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ON CAUSTICS ASSOCIATED WITH HYPERBOLIC SYSTEMS
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Abstract. The Lagrange manifold formalism is adapted to find asymptotic solu-
tions for a class of hyperbolic systems near caustics.

1. Introduction. The asymptotic series technique developed by Keller [1] and his
coworkers determines approximate solutions of linear differential equations. In [2,
3] Granoff and Lewis extend their approach to find asymptotic solutions of systems
of linear hyperbolic partial differential equations with an emphasis on asymptotically
conservative symmetric systems, e.g., wave propagation in plasmas or viscoelastic ma-
terials. Near caustics, their approach does not apply. An alternative approach, which
determines asymptotic series solutions near caustics associated with the correspond-
ing scalar equations, is the modified Lagrange manifold formalism [4], Here, we
extend this technique to determine asymptotic series solutions at caustics associated
with asymptotically conservative symmetric systems of linear hyperbolic differential
equations.

2. Background. Because the modified Lagrange manifold formalism parallels the
classical approach, for clarity and comparison we present a synopsis of the classical
algorithm. Following Granoff and Lewis, we consider hyperbolic systems of the form

d~z v^-v d~z

u=l v

In Eq. (1), x = (x,, x2 , ... , xn), z = z(x, t) is an m-dimensional column vector,
and X is a large parameter. A0, Ax, ... , An , B , and C are smooth mxm functions
of t and x, for which A is positive definite, the Av are Hermitian, and B is anti-
Hermitian, i.e., Eq. (1) represents an asymptotically conservative symmetric system.
The algorithm proceeds by assuming a solution of the form

OO

z ~ exp{iX(f>(x, /)} '^2(iA.)~j~Zj(x, t), A—>oc, (2)
7=0

where 4>{x, t) is referred to as the "phase" and the z;. as "amplitudes." Inserting
Eq. (2) into Eq. (1) and regrouping by powers of iX one obtains the recursive system
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of equations

dzj " d~z
G1n<'-Ao-d-T.\«r-cli' J = -  (3)

u= 1 "

with
Gz0 = 0. (4)

Here the dispersion matrix G(x, t\ k, co) is given by
n

G{x, t;k, co) = ^kvAv - iB - coAQ (5)
i/=i

with kv (wave vector) and co (frequency) given by

, 9(j) . d(f>
^ = 9^' " = 1>2 (a = -aT (6)

and
z_,(x, t) = 0.

For nontrivial solutions given by Eq. 2 to exist, the dispersion matrix must be
singular, i.e.,

det(7(x, t\ k, co) = 0, (7)
for then from Eq. (7) we may construct solutions, beginning with the phase <f>(x, t).
For specificity, let

co = h(x, k, t) (8)
be a root of Eq. (7) of multiplicity q . Equation (8) may be regarded as a first-order
partial differential equation for the phase <j>{x, t). This equation may be solved
using the method of characteristics by introducing the characteristic (Hamilton's or
ray) equations

dx^=dh_ = p d_K=_^]L (q\
dt dkv ' dt dxv ' K '

where gu is the group velocity. Along the solution curves to these equations co and
<j)(x, t) are determined by noting that

leading to

Tt'tKz.'h. (11)
v=\

Equation 11 may be solved for <p(x, t) once initial values for x, k , co, and </>(x, 0)
are specified.

To determine the amplitudes z0, we first note that if co = h(x, k, t) is a root
of Eq. (7) of multiplicity q , then there exist q linearly independent null vectors ra
such that

Gr =0, a =1,2 (12)
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The sum of the multiplicities is equal to m and these m null vectors are linearly
independent and may be chosen so that

(7/?> AoTa) = <V' a, p = 1,2, ... , q. (13)
From Eq. (4), z0 is in the null space of G(x, t; k, co), hence may be expressed in
the form

Z0 = J2(7a(X>t)Ta- (14)
a= 1

The an (and hence z0) may be determined by first differentiating Eq. (5) and intro-
ducing the group velocity to obtain

H-~A.-g.AQ, v — \,2, ... , n. (15)

Next, differentiating Eq. (12) and combining with Eq. (15) yields

°w„+ {A-" g-A°)T°=°- <16>
Then combining Eqs. (13) and (16) and noting the hermiticity of G(x, t; k, co)
determines

(7/i>Av7a) = 8vt/}a> a, p = 1,2, ... , v = 0,1, ... , (17)
which includes A0 by defining g0 = I.

The oa(x, t) in Eq. (14) may now be obtained by setting j = 0 in Eq. (3) and
inserting Eq. (14) for zQ . Taking the inner product of the resulting equation with
r„ leads to

EE + I',, ■ J = 0- (18)r _ -da (_ dr\ 1
a=l I. v =0 v \ v / )

Then inserting Eq. (17) and noting the definition of gv , with xQ = t, allows us to
write

d .  . do r—'v dx da v da
^(*,0 = ar + E-sfa^-E^as- (19)i/=l " j/=0 f

and to rewrite Eq. (18) as

daB '
-rfT + E = 2,(20)

a= 1

where
" / dr \

xe« = Y,{TrA»3f) + {?rc?J-
v=0 V " '

The coefficients aB satisfy a system of q first-order linear ordinary (transport) equa-
tions, leading to amplitude z0 . To solve this system, Granoff and Lewis introduce
an auxiliary coordinate (ray) transformation, which leads to solutions for the a^ ,
and hence z0 . But, as they note, this transformation can become singular [2], The
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locus of singular points is the caustic curve, for which a separate treatment must be
considered [5]. One such approach is the Lagrange manifold formalism [4] which
introduces a non-Hamiltonian flow to obtain transport equations near caustics associ-
ated with scalar differential equations. Our intent is to adapt the Lagrange manifold
formalism for asymptotically conservative symmetric systems to develop a transport
equation, analogous to Eq. (20), that applies at caustics.

3. Formalism. We consider asymptotically conservative symmetric systems of the
form

■4o§v+E^lr+1'sz+C7=0' (1)
l/=\ v

with A0, Au, B, C, and A as noted above. Near caustics, ordinarily we would
assume a solution of the form

Z(x, k, t, A) exp{/A(x • k - S(k, t))} dk, (21)

where the phase <p(x, k, t) now has the explicit form

<t>{x, k,t) = x-k-S(k,t) (22)

and
OO

Z(x, k, t, X) = ^2(a)~JZj(x, k, t), z_, = 0,
7=0

analogous to the ansatz that applies near caustics associated with scalar differential
equations. (From Eq. (21), we note that the integral representation may be regarded
as a continuous superposition of oscillatory solutions.) The usual algorithm then
proceeds by substituting Eq. (21) into Eq. (1), followed by a regrouping by powers of
ik. Straightforward calculation, using Eqs. (6) (which apply here also), shows that
this leads to equations identical to Eqs. (3), (4), and (5). Consequently, to simplify,
we extend a device noted by Granoff and Lewis [2, p. 392] and introduce into Eq.
(1) a coordinate transformation

z = Du (23)

that simultaneously diagonalizes the Hermitian matrix G(x, t\ k, (o) and the posi-
tive definite matrix AQ [6, p. 120], Thus we rewrite Eq. (1) as

^7+EA.|r+A'§iI+CT=0> (24)
U= 1 V

where the carets indicate the resulting transformed coefficient matrices. Without
loss of generality (to parallel the classical treatment) we may take A0 = I, i.e.,
multiplication of Eq. (1) by A^1 may have preceded application of Eq. (23). The
algorithm proceeds by assuming a solution of the form

u ~ J U{x, k, t, A)exp {ik(j){x, k, t)}dk, (25)
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where
OO

U(x, k, t, A) = y^(U)~7M ,.(x, /c, m_i = 0,
j=0

and the phase 4>{x, /:, *) has the form given in Eq. (22). Then substituting Eq. (25)
into Eq. (24) and regrouping by powers of iX leads to

J dk | (—aJ^Tn + TAX - iB)ilu + A du
°a7

n p.— i

+ y Av —— + Cm > exp{/A0(J, &,?)} = 0(A~°°), (26)
ii/=i "

i.e., a solution for large X. Analogous to the above, we define as our dispersion
matrix

n

G(x, t; k, co) = ^kvAv - iB - coAQ. (27)
v=0

Evaluation of the integral at any caustic point (xc) proceeds by invoking the station-
ary phase condition (Vk0(xc, k, t) = 0) which determines the time-parameterized
Lagrange manifold

x = VkS(k, t) (28)
and turns Eq. (26) into

J dk |g(x, t; k, co)iXu + A0^ + yj Av + Cwj exp {iX<f>(x, k, t)} - 0. (29)

Next G is Taylor expanded about the Lagrange manifold

G(x, f,k,co) = G0(VkS, t-k,co) + irU-Dv , (30)
„=1 ^ v'

Dv = - J dxG{y(x - VkS) + x - VkS, t\k,co)dy,

i.e., the remainder of the Taylor series less a factor of (x - VkS). Then inserting
Eq. (30) into Eq. (29) and performing a partial integration leads to

where

/
dk .. p, _ du 7 du

aG0u + A0dJ + z2A^
-1 " (31)

~^jr" + CTi expW} = 0
i/=i " i/=i "

(cf. Eq. (3)). Here, for nontrivial solutions to exist, the matrix G0 must be singular,
i.e.,

det G0(x ,t\k, co) = 0. (32)
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Then, following the algorithm above, if co = h(x, k, t) is a root of Eq. (32) of
multiplicity q , we find the phase from the characteristics

dxv _ dh _ dku _ dh
d/u dkv ' d/u dxu'
dt _ dh dco _ dh
dpi dco' dp dt

where fi is a raypath parameter. These equations may be solved to obtain

xv = xv{n,o), kv=ku(n,o),
t = t{H,a), co = co{n, a), (34)

where a are parameterized initial conditions, e.g., direction cosines. Then inver-
sion of the wave vector and time transformations, followed by substitution into the
coordinate space map, determines the Lagrange manifold (Eq. (28)) explicitly,

x = x(/i(t, k), o(t, k)) = VkS(k, t). (35)

An integration along the trajectories yields

S{k, t) = [_ x ■ dk (36)
Jk0

and hence the phase
(f>(x, k, t) = x • k - S(k, t). (37)

In the Lagrange manifold formalism the transport equation for the amplitudes
Tij(x, k, t) is developed inside the integral by introducing a non-Hamiltonian flow.
To develop such a transport equation that corresponds to Eq. (31), we begin by mak-
ing Eq. (31) hold by requiring the nonexponential factor of the integrand to be zero.
Hence the equation we consider is

.. p, _ -T du v -?• du V~V n"\ ^„ /iq\iXG0u + A0— + ^,A„— + J2(~D -^-u + Cu -0, (38)
v=\ v v=\ v v~\ v

which may be written as the recursive system of equations

~ du- " ~ du. " du: J^dD"_
Gouj+\ = ~Ao-qY + iZD + JTUJ + CUJ ( ^

l>= 1 v V=\ V V=\ V

with
G0u0 = 0 (40)

and u_l(x, k, t) = 0 (cf. Eqs. (3) and (4)). Then proceeding as in the classical
approach, the null vectors ?a = ra(x, k, t) of G0, i.e.,

G0ra = 0, a = 1, 2, ... ,q, (41)

may be chosen so that

= da/3> a, P = 1,2,3, ... ,q (42)
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(cf. Eqs. (12) and (13)). The amplitude u0(x, k, t) is obtained from these null
vectors by first forming

uo = (43)
a= 1

To solve for the oa(x, k, t) we first differentiate Eq. (27), then introduce the group
velocity to obtain

<9Gn
-djrv=Av- gvAo- (44)

Next, differentiation of Eq. (41) combined with Eq. (44) leads to

60|^ + (A„-g„A„)r„ = 0. (45)

Then combining Eqs. (42) and (45) leads to

' -VJ = sjpa' (46)
which follows from the hermiticity of G and includes A0 by defining g0 = I. The
ajx, k, t) now proceed by setting j = 0 in Eq. (39) and inserting Eq. (43) for uQ .
Taking the inner product of the resulting equation with r^ followed by a regrouping
leads to

a= 1 v z/=0 v u

+ Trldzk)~ (S>D"w) + {h' If ^) + ̂
1/ / \ v

°a} =0-

(47)
The first term in this equation corresponds to the first term in Eq. (18), hence

~ _ do da„ J^dx daR
(V A»ra)g^ = -Ql + -Q^-- (48)

v v= 1 v

Since D is diagonal, the second term may be written

-(TrD\) = -^Safi. (49)
Hence by introducing a non-Hamiltonian flow analogous to that applying in scalar
differential equations

§ = (50)
we note that the first two terms in Eq. (47) may be written as

dap dop " dxv dOp A dkv dap
dt dt ^ dt dxv ^ dt dk' { 'i>=i " i/=i v

Then by allowing dkQ/dt = 0, Eq. (51) becomes

daB «TtEv.=0' (")
a= 1
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where

V = E{(7».a|^) + (^.0"|^)+ P>, CT„) + (r„, 2£-r„)} ,

i.e., a transport equation valid at caustics analogous to Eq. (20). This transport
equation may be solved for the a^ (and hence u0) using the classical procedure
with the transformation x = x(ju(t, k), a(t, k)) (cf. Eq. (35)) in place of the ray
transformation. (Higher order 's require a treatment corresponding to that given
in [2] and are not considered here.) The remaining computational considerations
parallel the treatment for the scalar equation. As these have been detailed elsewhere
[7], for brevity we do not repeat them
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