,0,s) for Im(z) < 0 and Im(z) > 0, respec-

tively, which vanish as |z| —> 00 . Thus the boundary condition (2.11) may be refor-

mulated into the Riemann-Hilbert problem: find F+(z) analytic for Im(z) > 0 and

F~{z) analytic for Im(z) < 0 such that limIm(z)_>+00 F+(z) = limIm(r)_>_00f~(z) =

0 and on Im(z) = 0,

F+(p) = T{p)F~(p) - g(p) for p g (-00, 00) (2.12)

where F+(z) = &yy(z, 0,5), F~(z) =t (z, 0, s), and

g(p) = °yy(P ,0,s) = LeaeAe{aep, s).
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For convenience, explicit reference to the 5 dependence of T(p), g(p), and F±(z)

is being suppressed.

So as not to introduce more mathematical complications, Poisson's ratio is as-

sumed to be constant. From this assumption, it follows that X = ■ Furthermore

Px{p) and T(p) may be simplified with

PX(P, s) =
2 klp(s + iVp)

P fi(s + iVp)

1/2

(2.13)

where k{ = ^jj^y , and

T{p) = Ms + lVp)-\' [Ap2p fi _ {p2 + p2 2} {2A4)

(s + i Vp) ppx

It is easily seen that the physically relevant solution of (2.12) is given by

,±, . „±. -g{x) dx
F^(z) = (2.15^

V V 2ni J_OB X (t) x — z '

where X±(z) solves the homogeneous Riemann-Hilbert problem

X+{p) = T{p)X~{p) for p e (—oo, oo). (2.16)

To solve (2.16), it is convenient to factor T{p) into the product T(p) =

T{(p)T2{p)T3{p) in which

T,(P) = + lVP)l , T,{p) = p;\ T3(p) = 4p2 fl{ P2 - (p2 + Pi)2.
p(s + iVp)

X±(z) may now be constructed as the product X±(z) = xf{z)X2{z)Xf(z) with

each X( (z) satisfying the Riemann-Hilbert problem X^(p) = Tj(p)X~ (p).

For the subsequent analysis the shear modulus will be assumed to be positive, con-

tinuously differentiable, nonincreasing, convex and such that ^(oo) = lim/_>00^(f) >

0. Convexity is sufficient but certainly not necessary to insure the validity of the

following calculations and though theoretically overly restrictive, it holds for most of

the customary models such as a standard linear solid or a power-law material. The

analysis is also valid under the more general assumption that Ji{is) has a negative,

semidefinite imaginary part which for constant Poisson's ratio guarantees that the sec-

ond law of thermodynamics holds. This condition is satisfied by an Achenbach-Chao

material, for example, for which fi{t) is neither decreasing nor convex. Moreover,

it is worth noting that no explicit time decay rate for the shear modulus needs to be

specified for the results to be valid.

In the following analysis it shall be necessary to allow the fixed value of 5 in

(2.16) to be complex with positive real part so that numerical Laplace inversion

along a Bromwich path can be done. First, to determine Xx{z)-% it easily follows

from the fact that n(t) = 0 for t < 0 that [ju(s + iVz)]~x is analytic for Im(z) < 0.

Furthermore {s+iVz) is also analytic for Im(z) < 0 and therefore one may choose

X*{z) = 1 and X~(z) = p(s + iVz)~[fi(s + iVz)]~2. (2.17)
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Before determining X2(z) and Xf(z), it is necessary to investigate the properties

F(p, s, k) =   ~~2 ~ kpV
cp-is/vy (s + iVp)

where s and k are fixed and such that Re(s) > 0 and k > 0. It can be easily

shown that Im[.F(/?, s, &:)] < 0 for p < -Im(s)/F and Im[F(p, s, &)] > 0 for

p > -lm(s)/V. Furthermore, F(-Im(s)/F, s, k) < 0 and

rl

F{±oo,s, k) = 1 - >0 for 0 < F <
H(0)

p(0)
1/2

pk

Thus, the closed curve defined by F(p, s, k) as —oo < p < oo has a winding

number of one about the origin and therefore, by the argument principle, there exists

in the lower half-plane, Im(z) < 0, a unique root of order one, zt = zt(s, k), of

F(zt,s, k) = 0.

We shall now write /?,(/?, s) = sgn(p + Im(s)/V)(p - is/V)F{p , 5, kx)x^2 . Note

that k{ = 2(1-v) is suc'1 that 0<^i<5 if0<z/<j. We shall choose a branch

cut for F{p,s, kx)1^2 such that F(p,s, kx)1^2 is continuous except for a jump

discontinuity at p = -Im(s)/F where F(p,s,k) —> ±/|.F(-Im(s)/F, s, k)\1^2

as p —> —lm(s)/V±. Moreover, Im[sgn(/7 + Im(s)/F)(/? - is/V)] > 0 for p <

-Im(s)/V and Im[sgn(/? + lm(s)/V)(p - is/V)] < 0 for p > -lm(s)/V with

sgn(p + lm(s)/V)(p - is/V) —> =p/ Re[s]/F as p —> - Im(s)/F± . Thus, this form of

insures that Re[/?j(;?, 5)] > 0.

We shall write T2(p) = px(p, s)-1 = T2x(p)T22(p) where

sgn(p + Im(s)/F) ^ „ ;,,-i/2

is/V
r2i(P)= n_,-r/r/ and T22(p) = F (p, s, kx)~

It can be shown that

(z) = a) (z + Im(s)/F) and X2l(z) = (z - is/V)co (z + Im(s)/F)21*- ' — ' v."// / ctuvi. 21

satisfies X2x(p) — T2x(p)X2x(p) where a)+(z) denotes z1/2 with branch cut along the

negative imaginary axis and co~(z) denotes zl/2 with branch cut along the positive

imaginary axis. X22{z) such that X22(p) = T22(p)X~2(p) can be constructed as

X22(z) = exp(r±(z)) where

N-1/2x

r*(z) = ' r w,».*,)-')dr
2mJ_c

The branch cut for F(z, s, kx)^2 shall be chosen as the line segment Lx connecting

-Im(s)/F and the unique zero zx = zt(s,kx) of F(z,s,kx) for Im[z] < 0.

Therefore F(p, s, kx)~1//2 is analytic for z in the lower half-plane except along L,

and the integral for P^z) can be done by residues. It is found that

X^z)=(ZT-iSz)/Vy2 and Xv(z) = ( 7 +zm{SzxV) 1/2 F{Z ,S' k{)'1/2'
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where the branch cuts are along Lx . Since X2(z) = X2i(z)X22(z) then

„+, , , WI« (Z + Im(s)/V\l/2
X2(z) = a> (z + lm(s)/V)l  _K " I ,

(2.18)

X-{z) = {z-islV)to-{z + \m{s)IV) F(2, 5, .

Finally, we need to determine xf(z) such that X3(p) = T3{p)X3 (p) where

T3(p) = 4p2fi{P2(p2 + fi2)1. To aid in this, we shall write

T3(P) = TM{p)T32{p) where T}x(p) = 4(p - is/V)4

and
2

r32 (P) = 7 lr—2FiP^, kl)l/2F(p, s, 1)1/2 -F(p,s, 1/2)2.
(p - w/K)

Note that each /T has been written as

, 5) = sgn(/> + Im(s)/F)(p - is/V)F(p, 5, k^'2

where k2 = 1. In each case this guarantees that Re[0j(p, s)] > 0. Choosing

X^(z) — 4 and X~x(z) = (z - is/V)"*, we see that (/?) = T}x(p)X3x(p).

We shall now determine X32(z) in a manner similar to X^(z). First, we shall

extend T32(p) to the lower half-plane by choosing the branch cut of F(z, s, kx)if2

from -Im[s]/V to z, along Lx as discussed above and choosing the branch cut

for F(z,s, l)l/2 from -Im[s]/F to z2 = zt(s, 1) along Lxl)L2 where L2 is the

line segment from Zj to z2 . It may be seen that T^2(p) for —oo < p < oo defines

a closed curve since

r32(oo) = [i - kxPv2/n(o)]1/2[i - pv2/vml/2 - [i - \pv2/ii{0)]2.

The function

R(x) = [1 -A:,x]I/2[1 -x]1/2 - [1 -x/2]2 (2.19)

can be shown by the argument principle to have exactly two zeros. Note that R(0) =

0, *(1) < 0, and R'(0) ^ 0, thus the second zero of i^(x), ^*o' ^ such that

0 < rQ < 1. Furthermore, R(x) is positive for 0 < x < rQ and negative for

-oo < x < 0. Thus for V < [r0p(0)/p]1^2, Tn(oo) > 0. Moreover,

By examining the curve defined for T32(p) for -oo < p < oo it can be seen that the

winding number of the curve about the origin is one and thus T32(z) has a unique

zero in the lower half-plane which we will denote z3. Thus log( r32(z)) can be

defined by choosing a branch cut along Lx U L2 U L3 where L} is the line segment
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from z2 to z3 off of which log(r32(z)) is analytic for z in the lower half-plane,

^(z) can now be determined by residues as before with the result that

z - z, \ /z-z3 \ /32(Z)

and

X^z) \z + \m[s]iv)\z-z2'e

where

Thus

=

t.L

z — z, \ / z - Z3

z + Im[5]/F/ \z - z2J Tj2(z)

j i f iog(r32(r+)) - iog(r32(r )) ^

32 ~ 2ni Jr r - z

Xj(z) = 4 ( *7' )

X3~(z) = (z - is/V)~'4 ^—————^ ——

(2.20)

z + Im[s]/F) \z - z2/ T32(z) '

Combining (2.17), (2.18), and (2.20), X±(z) is seen to be

X\z) = 4cd+(z + Im(s)/V) (ilMfl/n "2 ( Vfi J fiZii)/z + Im(j)/KN,/z / z-z, '

V z-zt J Vz + Im[5]/Fy

v-^ -Pyl 1 — i t ,snr, (z + lm{s)IV\XI2 rl , ,1/2
X W =  -~r7 3 ~Z T7r{7W (z + Im W/H    I  F(z , S, k{) '

H(s + iVz) z - is/V V z-zl j

z - Zj Wz-z3\ eI,l{z)
■)(i

z + Im[j]/F7 \z - Z2J T32(z) '

(2.21)
Note that X (zQ) for z0 on the branch cut L, U L2 U L3 can be determined by

taking the limit of X~ (z) as z approaches zQ from either side of the branch cut.

Finally, for a specific load o~ (x, 0, t) = LgAe(x/ag , t) one can determine F+(z)

= <fyy(z,0,s), F~(z) = t (z,0,s) from Eqs. (2.15) and (2.21). From v =

-filA + ipB and (2.9), A and B can be determined and thus the Laplace transform

of any of the stresses or displacements can be found. In particular, the Laplace

transform of the stress intensity factor (SIF) K(s) can now be calculated as in [20].

Specifically, one has that

— / r\ \ K(s) -1/2 n+ayy(x,0,s) j=-x as x -» 0 ,

_ e-xil4 ,00 ^ ^ (2-22)

where K{s) = J ^ dx and a (t, s) = Leae\(aex, s).

3. Calculation of the energy release rate. The energy release rate (ERR) will now

be calculated based upon the assumption that a Barenblatt type failure zone exists

at the crack tip. Specifically, it is assumed that two loads are acting on the crack
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faces: the applied (external) tractions denoted o~(x, t) — LeAg(x/ae, t) and the

cohesive (failure) stresses oy (x, t) = -Lj-Af(w(x, t), xfa^, t) acting in a failure

zone of length af immediately behind the crack tip. The essential features of the

Barenblatt model are that af «a( and that Ke + Kf = 0 where Ke and K f are the

SIF's corresponding to o~ and oj , respectively. The effect of the failure zone is to

cancel the singular stresses ahead of the crack tip and thereby produce a cusp shaped

crack profile behind the tip. The resulting mathematical problem is: given a~(x, t)

find the "response" stress in the failure zone, cy , and crack face displacements

u(x, 0, t) and v(x, 0, /) for -oo < x < 0 that cancel the stress singularity due to

o~(x, t) while maintaining a constant crack speed. The goal is then to compute the

time evolution of the energy release rate as described below.

The ERR, G(t) (defined to be the energy flux into the crack tip per unit crack

advance), is given by

1 fVt -
G{t) = — / of (x, - Vt, t)u2(xl - Vt, 0, t)dx

V JVt-a, '"/

which in the moving coordinates becomes

1 f° -
(x, t) iL_F—

dt dx
v(x, 0, t)dx. (3.1)

Deriving a closed form expression for (3.1) valid for arbitrary applied tractions

o~(x, t) and failure zone constitutive law

of {x, t) = -LfAf | v(x, 0, /), tj (3.2)

requires solving an exceedingly complicated nonlinear boundary value problem. The

constitutive law (3.2) models the failure zone response as that of a nonlinear elastic

spring, accounting for inhomogeneity and aging. In general the failure zone length,

a^, is dynamically changing and determined by the equation Kp + Kj- — 0. In

the absence of any generally accepted, physically motivated form for Aj{-,

various ad hoc, artificial models have been introduced and studied in the literature.

A discussion of these models is contained in [10].

For the dynamic steady-state problem, it was shown in [27] that a simple closed

form expression for G is obtained for the special class of loads

o~(x) = Le exp(x/ae) and o^ (x) —-Lj-exp(x/aj-) for-oo<x<0. (3.3)

It was argued there that, for < ae , the fact that oj (x, t) does not have compact

support should have a relatively minor effect on the results provided the essential

requirements for the Barenblatt model are still satisfied: af <C ae and Ke + = 0.

Furthermore, the two cases (1) Lj■ constant with af = cij-( V) and (2) a.j constant

with Lf = Lj-(V) were compared quantitatively. It was found that, except for very

high crack speeds, the two cases produce nearly identical G vs. V curves. In light of

these considerations it is likely that valuable insight into the combined influence that
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crack speed, inertia, and viscoelastic properties have upon the rate of convergence

to steady-state of the transient G(t) can be obtained from generalizing the analysis

of Walton [23] to the transient problem addressed here, the unphysical nature of the

failure zone constitutive law (3.3) notwithstanding.

Henceforth, a generalization of the forms (3.3) will be assumed for a~ and aj .

Moreover, time-dependent tractions a~ (x, t) will be permitted by taking

a~(x,t) = Lele(t)exp{x/ae), -oo<x<0, (3.4)

where le(t) is a dimensionless function of time. As with the steady-state analysis

in [23], consideration of the two models, (1) Lf constant with af = fly(F, t) and

(2) aj- constant with Lj- = Lj-(V, t), arises naturally. While case (1) is the more

physically compelling, it is mathematically much more complicated owing to the

nonlinear manner in which the initially unknown function a^(V, t) occurs in the

problem. In contrast, case (2) is clearly unphysical in a dynamic analysis (e.g., it

suggests that information travels with an infinite speed of propagation in the failure

zone) but, as shown below, admits an elegant closed form expression for G(t) with

the aid of which quantitative and quantitative properties can be easily studied. In

light of the steady-state results, it is likely that, except for very high crack speeds, the

two cases should exhibit similar long time asymptotic behavior whenever af«ae.

Therefore only the analysis of case (2) is considered here.

Note that (3.4) assumes that the spatial form of the applied stress follows the

advancing crack tip. A different loading situation in which the spatial form of the

applied stresses remains fixed as the crack tip advances is considered at the end of

this section.

With o~(x, t) given by (3.4) and aj(x, t) by

Oj-(x,t) = -Lj-lf(t)exp(x/aj-), -oo<x<0, (3.5)

the appropriate definition for G(t) becomes

1 f° _
G(t) = — / af(x,t)

V J —OO
±-v±
dt dx

v(x, 0, t)dx. (3.6)

In (3.5) the explicit dependence of lf{t) upon V has been temporarily suppressed.

As shown in [23], it is straightforward to extend the analysis to treat more general

loads of the form

a~(x,t) = L{t)[ erxla dh{r)
Jo

where h(r) is any signed measure for which the integral makes sense. However, for

the sake of brevity that development is not included here.

Incorporating (3.5) and (3.6) there results

G(t) = I(t) + W(t) (3.7)

with

I(t) = -Lflf(t)y f ex/afj-tv(x, 0 ,t)dx (3.8)

and
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f° x/af d' L' ^W(t) = Lf!f(t) I (*"'^.(1,0,#. (3.9)

I(t) and W(t) in themselves do not have any direct physical significance but the

decomposition (3.7) does provide some insight into the behavior of G(t). In particu-

lar, it can be shown that lim(_0 G(t) = lim(^0 /(/) and lim^^ G(t) = lim^^ fV(t)

whereas lim(^0 W(t) = lim<_>oo/(r) = 0. Thus the short time behavior of G(t) is

governed primarily by /(/) and the long time behavior by W(t).

To derive the nondimensional form of the ERR, G(t), first consider the integral

i r°
gfM =vr J —c

ex,af

dt dx
v(x , 0, t)dx . (3.10)

If one notes that the inverse Fourier transform of H{-x)ex ' is j^(p + i/af)~l and

applies Parseval's relation to (3.10) and then applies the Laplace transform to the

resulting expression, the Laplace transform ~gf(s) is found to be

— t \ f°° \ S • 1 n \ dP
8A^=T^ 17 + lP V °» 5 n . •

' 2ni J_OQ IV J p + ijaf

In the same manner as in [10] this integral is evaluated by residues where (2.15) and

(2.21) determine the form of v .A key step in this derivation is the determination

of lj{s) from the Barenblatt hypothesis, which results in the identity

Lje(s) _ Lflf(s)

X (i/ae) X (i/af)

It is then found that

s 1

V + ~a~f

af{ae-af)X (-i/af)

(ae + af) X+(i/ae)

(3.11)

(3.12)

In order to present the results in a nondimensional form, it is necessary to in-

troduce certain parameters. First, a nondimensional shear modulus is defined by

H(t) = fi^mit/x) where px = lim^^ p(t) and thus lim;^oom(?) = 1 . The pa-

rameter t represents a characteristic relaxation time of the material. The glassy

shear wave speed, the glassy longitudinal wave speed, the equilibrium shear wave

speed, and the equilibrium longitudinal wave speed are defined by c2T = p(0)/p,

c\ = [A(0) + 2/1(0)]/p , c*j = H^/p , and c*2 = + 2fi^/p respectively. Recall

that the only nonzero solution of R(x) = 0 where R(x) is defined by (2.19) is x = rQ

where 0 < rQ < 1 . If x = (V/cT)2 then R((V/cT)2) = 0 is recognized to be the

elastic Rayleigh equation and its nonzero solution V = cR = y/r^(cT) is called the

glassy Rayleigh wave speed; that is, it corresponds to the Rayleigh wave speed for an

elastic body with Lame constants equal to the initial viscoelastic values. Similarly,

the equilibrium Rayleigh wave speed, c*R = y/r^iCf), corresponds to the Rayleigh

wave speed in an elastic body with Lame constants p = p(oo) and X = A(oo). Also,

the nondimensional parameters y , e , a , and £, , £2 > C3 are defined by y = V/c*T ,

e = aj-/ae , a = c*Tx/ae , C, = 'aezi > C2 = 'aez2 > an(* C3 = iaez3 • Note that e < 1 ,

a > 0, and cL/cT = c*L/c*T = \/y/Yx.
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Substituting these nondimensional parameters into (3.12) and (2.21), it is found

that ~gf{s) can be rewritten in nondimensional form as

77 M = -MrWa-e) L^j (1 -^C,)'72 (l + c2) (1 -eC,)F I,-,,

8fK ) 8^ (1 +e)[m(TS + ay/e)]2 (1 + £,)1/2 ^ ~ (1 + C3) T

(3.13)
where

F =
ay/e \z y2k

TS + ay/eJ m{xs + ay/e)

1/2

2ay av \ 2 2
7

1/2
2* \2 (l/2)y2 n2
e

ts + ^7 m(t5 + ^)

/,=/„(-!/«), /2=/„(l), where=

T5 + ^ / m(T5+^)

C2-C, /•1iog(rp(0)-iog(r„(0)^

Ci + ̂ (C2 — Ci) +

F / qyK. + f^-C,)] V y2k

nK ' j + «y[C! + Z(C2 - C!)]/ w(w + ay[C,+*(C2-£,)])'

r'W- 'IV2 - C,)l)2 |f--"• ..)!-

xtf(i/Wd;(M))_[/i.(r>1/2)]2>

T(t)-( Qy[Ci+^(C2-Ci)] \2, . , ,.1/2 (l/^'arg^,*,)) 1/2
U + ay^ + ̂ -C,)]; 1 "l ' 1,1 ' ' }l

X e-we(l/2)/aig+(F.(M)) _ i /2)]2 ;

where -n < arg(Fn(t, k{)) < n , and 0 < arg +(Fn(t, 1)) < 2n .

Attention will now be turned to Ij-(t). It follows from (2.21) and (3.11) that

Us)-I (■-) L< (■+«t,)1'2 (! + <:,) (l+«t,(314,
r - ' Lfs/i ji + {|),/2 (1 +ej2) (1 + {3) • (3'14)

where /3 = In( 1/e). Finally, utilizing (3.4)—(3.6), (3.13), and (3.14) one may write

the ERR as
ji

G(t) = —Lflf(t)gf(t) = f^Kt)g{t), (3.15)

where the Laplace transforms of l{t) and g(t) are given by

7(s) = 7W£±lii2-!<i±« ,3,6)
'l (l+C,)"2(H-eC2)(l+C3) '

1{s) = 7 (4)(!^ I C-«C,)'"Ct{2)(l (3 17)
e (1 + e) [w(T5 + ay/e)]2 (1 + £,)1/2 (' ~ e<=2^ 0 + £3) T

Note that (3.14) and (3.17) have implicitly assumed that —i/af does not lie on the

branch cut Lx U I2 U I,. This certainly is the case if £ < 1/|C3I • The only case of
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interest where -i/af may lie on this branch cut is when 5 is real and s > 1/C3. In

this case slight modifications of (3.17) must be made. If e > 1 /C3 and e / 1 /Cj , 1 /C2

then the terms

1/2(1 ~eC3 )F
(1-eC,)

in (3.17) are replaced by

|1 —eC

(1 -eC2)T

i/2ll-eC3||F|
|1 -cC2| I TV

Furthermore, if 1 /C2 < e < 1 /Ct then /, in (3.17) should be interpreted as the

Cauchy principal value of the integral.

Unfortunately, it is not possible in general to invert (3.16) and (3.17) analytically.

Therefore to obtain a better understanding of G(t) both an asymptotic analysis based

on (3.15)—(3.17) that is valid for any shear modulus n(t) and numerical inversion

of the Laplace transforms (3.16) and (3.17) for specific fi(t) are presented. The

asymptotic analysis and the consideration of special cases are addressed in the next

section. Numerical inversion of (3.16) and (3.17) for the standard linear solid model

of n{t) is discussed in the section following the asymptotic analysis.

Most experimental work on dynamic fracture has considered either brittle elastic

or ductile materials. Comparatively little data is available for viscoelastic materi-

als. One notable exception is the very careful and extensive investigations found in

[13-16]. With minor modifications, our model may shed light on their observations.

Their experimental studies of dynamic crack propagation considered an edge crack

in a large panel which at / = 0 had a constant load applied to a fixed part of the

crack faces. The initial acceleration phase of the crack was too short to measure

and the crack was observed to rapidly propagate away from the external tractions.

Thus the applied tractions did not travel with the advancing crack tip. The preceding

model assumed a spatial form for the external tractions that followed the advancing

crack tip. Thus, in an effort to model, in a qualitative and idealized manner, the

experiments of Ravi-Chandar and Knauss, the spatial form of the external tractions

will now be assumed to remain fixed in the fixed coordinate system, i.e.,

ag(xl, t) = Lele{t)exp{xjae), -oo<x,<0, (3.18)

while the response tractions of the failure zone are still given by (3.5) and hence travel

along with the advancing crack tip. While the definition of G(t), (3.6), remains

unchanged, the new form of ae results in a different Laplace transform of the SIF.

This causes the following change to (3.11) (assuming I (t) to be constant)

Le

s - V/a

1 1

X+(i/a) X (is/V)

Lfl f(s)~ (3.19)

X (i/af)

The ERR can then be written as

—LA At)
GK{t) — f/ gf(t).
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where 1 As) is determined from (3.19) and

L (s + V/af) _

«/<*> = f Trvji-)x <-'/<■/>
af{ae-af) + aft-V/af)

(ae + df)X (i/ae) (s + V/af)X+(is/V)

(3.20)
In nondimensional form this becomes

^*•(0 = oy
' OO

where the Laplace transforms of /^ (?) and ^(0 are given by

7 - T(1 + e^i)'/2 (1 +£^) /,

* (zs -ay) (1 + eC2)

1 (1 + C2) -/,

[(l + Cj)1/2 (i + £3)

1 (£±<2)-/4

(^ + c1)1/2(^ + c3)

(3.21)

* (f)= iz! (i-^a-^y,
[m(tS + Q7/e)]2 («-ay) (1 -eC2)T

(1-e) 1 (1+C2) -i2 (ts-ay/e) 1 (sy+C2) -

(1 + «) (1 + C,)1/2 (* + C3) + ay/e) (g + Cj)'/2 (s? + £3)

(3.22)
where /4 = /„(§).

The results of asymptotic and sample numerical investigations of this ERR, (7^(2),

also appear in the next section.

4. Special cases and asymptotic solutions. Asymptotic expansions for the ERR,

G(t), as (->0 and as t —> 00 can now be constructed from (3.15)—(3.17). Specifi-

cally, asymptotic expansions for l(t) and g(t) are constructed separately and multi-

plied together. Henceforth, unless indicated to the contrary, attention will be limited

to the special case le{t) = 1, i.e., the external tractions driving the crack will be

assumed to be time independent. In that case le(s) = 1 /s . More general time de-

pendence for le(t) is easily incorporated into l(t) and g(t) as a simple convolution.

Asymptotic behavior as t —► 0. Though a short time approximation of G(t) may

be of dubious physical significance, it does provide a valuable check on the numerical

Laplace inversion performed in the next section. In a manner analogous to that in

[10], it can be shown that

C„(s) = hns + °{s) as s —> 00, (4.1)

where

h = 1 h = T h = T
1 ~ a[{cL/c*L) - A]' 2 ~ a[{cT/c*T) - y]' 3 ~ a[(cR/c*T) - y] '

Asymptotic expansion of l(s) and g(s) in powers of j as s —> 00 are given by

l(s) = ^>/e
(1 - e) 1 / 1 1 1 , \ . -1.'

1 + —7{2^ + ^-F2+a°)+o(s \ (4.2)
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-( )= (t-e) V/2 A/i _ 1
' (l+e)\m{0)J ys \ s

{X+E)( 1 +l-± + An)+ m'{0)
2 h. h, h2 °/ 2tw(0)

+ 0(5 ')

(4.3)
where

tan 1(A(t))

h\t

- y2kjm(0)]i,2\f(t) - y2/m(0)|1/2

^ = Z2 ZL f """
0 * Jo [h.+t(h2-h.)f '

A(t) - ,
[f{t) ~ (l/2)y /m(0)]

= {ay[^i +?(/;2-/Zi)]}2

{r + ay[/z, + J(/z2-/z1)]}2

If one assumes that /(/) and g(t) have Maclaurin expansions in a neighborhood of

t = 0, then from (4.2), (4.3), (3.15), and standard asymptotic results for the Laplace

transform,

L2a (\ - / k \ '^2
G(')=2^(TT^U(0)) ['-<"< + »«)] ""-0. H-4)

where

- , 1 1 1 , \ m\0)
3 = 2 ^ + 7 T- + An \ +

hx /z3 h2 V 2rm(0) '

In agreement with the mode III crack in [10], G(t), for t near zero, is governed by

the glassy properties except for the inclusion of the term m'(0) which incorporates

the effect of the initial rate of stress relaxation.

In contrast, the asymptotic expansions of lK(s) and gK(s) as s —* oo are

W =
1 _ V^" h3^ + fl2)c-At

\J-ty+h 1 +/Z3)
+ o(5 '), (4.5)

,1/2

= fAV'l
\m(0) / ys

(1 ~ e) s/h[ h3 {■— + h2) A[

(1+e) \Jw+lt\hl ^ + ̂

A ^h2~hi [' tan~'(^(Q) 

1 n Jo [hy + t(h2 - hl)][hl + t{h2 - hx) +

+ o(s '), (4.6)

Thus

h3^+h2 )„-At_ N t2a e / it, \1/2

^(0 - —1 -K 2 yu \m{ 0)

(1 - e) _ y^L ^3 + ^2) —A

(1+e) 1 h2^ + hJ

\J^y+h 1 MJ, +A3>

+ o(l) as t -> 0.

(4.7)
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Asymptotic behavior as t —► oo. To determine the long-time asymptotic behavior

of G(t), i.e., lim^^ G(t), it is necessary to calculate limS^0sl(s) and lining s~g(s).

Again in a manner analogous to [10] it can be shown that as s —► 0

£« = anS + f0r y < Xn >

c„ = bnsl/1 + 0{sl/1) for y = kn, (4.8)

tn=Cn+°(l) for V>K

where

z V2r
a„ = = J rm'(r)dr

-1/2

" — y] ' " ay

y2 /"°° -a c r I
cn is defined implicitly by -j - /n(0) = / e~ayc"rm\r) dr

Xn Jo

for n = 1,2,3 and Aj = 1/y^, A2 = 1, and A3 = Then

— l) 8^(l+s)[m(£,,/E)]2 '

where

and

ky2
F (x, k) = 1 - ^f-,°°v ' m(x)

T00 = \F00(ay/e,kl)ll2F00(ay/e, 1)1/2 - F>y/e, 1/2)2|,

1, if 7 < (v < c*R)\

' . if^<y< 1 (c*R< V<c*T);

8'=< ,a^,^$/'+J3-2J2> if 1 < y < l/v^T (4<v<c*l);

|i(^ , ifi/Vk[<y< cR/c*T {c*L < v < cR),

where /, = /(-l/e), /2 = 7(1), J2 = J{l/e),

m = c-if'an~'B{,)dt, m = i"2,
71 Jo tc2 + x -Foo(tayc2, 1/2)

K,=K{- 1/fi), ^2 = A-(1), K3 — K(l/e),

K(x) = cXlSlf 'a""'c"> a,
Tt Jo Cj +f(c2-c,) + X

cw = ^x.(Qy[gi + ^(g2~ci)]' fci)'/2l^oo(ay[gi + *(c2-ci)]» ^l'72

-/^(ay^+^-Cj)], 1/2)2

Note that if e > 1 /c2 when 1 < y < 1 /\/^ then 7j is to be interpreted as a Cauchy

principal value and that if 1 /c2 < e < l/c3 when l/v^7 < ^ — cj?/cr t^611
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to be interpreted as a Cauchy principal value. These limits as t —► oo can be seen to

agree with the steady-state results found in [24],

For the loading given by (3.18) with lg(t) = 1 , it is found that for y < as

5 —> 0,

gAs) = 2 1 + ,+o[s-Illh
a [m(ay/e)] + ax) ' (57+^3)

7 / \ T —1/2 1 (^ + ^2) /«, , , -1/2,
M5) = —5 7T 717? 7 r , )

(4.10)

where

_ ^2 f[
x Jo

tan -'0(0
a, + ;(a2 - flj) +

/2

d(t)
1/2 2

m(x)

1/2

D(t)

d(t)2~4l
m(x)

= ayla, +f(a2-a,)]

r + ay^! + ?(a2 - a,)] '

Thus it can be seen that lim^gs/^s) = 0 and lim^05^A:(5) = 0 and therefore

linV+oo Gjc(0 = 0. Furthermore, from the fact that /^(s) and gK{s) are 0(s~l/2)
 j / 2

as j —> 0 it can be shown that lK(t) and gK{t) are 0{t ' ) as t —> 00. Thus

GK(t) — 0(t~{) as t —> 00 for y < ^r{~. If < y < cR/c*T then lK(t) and gK(t)

each decay to zero even faster than 0(rl/2) with the decay becoming exponential

for 1 !\fk\ < y < cR/c*T .
It should be noted that while the above asymptotic analysis for GK(t) showed that

lim^^ GK(t) = 0 for a load which remained constant in time, i.e., le(t) = 1, that

loads which increase fast enough as time passes, e.g., le(t) = t, have lim^^ GK(t) =

00.

Elastic material model. If the shear modulus is set to be constant, i.e. n(t) = fi0 ,

then the material is modeled as an elastic solid with Lame moduli equal to the initial

glassy values. In this case only three wave speeds are possible, cR, cT, and cL.

Furthermore, £,, C2 > and C3 can be determined explicitly to be

as as as
r r e c3 = —s?- (4-ii)

cL — V ' *2 cT - V ' 3 cR - V

2  
Moreover, in the definitions of F, 7\and Fn for (3.16), y /m(-) should be replaced

by (V/cT)2. Then the ERR for an elastic material is given by

= (4-12)
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where

s«i(s) = '«W^4
lCT

(1-e;,)"2 (i + C;) (i-«c,)f
(l+C,)1'2 (l-ef2) (1+C3) T

and 7(5) is given by (3.16) with £,, (2, and C3 in these formulas given by (4.11).

Again it is assumed in (4.9) that -//fly does not lie on the branch cut L, U L2 U L3

or modifications similar to those for (3.17) are necessary.

Similarly, for the loading (3.18) which models the Ravi-Chandar and Knauss ex-

periments,

Lla
^Ke l(0 ~ ^e^K^Sfce lW > (4-14)

where

=T
v
C.j-

2 (1 -£C1)'/2(1 -eC3)^ /,

(M-ay) (1 -ef2) T

(1-e) 1 (1 + C2)„-i2+{TS-ay/e) 1 (57+ £2).

(1 + «) (1 + c,)1/2 (! + Q (" + ay/£) (^ + C,)1/2 (5y + ^3)

(4.15)
and /^(s) is given by (3.21) with C\, C2 > a°d C3 in these formulas given by (4.11)

2 ^ 2
and y /m(*) in the definitions of F, T, and ,Fn replaced by (V/cT) .

Quasi-static viscoelastic crack propagation. If the limit of (3.16) and (3.17) is taken

as p —> 0, then the ERR for a quasi-statically propagating crack in a viscoelastic

material may be determined. It can be shown that £, = C2 = C3 = 0 and hence that

jl

g,(0=of-H(0s,(0, (4-16)
"00

where

- 2?<<(1 (4j7»

It is easily seen that if /c, were set to 1/2, then (4.16)—(4.17) are identical to the

mode III quasi-static ERR found in [10]. Also, it can be seen in (4.17) that for

le(t) = 1, g (t) exhibits a Dirac delta singularity at t = 0.

Similarly, the quasi-static limit of (3.21)-(3.22) is found to be

GK,W = TTlK,(t)SK,W, (4.18)
' OOOO

where

- 2 (1 +saf/V) 1

&Kq s m(zs + Vx/aj) (s—V/ae) (1-&,)

1

(1 -e) (s-V/af) 1

(1 + e) + (5 + V/af) (saJV)1/2

1k"{S) {s - V/a ) 0saJV)1/2

(4.19)
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No failure zone. If the limit of (3.16)—(3.17) is taken as e —> 0, then the ERR for

the case of no failure zone can be determined. It is found that G(t) becomes

(4.20)

where

8nf(S)=1e(S)

8 nQ

'1 j —1/2 ( 1 + C2) ̂ nf,

/nf(^) =/^(S)(l +C,)"

(i + C3) Tai • (421)

-1/2(1 + C2)-/2

(1 + C3) '

with Fn{=[\-(V/cL)2]1'2 and Tn( = [ 1 -(K/c^)2] 1/2[ 1 -(K/C^)2]1/2-[ 1 -i(K/c^)2]2

and Cj.C2.C3, anc* ^2 are unchanged from their values in (3.16)—(3.17). Thus it

can be seen that without a failure zone the viscoelastic effect on the ERR is only

through the roots C, , C2 > and C3 •

Similarly, if the limit of (3.21)—(3.22) is taken as £ —► 0, then the ERR for a

constant loading fixed on the crack faces with no failure zone can be determined. It

is found that GK(t) becomes

T 2La„
GKnf(t) = 1trlKJt)gKJt), (4.22)

where

SK nfW {s - V/a )

V

lCT

2 F
nf

Tn{

Sn0

-1/2(1+C2)(l+c,)"

^nf(S) —
is ~ V/ae)

~{aes/V + C,)

n_. ri/2(1 +C2) -i2
( (l+C,)

(1 + C3)

1/2 (aes/V + C2)

(as/V + L)
(4.23)

-(V/^+c,r,/2(v/>'+fj)--'
Mv + C3)

5. Numerical examples. While the asymptotic results in the previous section pro-

vide clues to the time evolution of the ERR, its complete history can be determined

only by inversion of the Laplace transforms ~I(s) and g(s) in (3.16) and (3.17) or the

Laplace transforms 7K(s) and ~gK(s) in (3.21) and (3.22). The extremely compli-

cated forms of these Laplace transforms make the construction of useful analytical

inverses unlikely. Instead, attention will be directed to their numerical inversion.

However, numerical Laplace inversion is notoriously unstable and the manner of in-

version must be chosen with care. After experimentation with a variety of methods,

including a new method based on approximation by sine functions [2], it was found

that a scheme due to Weeks [25] based upon approximating a function by general-

ized Laguerre functions was by far and away the most stable and accurate. After

Laplace inversion, this approximation when restricted to a Bromwich path1 is seen

'a vertical line in the complex plane such that the real part of any point on the line is positive.
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0 . 6

0.5

0.4-

0 . 3

Quasi-Static ERR

Fig. 1. Comparison of the long time limit of the nondimension-

alized dynamic ERR, G(t)/(Leae/(Snoc)), and the nondimension-

alized quasi-static ERR, Gq{t)/(L2eael{8/^)). a = 1, x = 1,

e = .01 , ae = 1 , = .25 and wave speeds c# = .93, c*T = 1.00,

c* = 2.0, and cR = 3.09 .

to be a Fourier series in the Laplace variable 5. By determining the coefficients of a

Fourier series of a Laplace transformed function on this Bromwich path, an accurate

approximation of the original function by Laguerre functions is obtained. Davies

and Martin [7] compared many different numerical Laplace inversion methods and

found this method to give "exceptional accuracy on a wide range of functions." This

algorithm was employed in the numerical inversion of the examples that follow. How-

ever, it was found by numerical experimentation that the optimal parameter value

for the algorithm reported in [7] is not correct. Much higher accuracy is obtained

by choosing the parameter value so as to get much closer to the singularity of the

Laplace transform with greatest real part. In the Laplace transforms considered here

the rightmost singularity usually occurs at 5 = 0 and therefore the parameter value

was chosen to be .0001 .

In the following examples, the viscoelastic material model used is a standard linear

solid whose shear modulus is given by pi(t) — ̂ oc( 1 + rje~t^r). Furthermore, only time

independent applied tractions are considered, i.e., le(t) is assumed to be identically

1.

Figure 1 compares the crack speed dependence of the steady-state values (long time

limits) of the nondimensionalized ERRs for a crack propagating dynamically (iner-

tia included) in a viscoelastic material, (4.9), and quasi-statically (ignoring inertia),

(4.16)—(4.17). It can be seen for the parameter values selected that the steady-state

limits of the ERRs are similar up to about one-half of the equilibrium transverse

2 2
In Figs. 1-7, the ERRs have been nondimensionalized by dividing G by LeaeK'&n(X)). In Figs. 6 and

7, the viscoelastic ERRs are compared to elastic ERRs where the elastic shear modulus is equal to the

viscoelastic glassy shear modulus value.
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wave speed. Except for the small local maximum in the steady-state viscoelastic

ERR at the equilibrium Rayleigh wave speed, these graphs are qualitatively similar

to steady-state mode III results in [11], Figure 2 shows that even when the steady-

state limits of these ERRs are similar, their time histories are quite different. The

quasi-static ERR (assuming lg(t) is constant) has lim(^0G^(?) = oo and monotoni-

cally decreases to its steady-state value. The dynamic ERR has G(0) finite, although

G(0) = oo, followed by a quick decrease in the ERR and then a monotonic

increase to its steady-state value. This decrease in the dynamic ERR is not visible

in Fig. 2 since it happens on an extremely small time scale and is small except for

very low crack speeds. It should be noted that these effects near t = 0 are due to

the assumption that the crack begins to propagate suddenly at t = 0 with constant

speed and would not be expected to occur if the crack were allowed a reasonable

acceleration phase.

Figure 3 compares the time evolution of the transient ERR G(t) for various crack

speeds for the case of tractions travelling with the crack tip (formulas (3.15)—(3.17)).

It can be seen that the faster the crack speed, the slower the ERR's rate of convergence

to its steady state value. Figure 4 (see p. 224) considers the case of tractions that do

not move with the crack tip (formulas (3.21) and (3.22)). It can be seen for this case

that faster crack speeds lead to lower peak values of the transient ERR GK(t).

Thus far, the question of selecting a suitable fracture criterion has not been ad-

dressed. A commonly adopted fracture criterion is that crack growth be governed by

requiring the energy from the applied tractions made available through the continuum

to the crack tip process zone be maintained at a critical, constant value, gCT, which

is a material parameter independent of crack speed. Figures 1-4 are examples of

the time evolution of the available energy assuming that the crack speed is constant.

ERR

0.25-

0.2-

0.15'

0.1

0 .05

Quasi-Static ERR

Dynamic ERR

20 40 60 80 100

time in multiples of ae/c-p

Fig. 2. Comparison of the transient dynamic and quasi-static nondi-

mensionalized ERR, G(t)/(L2eae/(8/*^)) and GQ(t)/(L2eae/(%nx)).

a = 1 , y = 0.1, r = 1 , e = .01 , ae = 1 , cT = 3.3166 , and
fc, = .25 .
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0 . 25

time in multiples of a£/c^

Fig. 3. Comparison of the nondimensionalized dynamic ERR for

different crack speeds, a = 1, t = 1, e = .01 , ae = 1, and

kt = .25 with wave speeds c'R = .93, c*T = 1.00, c*L = 2.00,

cR = 3.09, and cT = 3.32. The steady state limits are .246 for

y = .5 , .254 for y = .95 , .289 for y = 1.5 , and .476 for y = 2.5 .

Clearly, the available energy is not time constant. One is then led to the conclusion

that, for these models, maintaining a constant crack speed and constant energy flow

into the crack tip are incompatible. It should be pointed out that changing the crack

tip constitutive model to allow the length of the failure zone to change dynamically

while the failure zone stress is kept at a constant level (equal to a plastic-type yield

stress, for example) does not affect this incompatibility. Indeed, the approximate

elastic analyses of Glennie and Willis [8] and Achenbach and Neimitz [1] and some

preliminary results of the present authors on accelerating semi-infinite cracks show

that the assumption of a constant, critical ERR (required energy) in a Dugdale model

with a dynamically changing failure zone length yields a predicted crack tip velocity

that is not constant. In particular, if in the Dugdale model the failure zone stress is

constant, then the SIF condition determines the time evolution of the failure zone

length as a function of the crack tip motion. If a fracture criterion is then specified

in the form of matching the rate of work in the Dugdale zone to a required ERR, a

nonlinear integral equation emerges governing the crack tip motion. One then finds

that the crack tip acceleration is not zero for the case of constant required ERR.

Clearly then, one cannot model the experiments of Ravi-Chandar and Knauss, which

show constant crack speeds, with a critical (constant) ERR fracture criterion.

It would be interesting to investigate what sort of micromechanical, crack tip model

would yield a required ERR equal to the constant crack speed available ERR pre-

dicted here. Such an enterprise is beyond the scope of the present paper. However,

while a physically realistic fracture criterion appropriate for the Ravi-Chandar and

Knauss experiments may be rather complicated, it is reasonable to postulate the exis-
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0 . 02
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time in multiples of aeA>p

Fig. 4. Comparison of the nondimensionalized dynamic ERR

GK(t)/(Leae/(&n00)) for different crack speeds, a = 1 , z = 1 ,

e = .01 , ae = 1 , and = .25 with wave speeds c# = .93,

c*T = 1.00 , c*L = 2.00 , cR = 3.09 , and cT = 3.32 .

tence of a minimum required ERR, Gm , for crack growth to occur. Since Fig. 4 plots

the available ERR, GK(t), nondimensionalized by Leae/nrx>, one must assume that

the applied loading (essentially, Le) is sufficiently high to ensure that (5^(0+) > Gm

in order for the crack to begin to propagate at the speed V. (Note that this is sim-

ilar to the explanation suggested by Ravi-Chandar and Knauss that the initial SIF

determines the initial crack speed.) Crack propagation (at the speed V) would cease

whenever the available ERR dropped below Gm . There remains the question of what

happens to the excess available energy above Gm . A reasonable conjecture has been

offered by Ravi-Chandar and Knauss. They observed [15] that the micromechanical

structure of the fracture process changed as the stress intensity factor increased even

though the crack speed remained the same. In particular, they observed the crack

surface changing from a smooth surface to a rougher surface corresponding to more

microcracking near the crack tip. Presumably, the excess energy would be consumed

by this (time dependent) microcracking process.

Figure 5 shows the result of multiplying the available ERR curve corresponding to

y = 1.5 in Fig. 4 by a constant in order to produce the same peak value as the curve

corresponding to y = 0.1 . One then sees that the rate of convergence of the y — 1.5

curve to zero is much faster than the y = 0.1 curve. This suggests that a fast moving

crack would be expected to stop (or at least begin to slow down) sooner than a slower

moving crack. However, while the faster moving crack may stop sooner, the extent

of crack growth for the faster moving crack may be greater.

Figure 6 (see p. 226) compares the transient ERRs for viscoelastic materials with

different characteristic relaxation times, r, with the transient ERR for an elastic
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time in multiples of ae/c-p

0.02

5 10 15 20

time in multiples of ae/cj

Fig. 5. Comparison of a scaled nondimensionalized ERR

GK(t)/(L^ae/(&n00)) such that the two speeds y = 0.1 and y = 1.5

have the same peak ERR. Both (a) and (b) show the same graph. Note

in (a) the much faster convergence of y = 1.5 to zero than 7 = 0.1.

In (b) it can be seen that the rise of each curve to its peak value is

almost identical, a = \ , x = 1 , e = .01, ae = 1 , and k{ = .25

with wave speeds c*R = .93 , c*T = 1.00 , c*L = 2.00, cR = 3.09 , and

cT = 3.32.

material (the x —► oo limit) for the case of tractions that travel with the crack tip.

It is seen that the longer the characteristic relaxation time x, i.e., the more elastic-like

the material, the taster the ERR converges to its steady-state value. Furthermore,

this difference in convergence rate is greater for faster crack speeds. Figure 7 (see p.

227) shows a similar comparison of the ERRs for different relaxation times but for

the case of applied traction that do not follow the crack tip. It is seen that the more

elastic-like the material, the higher the peak ERR and the slower rate of decay of the

ERR to zero. Again, this difference is enhanced by faster crack tip speeds.
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Fig. 6. A comparison of the nondimensionalized ERR,

G(t)/(Leae/(&noc)) , for viscoelastic materials with different relax-

ation times t at different crack speeds. The top curve is the ERR for

an elastic material, GfA(t)l(L1eae/(%ii00)) with the elastic shear mod-

ulus equal to the viscoelastic glassy shear modulus value. The second,

third, and bottom curve in each graph correspond to t = 5, 2, 1 re-

spectively. a — 1 , ae = 1 , e = .01 , and fe, = .25 with wave speeds

c'R = .93 , c* = 1.00, c*L = 2.00, cR = 3.09 , and cT = 3.32 .
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Fig. 7. A comparison of the nondimensionalized ERR,

GK(t)/(Leae/(8nx>)), for viscoelastic materials with different relax-

ation times t at different crack speeds. The top curve is the ERR

for an elastic material, GKd(t)/(Leae/(Stiao)) with the elastic shear

modulus equal to the viscoelastic glassy shear modulus value, a = 1 ,

ae = 1 , e = .01 , and kt = .25 with wave speeds c*R = .93,

4 = 1.00 , c*L = 2.00 , cR = 3.09 , and cT = 3.32 .
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