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ON SHAKEDOWN OF ELASTOPLASTIC SHELLS

By
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Abstract. An asymptotic theory of adaptation for elastoplastic shells under a vari-
able loading is proposed. The hypothesis of membrane state of an elastic response
is used to reduce the three-dimensional variational problems for shakedown factor
to two-dimensional ones. The duality and the possibility of algebraization allow
the membrane shell shakedown theory to be analytically solvable in many interest-
ing cases. The asymptotic accuracy of the constructed membrane approximation is
proved.

1. Introduction. Let us consider a domain 33 of the three-dimensional Euclidean
space if , whose points are described by

X({Q,0 = r(O + <Sn(O. \Z\<h/2. (1)
Here r(£a) denotes the position vector of points of a smooth surface £2 bounded
by the smooth contour T, and n(<f*) is the unit vector normal to Q. An elasto-
plastic body occupying the domain 33 in its undeformed configuration is called an
elastoplastic shell with middle surface Q and thickness h .

Let the elastoplastic shell be subjected to a cyclic loading, specified either by body
£

loads and surface tractions or, equivalently, by the stress field a{t) with a time
period T. This symmetric tensor field describes the purely elastic response of an
elastic comparison shell of the same shape with the same compliance matrix to the
given loading history. The static shakedown factor is then defined as a solution of
an optimization problem (Melan [1])

a = sup{o|w € E, 3p e / , W € [0, T]
e (2)v(a + p) £&}.

Here / corresponds to the space of all time-independent self-equilibrated residual
stress fields p such that

Divp = 0, pT = p, pn = 0 ond&T, (3)

with d33T the part of the boundary d33 where the surface tractions are prescribed.
The notation used in the text is standard with Div the divergence operator and n

eceived July 6, 1990.
©1991 Brown University

781



782 HELMUT STUMPF and LE KHANH CHAU

the unit vector normal to 338 . The convex set ?cl6 (with 0 e W) consists of
all statically admissible stress tensors, which do not violate the yield condition.

The dual (with respect to (2)) variational problem leads to the kinematical shake-
down factor (Koiter [2], Gokhfeld [3], Sawczuk [4])

{T T T
f f (p*(ep)dXdt f epdte^, [ [ a ■ tp dX dt — 1 > .

JO J-3? Jo Jo J3S J (4)

Here the symmetric tensor ep = ep describes the plastic strain rate. The dual (with
respect to space 3£ consists of all kinematically admissible strain fields ep such
that

e'' = |[Vw+(Vw)T], w = 0 on 9 , (5)

with 338x the part of 338 where displacements are prescribed, 338x n 338T = 0,
338x U 338t = 338 . The function <p*(ep) in (4) is defined by the Fenchel transfor-
mation of the indicator-function <p&(o) of the convex set W :

* d n ( 0 if <x e ^,
(p (e ) = sup[e • a - <pv(a)], (pv{o)=\ t, . (6)

a { +oo otherwise.

Due to Moreau's terminology [5] we call <p%>(o) the plastic potential and q>*{ep) the
dissipation function. Note that (p*{ep) is convex, lower-semicontinuous, subdiffer-
entiable, and homogeneous of first degree:

tp*(Aep) = X(p*(ep) forA>0.

Applying the convex analysis to elastoplasticity Debordes [6] established the duality
between (2) and (4) by showing that

a = p. (7)

The present paper is aimed at reducing the three-dimensional variational problems
(2), (4) to the two-dimensional problems for the shakedown factor of elastoplastic
shells. We call a shell approximation asymptotically exact if the calculated shakedown
factor differs from the exact value (2) or (4) by a small quantity tending toward zero
with the shell thickness. The approximation constructed in the present paper is
valid for shell problems, where the elastic response a corresponds to a membrane
state [7], Its realization requires a proper shell geometry or a strong restriction on the
loading set. Nevertheless, this approximation allows for many interesting applications
a further reduction of the two-dimensional variational problems to algebraic ones.
This advantage of membrane approximation seems to be first noticed by Mosolov
and Miasnikov [8] in their analysis of the limit load factor for rigid-plastic shells.
The general theory accounting for the simultaneous effects of membrane and bending
states of the elastic response lead to more complicated shell theories, in which either
two-dimensionality or asymptotical exactness cannot be achieved (cf. Sawczuk [4],
Konig [9], Weichert [10], GroB-Weege [11]).

In Sec. 2 the two-dimensional variational problems for the shakedown factor of
the elastoplastic shell will be derived. The area of applicability and the restriction o
the loading set will be specified. In Sec. 3 the two-dimensional variational problerr
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are reduced to an algebraic optimization procedure, which enables the determination
of the shakedown factor analytically. Furthermore, in the case of nonalgebraization
a calculation algorithm for the shakedown factor is proposed. For illustration, some
examples are considered in Sec. 4. The last section is devoted to the proof of the
asymptotic accuracy of the membrane approximation.

2. Shakedown factor for membrane approximation of elastoplastic shells. Let ga
and gab be the natural base vectors and the components of the metric tensor associ-
ated with (1), respectively:

B a / — 1 \Ol B 3 /ct\
^a='Uaar 8=0* V ' §3 = 8 ="' (8)

where

ab ci b i 1^1
Sab = ^a-%b, g = g 8 , a, b= 1,2,3,

a„ = r.r>> aaB = K-aS' a° = flQ/?afi, a, 0 = 1,2,' , a > a/3

are the same base vectors and the metric tensor of the smooth surface Q and

- «*£ . (n'X = ̂  '
^ = det/zf = 1 -2HZ + KZ2, (9)

b n = a „ • n, H = \ba, K = detb^.ap a, p ' 2a' a

Let homogeneous kinematical boundary conditions be specified on one part of the
shell edge, and statical boundary conditions on the facial surfaces and on the remain-
ing part of the shell edge:

3St = Q+ U U (rr x (—A/2, A/2)),
^x = rxx(-h/2,h/2), YxUTt = T,
Q± = {X(r,0| Z = ±h/2}.

With respect to the coordinates C , g the equations (3) can be rewritten as follows
(see, for example, [12]):

a/} d . a /?, fi , a n
T|/J + )-T ^ = 0'

/ +Tafib +— T-0 <10)
T|/! + T + ££ T ~ U >

Tl{=±A/2 = ®' Tli=±A/2~®'

where rQ/? = n"pX^ n, ta = , and x = . Throughout the text the symbol
(•)|Q indicates covariant differentiation based on a connection associated with the
metric aai8 of the middle surface Q.

In order to simplify the variational problem (2) we shall assume that the elastic
£

response <r corresponds to the membrane state of the shell [7],

e a/1 1 0 / h \ h eQ3 _ / /z \ rt e33 „ / h \ U
' =hn ({) + 0U *• ° = 0\n)v ° =0 tup (11>
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where na^ is the stress resultant tensor, R is a characteristic radius of curvature of
the middle surface Q, and

n = max \n (c, )}.

We assume also that the characteristic scale L of the variation of deformation pattern
[12] is of the same order as R . Then the stress resultant tensor for the isotropically
elastic comparison shell should satisfy the so-called membrane shell equations [7, 12]

eafi a „ eafiu I n
"l/ +P = o, n bafj+p = 0,

naPVp = q" on rr, ua = 0 on rx,

eQ/J Eh x cp apn =   ^[vyxa + (1 -v)y '],
1 - v

Jap = \(Ua\P + U0\a) ~ ^afiU '
where E is Young's modulus and v is the Poisson ratio. For statically determinate
problems only the first three equations of (12) need to be solved in order to define
e aft
n H .

The membrane state of elastic response can be realized in shells of positive Gaus-
sian curvature (except for a small edge layer). For shells of zero or negative curvature,
the stress state (11) may still be realized, if a certain orthogonality condition is im-
posed on the external loads [7, 8]

[ (paua+pu)dA+ [ q"ua ds — 0 (13)
Jq JrT

with dA the surface element. Here the displacement field ua, u describes the
deformation of the middle surface with vanishing strain (the analogy to the rigid
deformation of three-dimensional bodies):

\(Ua\P + Up\c) ~ bapu = 0. (14)
Condition (13) restricts considerably the area of applicability of membrane approx-
imation for shells of zero or negative curvature.

Assuming the validity of (11) let us choose the following self-equilibrated residual
stress field:

«/? 1 ctfl, a 3 ^ / h \ S 33 / h \ 5 /1 c\p =-hs ({), P " =0UJ* ( '
with 5 = max{5a^}. Here the residual stress resultant tensor has to satisfy the
equations

s"p = 0, sa/1 ba/j = 0 inQ, = 0 on rr. (16)
In the last section it will be shown that self-equilibrated residual stress fields of the
type (15) exist. Let the space of all time-independent sali(£a) satisfying the equations
(16) be denoted by . We then reduce the variational problem (2) to

q2 = sup{u|o e R, 3safl £f2,\/te[0, T]
, C Clfi Ckfi \ ry? 1v{n + s ) £ W2}.



ON SHAKEDOWN OF ELASTOPLASTIC SHELLS 785

Here ^ is the set of na^ = ha^ + sa^ such that

as,
with n = max{na^}. If, for example, the Mises yield condition is postulated, then
the set ^ is given by the inequality

^sacgbd-hsabgcd)(y ° ]' <^oV3 (19)
with (T0 the yield stress defined by the uni-axial tension experiment. Because of
the smallness of h/R we can neglect in (18) and (19) all terms of order h/R in
comparison with unity and specify ^ by

[(Vps ~ X/?<V)"a/?"r<5]l/2 - hao\fl ■ (20)
It is obvious from (20) that &2 is a convex set in the space of all symmetric tensor
fields na^ . The variational problem (17), (16), (20) determines the statical shake-
down factor for the membrane approximation.

To simplify the variational problem (4) for the kinematical shakedown factor we
rewrite it in the form

rT rh/2 f
P = inf / / I (p*{ep)ndAd£dt,

Jo J-h/2Jn

fJo

-A/2.
p . p a „ b p i/A , A x

e dt = eabg ® g , ea/} - \{na^ ■ w • w J,

<3 = l(/<A ■ + n • w J, 4 = n • w {,
cT ph/2 p

[ [ [ (+ 2°a3ea3 + dAd^dt = 1 .
Jo J-A/2 Jn

Having specified by (19) we obtain the following formula for (f>*(ep):

(21)

<p (e ) = < °V3° ab cd* O ab ' (22)
[ +00 otherwise.

The last condition of (22) means that only the incompressible tensor fields ep can
be actually realized in the elastoplastic body.

Let us choose the following "trial" plastic strain rate fields:

<,=/.,«°.0+o(£)/. <3 = 0(5)/. e'» = -*%«", <) + o(|)/,
(23)

where / = max^,, q , 0} • The tensor fa^ is chosen to satisfy the compati-
bility condition

Aafi = J0 + (24)
u=0 on r ,
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where ua, u is some displacement field of the middle surface. In the last section
it will be shown that the plastic strain rate field of (23) exactly satisfying the three-
dimensional compatibility and incompresibility conditions exists.

Substituting the fields (23) into the functional (21), and using the assumption
(11) to neglect all terms of order 0{h/R) in comparison with unity, we obtain the
following two-dimensional variational problem:

{j T T ^
JQ fn'P*^a^dAdt\ j0 fQ fcll"-aP^pdAdt= 1 | • (25)

Here J^2 is used to denote the set of all strain fields of (24). The dissipation function
<P*(fap) is given by

V>*2(fap) = aoyj\\.i.aayaPS + aafiayS)fapfyS][/2. (26)

One can easily show that
1 r afi , afis-<P#2(n ) >

where <p^ {na/j) is the indicator function of the set ff2. Therefore by applying the
standard method of convex analysis [6] one can establish the duality between (17)
and (25) yielding

a2 = 02. (27)

3. Calculation of the shakedown factor. Due to the equality (27) we can restrict
ourselves to the variational problem (25) for the kinematical shakedown factor. Let
us rewrite (25) in the form

Jo LiAi'/[LdAd,\
Suppose that the equations (24) have at least one solution for every given symmetric
tensor Aa^ fa/j dt. The analysis of (24) is fully presented in [13]. In this case
we can drop the constraint (24) in the variational problem (28) and write

"T r 1 / rT

(Plifap) = m,ax

o~lPt = sup (28)

p2 1 = sup

sup

IL/L \/^)dAdt
fafi /Vltfa/i) (29)

The theorem on the norm of a linear continuous functional in L{ (Q x [0, 7"]) is used
in obtaining (29) (cf. also [8]). According to (29) the calculation of the shakedown
factor within the membrane approximation is reduced to an algebraic problem of
optimizing the function of six variables C, t, fap . Corresponding results had been
obtained by Mosolov and Miasnikov [8] for the limit load factor of rigid-plastic
shells. When <p*2(C, fap) is a smooth function of the variables /Qjg, the extremal
tensor fa/j is determined by the equations

= -naP (30)
df, hn
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and the shakedown factor can be found by

-1 /T 1 I, 1 ^eaBiyS2.  m Q y a I I n n —  n n \ m ^ n 'K \IKaps" 3" ■ (31)
If some kinematical constraints of integral type are additionally imposed on the ad-

missible fields u , then the theorem on the norm of a linear functional in
Ot 7

L,(Q x [0, T]) cannot be directly used to obtain (29). However, we can apply
the algorithm based on the Lagrange multiplier method [8]. Let a linear continuous
functional F(f ) be defined on a subspace M of the Banach space B, extracted by
a finite system of linear continuous functionals Tt{f), 7j(/) = 0, i = \ , N .
Then r ,

;=1
II^IIm = inf sup

Xi /6B [
(32)

4. Analytical examples. We suppose the Mises yield condition (19) to be the case
in all examples considered in this section.

Example 1. Let us examine a spherical shell of radius R under an internal pres-
sure p(t), 0 < p(t) < p+ . The membrane equations have the form

eafi n e a/3, n , 1
n\P ~ " baP+P = 0> bap = -jaap-

The elastic response is equal to
eQ/S /,N n aftn = p(t)Ra

and results in the shakedown factor /?7 = haQ/p+R.
Example 2. Let a long cylindrical shell of length L with circular cross section of

radius R < L be subjected to the normal pressure p(t) = p+ol(t), 0 < w,(/) < 1,
and the axial forces q(t) = q+v2(t), 0 < v2(t) < 1, on the edges £2 = 0, L (Fig.
1). It is easy to see that the orthogonality condition (13) for such types of force is
satisfied. The elastic response is found to be of the form

nU = -Rp{t), n22 = —q(t).

q(t)

q(t)

Fig. 1

p(t)

pit)

2R

q(t)
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®  shakedown
 collapse

0.8

0.6
0.4
0.2

0.2 0.4 0.6 0.8 1.0

Fig. 2

With
+ p+R + q+

a\\ ~ 1 ' a22 ~ ^ ' a\2 ~ P ~ ' Q ~ha0 ' haQ
the shakedown factor is expressed by

q — 1 / n+2 2 2 !->+ /^+ \l/2P2 = ma x(P vx + Q u2-P Q o,w2) .

Instead of calculating the shakedown factor for the specific loading path
w, (t), u2(t), one can consider all possible paths and calculate the smallest shakedown
factor. This leads to the problem

P2l = max(P+2w, + Q+2v\ - P+Q+olo2)112 . (33)
^ y, , u2 1 z 1 ^

The shakedown diagram of (33) is shown in Fig. 2 by the curve 2. The curve 1
margins the adaptation region with respect to proportional loading (vl = v2) ■

Example 3. Consider a torus shell (Fig. 3)
1 1 2x =[^ + acos(^ /a)]cos£ ,

x2 = [b + <2cos(^'/<3)] sin£2,

x3 = [a sin(£'/«)],

subjected to a variable pressure p(t) = p+ux(t), 0 < u,(f) < 1, and a centrifugal
force with components

i7, = q{t)[b -I- a cos(£'/a)] cos£2, F2 = q(t)[b + a cos^'/fl)] sin£2, P3~0,

q{t) = q+o2(t), 0 < o2(t) < 1.

The shell geometry is characterized by

au=A2 = l, al2 = 0, a22 = A2 = [b + a cos{£1 /a)]2,
.2 . .2

bu = -jI = bn =0, b22 = -^ = [b + acos{^/a)]cos(^/a).
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Fig. 3. Torus.

The equations (14) for infinitesimal flexures take the form [7]

lo ^12° 1° ^' + ̂ + v
1 O Aj 1 o 1 o

T2"'-' + a^v' + T2v = 0- <34>

(V) h+(h) di = o

where v{,v2, and v are physical components of the displacement vector ua, u.
The following nontrivial solution of (34) exists:

o ( ClCos(f7fl), K'| < na/2,
1 \ C2 cos(£l/a), na/2 < |£'| < na,

v7 -0, v =
C.sintf'/a), \^\<na/2,
C2 sin^'/a), na/2 <\£{\ < na.

It is easy to check the orthogonality condition (13) with respect to this flexure for
1 2the given force. Solving Eq. (12) written in the orthogonal coordinate system g , £ ,

one finds the physical components of na/i to be

N p(t)a[2b + acos{Zl/a)] N =Q
11 2[b + ^cos(<^'/a)] ' 12

N21 = q{t)[b + a cos^'/a)]2 + p{t)a/2.

We return now to the optimization problem (29). Introducing the notation

2b I a + cos(ilx /a)
Nx = p\ 2[b/a + cos(£'/a)]'

+ + 2
N2 = Q+v2[b/a + cos(Zl/a)]2 + P+vl/2, P+ = , Q+=hcr0 ha0
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Q

0.2CH   shakedown
 collapse

0.1 0.2 0.3 01 0.5 0.6 P
Fig. 4

and calculating the smallest /?2 for all possible paths, one arrives at

/?"'= max (N2 + N2- N^NJ1'2. (35)
i'.o, ,v2

The shakedown diagrams of (35) with b/a = 1.5 are presented in Fig. 4. Two
different cases are considered: (a) P+ > 0 (interior pressure), Q+ > 0 and (b)
P+ < 0 (exterior pressure), Q+ > 0. The curve 1 (2) margins the adaptation region
with respect to proportional (two-parameter) loadings.

Example 4. Let us consider a long cylindrical shell (R -c L) subjected to the
uniform pressure p{t) = pR + prv{t), 0 < o(t) < 1 , pR = const. If the shell is fixed

2 R k  1only at the edge £ = 0, then the shakedown factor is equal to /?2 = (P + P ) ,
where PR = pRR/haQ and Pr = prR/ha0. Now we examine the shell adaptation
under the additional boundary conditions ux{L) = u2{L) — 0. These conditions
result in the following constraint for f22 :

[T [L f22%2dt = 0.
Jo Jo

By using (32) we obtain for /?2

minmax[(P^ + Prv)2 + A2 - (PR + PrD)k]x'2 = PR + Pr). (36)
A u 2

The shakedown diagram of (36) is presented in Fig. 5. The curve 1 (2) margins the
adaptation region with the one (two) fixed shell edge(s). One can see that fixing the
econd edge of the shell results in an increase of the shakedown region.
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one fixed edge

5. Asymptotic accuracy of the membrane shell approximation for the shakedown
theory. We shall prove the asymptotic accuracy of the membrane approximation
assuming for simplicity that the membrane state of elastic response is realized every-
where in the shell (as in the case of closed shells). The more subtle case should be
analyzed with the help of a boundary layer (see, for example, [8]). The idea of the
proof is to determine the upper and lower bounds, the difference of which should
tend toward zero with the shell thickness.

(a) Self-equilibrated residual stress field ph. Let us determine the components p'f
of the residual stress field in the form

a/1 1 a/?,,-a, /->->\
Ph hs ^ (37)

where safl satisfies (16). Solving the exact three-dimensional equations (10) as a
system of ordinary differential equations with unknown functions pf and p^, we
find the remaining components of the self-equilibrated stress field ph. It turns out
that (16) are si
it follows that
that (16) are sufficient conditions for the existence of pf1 and /?" . Now from (2)

a > a2 = sup{o|t> e E, 3safi E /2 , Vt 6 [0, T] v(a + ph) eW}. (38)

Analyzing (10) one can see that

= <39>

Modifying the parameter u on a small quantity e one can show that two conditions

+ pt) e f and p{\ +e)(«a/i +5°^) e (40)

are equivalent (cf. (11), (39) and the formulae (8), (9)). This means that

ah2 = a2 +y{h), y(h) -* 0 for h —+ 0, (41)

where a2 is the solution of (17). Therefore

a > a2 + y(h), y(h) —> 0 for h —> 0. (42)
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(b) Kinematically admissible strain rate field eph . For every given tensor fnfj let
us solve the following problem:

l(Va\fi + VP\J ~ ba/}V = fa/3 > Va = ° 0Ti • (43)
Having found va , v we construct the modified Kichhoff-Love velocity field

w = a • w = v -£\u ,a a a ^ T a 7

w = n ■ w = v + hy{C (44)
i Pw = v.+ bv n~ot |a a p

with the unknown function y{C , £, t). According to (21) the compatible strain rate
field eph is calculated by

n^ — X ( i/fli   11^"')!   l//1*!//   0 l/' h 11  eaPh = 2^aVX\fi ~ HctVk\P + Wll* - PflZVn* ' 2^abipV ~ 2<

<3h = 2(-« + w|« + hyw + by, - b^x), (45)

em = hy,c

We choose the function y so that the incompressibility condition gabepabh = 0 is ex-
actly satisfied. This leads to the following ordinary differential equation with respect
to the unknown function y :

hyti + gaPepaph = 0,

gaP = J_[(i -2HZ)aaP + 2£(1 -2HZ)bali +Z2baXb*],
K

with epaph due to (45). Having solved (46) we can define all components of the plastic
strain rate field (45). Because of the kinematical admissibility of the strain rate field
(45), we can conclude with (11) that

f [ jo ephdXdt / [ [ <p*2(eph) dX dt
Jo J& n / Jo J&

n ^ 1P2 < P2 = sup (47)

with eph according to (45). Analyzing (45) and (46) one arrives at the following
asymptotic formulae:

i = <> + o(£)/,
h
R<» = 0[Ti)f> («)

t'm = D +

From (11), (47), (48) it follows that

ph2 = p2 + d(h), S{h) —»■ 0 for /z —> 0, (49)

where /?2 is the solution of (25). The asymptotic accuracy of the membrane shell
approximation for the shakedown factor follows then by (42), (49), (7), and (27).
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