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Abstract. The steady state drift-diffusion model for the flow of electrons and
holes in semiconductors is simplified by perturbation techniques. The simplifications
amount to assuming zero space charge and low injection. The limiting problems are
solved and explicit formulas for the voltage-current characteristics of bipolar devices
can be obtained. As examples, the pn-diode, the bipolar transistor and the thyristor
are discussed. While the classical results of a one-dimensional analysis are confirmed
in the case of the diode, some important effects of the higher dimensionality appear
for the bipolar transistor.

1. Introduction. The classical drift-diffusion model for the steady flow of negatively
charged electrons (density n(x)) and positively charged holes (density p(x)) in a
semiconductor consists of the continuity equations

divJ, = —divJ =R, (1.1a)
the current relations
6%, =, (Vn—nv¥), 83 =-u (Vp+pVV), (1.1b)
and the Poisson equation
MFAV =n-p-C (1.1c)

for the electrostatic potential V' (x). The mobilities 4, , #, > 0 and the doping
profile C are assumed to be given functions of position x € 2, where the bounded
domain Q c R , k=1,2, or 3, represents the semiconductor part of the device.
For the recombination-generation rate R we use a mass action law of the form

R=Q(n,p,x)(np/s*-1), Q>0,

which includes the standard models for band-to-band processes and recombination
via traps in the forbidden band. Since the discussion of this work is restricted to low
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754 CHRISTIAN SCHMEISER

injection situations, our model certainly describes the relevant physical phenomena
[7].

The equations are in dimensionless form. The reference quantity for the particle
densities n, p, C is the maximal doping concentration C_, , i.e.,, max,|C| = 1.
The potential has been scaled by the thermal voltage U, = kT/q where k, T,
and g denote the Boltzmann constant, the lattice temperature and the elementary
charge, respectively. The reference length L is the diameter of the device and, thus,
diam(Q) = 1. The scaled minimal Debye length A and intrinsic number 5% are

dimensionless parameters and given by

1 eU 2 n.
PR A S S
L quax Cmax

where ¢ is the permittivity and »n; the intrinsic number of the semiconductor. The
nondimensionalization differs from that commonly used (see [4, 7]) by the scaling of
the current densities J, , J » where the introduction of the factor §* seems somewhat
artificial. However, this choice is justified by the analysis below.

Regions where the doping profile C is positive, are called n-regions because the
positively charged impurity ions attract electrons. On the other hand, in p-regions
the doping profile is negative. The (k — 1)-dimensional boundaries between n- and
p-regions are called pr-junctions. Here we assume abrupt junctions, i.e., the doping
profile has jumps across these junctions and is bounded away from zero within the
n- and p-regions.

The boundary 0Q of the device is the disjoint union of Ohmic contacts C,, ... ,
C,, and artificial or insulating boundary segments 02, . At Ohmic contacts we

m
assume zero space charge and thermal equilibrium:

n-p-C=0, np=§4, atC,...,C

m

which translates to Dirichlet boundary conditions for the charge carrier densities:

n=%(C+\/C2+454>, p=%(—C+ C?+46%, atC,,...,C,. (1.2a)

For a voltage controlled device, the values of the potential along the contacts are also
prescribed:

V=Vbi—Uj, ath,j=1,...,m (1.2b)

where U, — U f is the external voltage between the contacts C; and C B and the
built-in potential is given by

C+VC*+4s°
24° '
Along the artificial and insulating boundary segments, we assume that the normal

components of the electric field and the electron and hole current densities vanish.
This amounts to homogeneous Neumann conditions for V', n, p:

oV _on _dp _
8_1/ = v = D = O, at BQN (12C)

Vyi =1n
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where v denotes the unit outward normal.

After substitution of the current relations into the continuity equations, (1.1),
(1.2) constitutes an elliptic boundary value problem for V', n, p. The important
output quantities are the currents through the Ohmic contacts. The current / ; leaving
the device through the contact C ; is given by

I = /Cj(Jn +3) vds.
The dependence of the currents on the m—1 contact voltages U - U,j=2,....m
is called the voltage-current characteristic of the device. Obviously, the choice of U,
does not influence the result. Note that we only need to compute m — 1 currents,
since the total current density J, +J s is divergence free, implying I, +---+1, =0.

The current-voltage characteristic is determined by the number and location of
the n- and p-regions as well as of the Ohmic contacts. We consider devices meeting
the following requirements: There is a finite number of open connected #n-regions
whose union is denoted by . In the same way, the number of p-regions is finite
and their union is denoted by Q_. Each n- or p-region has at most one contact and
each contact is adjacent to only one n- or p-region. The union of the pn-junctions
is denoted by I' = Q +N Q . Note that these assumptions do not rule out so-called
floating regions without any contacts. In Fig. 1 two-dimensional cross sections of
three typical devices are depicted. The pn-diode consists of one n- and one p-region,
each with a contact. The bipolar transistor has three differently doped regions with
contacts. Finally, the thyristor is a pnpn-structure. Here we consider the so-called
Shockley diode where the two middle layers are floating regions. In Secs. 5, 6, and 7
of this work the voltage-current characteristics of these devices are discussed.

The dimensionless parameters A and 57 are small compared to 1 in practical ap-
plications. Therefore we shall try to simplify problem (1.1), (1.2) by letting these
parameters tend to zero. The limit A — O is carried out in Sec. 2. Essentially, it
amounts to replacing the left hand side of the Poisson equation (1.1¢) by zero which

n P
| +\ n
a) b) c)

Fig. 1. Cross sections of a) pn-diode, b) bipolar transistor, and c)
thyristor.
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explains the name zero space charge approximation for the simplified problem. How-
ever, since the doping profile has jump discontinuities, the limiting carrier densities
also have jumps. The nature of these jumps can be analyzed by introducing slow
variables which are continuous in the limit. The construction of formal asymptotic
approximations — including layer corrections at the pn-junctions — has received
a considerable amount of attention in the literature [2, 3, 4, 5, 6, 7, 8,10, 19]. In
the one-dimensional case, these approximations can be justified by general results for
singularly perturbed boundary value problems [14]. For higher dimensions, however,
the situation is more involved. A justification for situations close to thermal equilib-
rium, i.e., small enough applied voltages, can be found in [3]. In [2], a convergence
result for a simplified problem with constant mobilities and without recombination-
generation is given. The treatment of Sec. 2 is in the spirit of this work. We use a
well-known existence result [4] for (1.1), (1.2) and additional a priori estimates for
a justification of the limiting procedure. The result is a boundary value problem for
a system of two nonlinear elliptic equations.

Although the number of equations has been reduced, the zero space charge prob-
lem is essentially not much easier to solve than (1.1), (1.2). Therefore, a further
simplification is introduced in Sec. 3 by letting 5% tend to zero. Keeping the ap-
plied voltages fixed as the built-in potential tends to infinity (for 5 - 0) can be
interpreted as a low injection condition. Since the analysis of Sec. 2 provides an
existence result for the zero space charge problem, it is only necessary to obtain a
few more estimates for justifying the limit. In [7] it has been shown that for the
thermal equilibrium problem (consisting only of a nonlinear Poisson equation) the
limits A — 0 and 6> — 0 commute. The limit 6> — 0 with A kept positive leads
to a free boundary problem [13], which has been analyzed in [12]. Although the
author conjectures that the limits commute also in the general case, no proof seems
to be available. The problem with 5% - 0, A fixed, has particular importance in
VLSI applications, since for very small devices A can be considerably large whereas
5t << 1is always a safe assumption.

It turns out that in the low injection limit the problem is simplified considerably.
Its solution is discussed in Sec. 4. The voltage-current characteristic can be given
in terms of the solution of a set of algebraic equations containing parameters which
can be interpreted as conductivities of the n- and p-regions in certain reference
situations. These conductivities are computed from the solutions of a number of
linear elliptic boundary value problems. The set of algebraic equations is nontrivial
only if floating regions occur. We can show that the solution is unique if the device
has at most one floating region. Thus, we have uniqueness for the pn-diode and the
bipolar transistor, but in general the question of uniqueness remains open. In Sec.
7 it is shown that the solution is also unique for the Shockley diode. This seems to
contradict results [17] that a thyristor has multiple steady states in certain biasing
situations. However, in the low injection limit we can only expect to obtain the
so-called blocking branch of the characteristic.

This shows that the simplified model cannot describe physical effects caused by
large electrical currents (high injection). Another limitation originates from the zero
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space charge assumption. We neglect the pr-junction layers where the space charge
density takes appreciable values. This is justified, because the width of these space
charge regions is O(4) in our scaling. It is well known, however, that the width grows
with the potential jump across the junction. Effects involving large applied biases and,
therefore, widening depletion regions can be accounted for by an asymptotic analysis
of a rescaled problem [1, 9, 11, 12].

The zero space charge and low injection assumptions have already been used for
one-dimensional model problems in the early physical literature on semiconductor
devices [15]. In particular, the famous Shockley equation for the voltage-current
characteristic of a pn-diode and the qualitative behavior of bipolar transistors are
derived in this way (see also [18]). Thus, the present work can be viewed as an
extension of these results. In Sec. 5, our theory is applied to a multi-dimensional
model for a pn-diode. The Shockley equation is confirmed, and it is shown how the
leakage current can be computed. Section 6 deals with the bipolar transistor. Here
the common-emitter current gain is an important parameter. We demonstrate that it
strongly depends on the geometry of the base region. This multi-dimensional effect
is not captured by the classical one-dimensional analysis. Finally, the Shockley diode
is considered in Sec. 7. Steinriick [17] showed that not every pnpn-device functions
as a thyristor. We extend some of his results to the multi-dimensional case. In
particular, it is shown that the voltage-current characteristic changes qualitatively,
when a certain parameter passes through a critical value.

2. The zero space charge approximation. The analysis of (1.1), (1.2) is greatly
facilitated by the introduction of the so-called Slotboom variables [16] ¥ and v
instead of the carrier densities:

n= 52eVu, p= 5% .
This symmetrizing transformation for the continuity equations changes (1.1), (1.2)
to the differential equations

div(unézeVVu) = (54R,
div(u,6’”" vv) = *R, (2.1)

APAV =6% u-6*"v-C,
subject to the boundary conditions
u=eUf, v=e-U/, V=V,-U, aC,j=1,...,m
OV _u_D_ a0 .
v~ dv  ov N

Now the recombination-generation rate is given by
R= Q(&zeVu, s’e v, X)(uv — 1).

Note that the differential operators in the continuity equations are formally self-
adjoint. Also we expect the derivatives of the Slotboom variables to be bounded
uniformly with respect to A. This makes them slow variables in the language of
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singular perturbation theory. Before we can state an existence result for (2.1), (2.2),
a few regularity assumptions for the data are needed: The domain Q is Lipschitz and
the (k — 1)-dimensional Lebesgue measure of the union of the contacts is positive.
The Dirichlet boundary data for V', u, v can be extended to Q as functions in
H 1(Q). The doping profile and the mobilities are in L°°(Q) with the mobilities
bounded away from zero. The nonnegative reaction rate Q in the recombination-
generation term is a smooth function of the carrier densities as well as a bounded
function of position.
A proof of the following theorem can be found in [4].

THEOREM 2.1. Under the above assumptions the problem (2.1), (2.2) has a solution
(V,u,v) e (H(Q)NL®(Q))* which satisfies
e U <u,v< e , withU, = maxlUjl,
j

IVl <c.
where ¢ is independent of A and || - ||p denotes the L”(Q)-norm
For computing the currents through the contact, the current densities
(54Jn = undzeVVu, 64Jp = —upéze_VVv
have to be evaluated along the contacts. This is not necessarily possible since the
existence result only guarantees current densities in LZ(Q) . Therefore the currents

have to be defined in a different way. Let ; bein HI(Q) with ¢, =4, at C.
Then we obviously have
I = BQ(/)J.(J"+Jp)-1/ds=/Q(Jn+Jp)~V(pjdx (2.3)

by integration by parts. The term on the right-hand side is certainly well defined and
can serve as a definition for the current. It is easy to see that it is independent of the
particular choice for ¢ ; if the total current density is in the weak sense divergence

free.

It is important in our context that the L™ estimates in Theorem 2.1 are uniform
with respect to 4. The following lemma contains estimates for the derivatives of the
solution.

LeEMMA 2.1. Solutions of (2.1), (2.2) satisfy
AVVI, <e, [Vull, <c,[Vull, <c
with ¢ independent of 4.

Proof. Let V, be an H l(Q)-extension of the Dirichlet data for the potential.
Then, multiplication of the Poisson equation by V' — V¥, and integration by parts
immediately imply the first estimate. The other two estimates are proved analo-

gously. O

The next result contains an interior estimate, where ‘interior’ means away from
pn-junctions and from the boundary. We denote by Q, = Q\I' the union of all the
p- and n-regions. The smoothness assumptions

Mooty € HU(Qp),  CeW™(Q)
will be used.
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LEMMA 2.2. Under the above assumptions solutions of (2.1), (2.2) satisfy
”VV”LZ(Q’) <c,

6% u—- %"

for Q' cc Q, with ¢ independent of 4.
Proof. We denote the space charge density by
F(V,x)=06%"u(x) -6’ v(x) - C(x)

and introduce a nonnegative test function ¢ € C§° (Q,) with ¢ =1 in Q. Multi-
plication of the Poisson equation by ¢ F and integration by parts gives

PL /Q (pg—5|\7V|2dx+ /Q o Fldx = —12 /Q UV (pV,F + FVp)dx  (2.4)

v — C||Lz(9,) <Ac

where . .

V.F= -(S—Jn + 6—J -vC

u p
n p
holds, and FVV can be written as
FVV = V(52eVu +6% v- cv) - 6%’ vu-o*e " vu +Vve.
The L™ estimates of Theorem 2.1 imply that % = 6%"u+6%"v is bounded
away from zero uniformly with respect to A. The left-hand side of (2.4) is thus
bounded from below by
2 2 2

A ClIVV”Lz(Q/) + ”F”LZ(Q’)
with a A-independent positive constant ¢ . After integration by parts the right-hand
side of (2.4) can be written as

/12/ v (6% - vZ 4+ 6'RL + 5% VL —5*RY —div(pVC) | dx
Q n 'un d ‘uP P

+ 12/ Aw(ézeyu +0%e v - CV)dx
Q

+/12/ Vo - (ézeVVu +6%e v - VvV C)dx
Q

which can be bounded by e (¢ independent of 1) because of the estimates in
Theorem 2.1 and Lemma 2.1 and the assumption on the mobilities and the doping
profile. The estimates of the lemma follow immediately.

We are now in the position to prove the main result of this section.

THEOREM 2.2. For every sequence 4, — O there exists a subsequence (again denoted
by 4,) such that the corresponding solutions (V, , u,, v,) of (2.1), (2.2) and the
currents [, , j=1,...,m given by (2.3), satisfy

V, -V, inL}Q),
u, — u, weakly in HI(Q),

v, — v, weakly in HI(Q),
Iy—1I, forj=1,....m
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where (V, u,, v,) is a solution of (2.1), (2.2) with 4 replaced by zero and the
limiting currents can be computed from (2.3).

RrMark. Note that the limiting potential would not satisfy general Dirichlet
boundary conditions since it is determined from an algebraic equation (the reduced
Poisson equation). However, the assumption of zero space charge at the Ohmic con-
tacts is compatible with the limiting problem, and therefore the limiting solution
satisfies the complete set of Dirichlet conditions.

Proof. The convergence statements for u, , v, and [/ ik follow directly from the a
priori estimates. Lemma 2.2 implies convergence for the potential in LZ(Q') with
Q' cc Q. It is easy to show that convergence in LZ(Q) can be concluded from
the uniform L*(Q)-estimate. It remains to carry out the limit in (2.1), (2.2).
The right-hand side of the Poisson equation, considered as a function of (V, u, v),
defines a map on a bounded subset of L"°(Q)3 which is continuous in terms of the
L’ (Q)-norm. Also, by Lemma 2.2 and the L™(Q) estimates, this right-hand side
tends to zero in Lz(Q) as k — oo. In the limit we obtain

0= 62eV°u0 - éze_V‘)vO -C, ae.inQ. (2.5)

We multiply the electron continuity equation by a test function ¢ € Cg” (QuoaQ,).
Integration by parts gives

—/ unézeV*Vuk~V¢dx=/54Rk(pdx
Q Q

where R, is the recombination-generation rate evaluated at (V,, u,, v, ). Like the
right-hand side of the Poisson equation above, e’ and R are continuous in terms of
the LZ(Q)-norm. The strong convergence of R, and e’* and the weak convergence
of Vu, allow to go to the limit in the above weak formulation of the electron conti-
nuity equation. Analogous arguments can be applied to the hole continuity equation.

The weak convergence in H 1(Q) of u, and v, implies that their limits satisfy
the Dirichlet boundary conditions. Solving (2.5) for V|, at the contacts shows that
V, also takes the values prescribed in (2.2). Finally, the estimates of Lemma 2.1
justify the passage to the limit in (2.3). O

3. The low injection limit. After elimination of the potential, the zero space charge
problem can be written as

) 7
div (#nC+ sz+46 quu) =(54R,
. ~C+VC?+46*uv 4
div | p, 7 Vv] =0 R, (3.1)

subject to the boundary conditions

u:eU/, v=e_U1, ath,
ou 0v
87_5;_0, at@QN. (3.2)
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The results of the previous section imply that (3.1), (3.2) has a solution which
satisfies the estimates in Theorem 2.1 and which is close to solutions of (2.1), (2.2)
for small values of 4. In this section we are concerned with the limit 6> — 0. In
the zero space charge approximation, the carrier densities are given in terms of the
Slotboom variables by

n= % <C+\/C2+464uv> , b= % (—C+\/C2+464uv).

Since the a priori estimates for ||u|| and |[v|| are uniform with respect to 8%, it
is obvious that

n=C+0(%, p=0(", in n-regions,
p=-C+ 0(54) , n= 0(64), in p-regions.
The statement that the density of the majority carriers (electrons in n-regions, holes
in p-regions) is close to the modulus of the doping profile and the density of the
minority carriers is small compared to that, is usually called a low injection condition.
The convergence analysis again relies on a priori estimates. We shall need another

regularity assumption on the data: There are continuous extension operators from
H'(Q,) to H'(Q) as well as from H'(Q_) to H'(Q).

LemMA 3.1. Every solution of (3.1), (3.2) satisfies
IVul,<c, [Vl <c

with ¢ independent from 5.
Proof. Let u;, denote a H 1(Q)-extension of the Dirichlet data for u. Then,
multiplication of the equation for # by u —u,, and integration by parts leads to the

estimate
C+VC*+46*w
Q ﬂn 2u

\Vu’dx < ¢

where ¢ is independent from 6. The same estimate obviously holds with Q re-
placed by Q. . Since, in Q_, the diffusion coefficient is bounded away from zero

uniformly in 5? , this implies

||Vu||Lz(Q+) <c.
Now we formulate a boundary value problem determining u in _ . Because of our
assumptions there is a uniformly bounded H l(Q)-extension of u|, which satisfies
the Dirichlet conditions for u at contacts adjacent to Q_. We take this extension
as Dirichlet datum for u|, at I' and the contacts adjacent to Q_ . The continuity

equation divided by 5* reads

div (,un 22 - Vu) =R.
-C+VC +46"uv

In Q_, the diffusion coefficient is uniformly bounded and uniformly bounded away
from zero. Thus, it is obvious that Vu is uniformly bounded in LZ(Q_). The
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estimate for Vu given in the lemma follows. For v we proceed analogously with
the roles of €, and €_ interchanged. O
For the current densities, now given by
2 3
54.] — 4 C+VvVC +46 quu’ 54.] __

n n 2u D

-C+ \/Cj +46*uv
Hp 2v v,

Lemma 3.1 implies that the minority carrier current densities are uniformly bounded,
1.e.,
”Jn”LZ(Q_) <c, IIJp”LZ(QJ <c

An argument for the uniform boundedness of the majority carrier current densities
can be given as follows: Let Q  denote an n-region with an Ohmic contact, where

the boundary condition u = e is prescribed. Then the function w , defined by
'w=u—e"% ,

satisfies in €, a differential equation with a bounded forcing term. It also satisfies
an homogeneous Dirichlet condition at the contact and an homogeneous Neumann
condition at 92, NGQ,, . At the pn-junctions 9Q, NI" adjacent to €2, , we prescribe
Neumann conditions using the continuity of the normal component of the electron
current density. The Neumann data are uniformly bounded because of the uniform
boundedness of J, in p-regions. Thus, w, being the solution of a problem with
uniformly bounded data, is itself uniformly bounded and so is the electron current
density in Q , given by

24 a5tuw
3 =/1,,C+ \/C2u+ d"u vuw
For a floating n-region (without an Ohmic contact) the problem corresponding to
that for w is a pure Neumann problem with uniformly bounded Neumann data. A
similar argument applies in this case. Obviously, the same reasoning can be used for
the hole current density in p-regions. Making these arguments precise, however, re-
quires the evaluation of the current densities at pn-junctions which is not necessarily
possible with the regularity used until now. On the other hand, it turns out that the
result is not needed in its full strength for the convergence analysis below. Therefore
we settle for less which allows us to get along with the regularity assumptions made

so far.

LeEMMA 3.2. The majority carrier current densities satisfy the estimates

S lpq, Se 8l S e,
with ¢ independent of 5%,

Proof. Let p € H l(Q) denote a function which is constant in n-regions and satis-
fies the Dirichlet conditions for u at the contacts. The existence of ¢ is guaranteed
by the fact that each n-region has at most one contact where the Dirichlet datum
for u is constant. Multiplication of the electron continuity equation by u — ¢ and
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integration by parts gives

C+ \/C2 + 46uv
0 ,Un 214

+

qulzdx

__/ u C +VC? + 46*uv
Q n

= Vu.(Vu—V(p)dx—(S“/ R(u — ¢)dx.
2u Q

Note that we have used that V¢ vanishes in Q_. The estimates obtained so far
imply that the right-hand side is 0(64) . Therefore,

2
||Vu|le(Q+) <dc (3.3a)

holds which obviously is equivalent to the estimate for J, in the statement of the
lemma. The corresponding estimate for Vv

IV0]l2q , < 0% (3.3b)

is obtained similarly. O

The weakness of this result makes it necessary to change the way currents are
computed once more. Because of the assumptions that an n- or p-region can have
at most one contact and considering the divergence theorem, the currents through a
contact can be given in terms of the currents through adjacent pr-junctions. In the
light of our previous results, this is a favourable situation since the currents through
ph-junctions can be computed by using only minority carrier current densities. In
particular, consider a pn-junction I'; separating the n-region , and the p-region
Qp. Then the current [, from Q, to Qp is given by

I, = /1_ J,+Jd,)- vds (3.4)
0
where v is the unit normal vector along I'; pointing into Qp. Similarly to the

derivation of (2.3) we use functions ¢, € H'(Qn) and ¢, € H'(Qp) which are
equal to 1 at Iy and vanish along other pn-junctions or contacts adjacent to
and Q. Then the formula for I; can be rewritten as

I, = /Q (Vo,-J, - 9,R)dx — /Q (Vo,-J, + (ppR)dx. (3.5)
n 14

Note that, differently from (2.3), the recombination-generation rate appears in (3.5)
because the individual current densities are not divergence free as opposed to the

total current density.
We are now in the position to carry out the limit 6% — 0. The estimates (3.3)

imply that

Vu=0 inQ_, Vv=0 inQ_ (3.6a)
holds in the limit. In other words, in each »n- or p-region the Slotboom variable
corresponding to the majority carriers is constant. Equations for minority carrier
Slotboom variables are derived from (3.1). After dividing the electron continuity
equation in Q_ as well as the hole continuity equation in Q_ by s , the passage
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to the limit is justified by Lemma 3.1 and arguments analogous to that in the proof
of Theorem 2.2. The limiting equations are

dw<|”C"| >=Q(0,|C|)(u—v") inQ_,

div <”—C"w> —Q(C.0w-u") nQ,. (3.6b)

Lemma 3.1 also implies that the limiting solutions satisfy the boundary conditions
and that we can go to the limit in (3.5). There we have to substitute

Prwvu, R=000, |Chuv-1) inQ_,

=1
H, .
J, = —?qu, R=Q(C,0)(uv—1) inQ,. (3.7)

Summing up our results we have proven the following theorem.

THEOREM 3.1. For every sequence (5,3 — 0 there exists a subsequence (again denoted

by 6,3) such that the corresponding solutions (u, , v,) of (3.1), (3.2) and currents

I, given by (3.5), satisfy

u, — u, weaklyin H'(Q) ,
v, — v, weakly in HI(Q) ,
Tor = oo
where the limits u,, v, satisfy (3.6) and the boundary conditions (3.2). The lim-

iting current [, is given by (3.5) with the current densities and the recombination
term defined by (3.7).

4. Solution of the low injection problem. In this section we are concerned with
solving the problem (3.6), (3.2) and the computation of currents. Suppose the
constant values of u in n-regions and of v in p-regions are known. Then, u in
Q_ and v in Q_ can be computed by solving boundary value problems for Eq.
(3.60) . In particular, for a p-region Qp let I'),..., I, denote the adjacent pn-
junctions and (eventually) contact. Then, u takes the constant values u,, ... , 4, at
these segments of the boundary of Qp because u is constant in n-regions and along

contacts. The function u —v™" satisfies an homogeneous differential equation and
piecewise constant Dirichlet conditions at ', ... ,T',. Therefore, u — v~ can be
written as a linear combination

u=v""' +E(u -v_l)(pj
,=1
of reference functions ¢; satisfying
div (£290,) = 00.1Chp,. in9,,
. 99,
p; =90, atl ,i=1,...,/ 5—1/—=O at 0Q, NoQ,. (4.1)
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It is important to notice that the ¢ ; ’s are independent of the biasing situation, i.e.,
of the applied voltages. The electron current density in €, is given by

w
—?Zuv—IV(pJ

and the electron current through I'; by

!
Y (uv - (4.2)

J=1

Kij = /|C|V(p1 -vds

is the electron current through I'; which prevails when the potential at T, i is raised
above equilibrium by a reference value. The values of the k; (0,5 =1, , 0
provide a complete description of the minority carrier flow through Qp Of course, v
and Jp in n-regions as well as hole currents can be computed in a similar way. Note
that we only have the minority carrier current densities and that we can, therefore,
only compute total currents through prn-junctions. As already mentioned, however,
currents through contacts are.immediately given by the divergence theorem.

It remains to determine the constant values of u in the n-regions and of v in the
p-regions. Obviously, for an n- or p-region with a contact, the value of the majority
carrier Slotboom variable is given by the boundary data. Therefore we are done for
devices without floating regions. The solution is unique in this case.

Note that uniqueness leads to a stronger version of Theorem 3.1. It implies that
the convergence result is not restricted to subsequences.

Now assume we are looking for the majority carrier Slotboom variable in a floating
(say n-) region Q, . An equation for the value of u is provided by the divergence
theorem. The total current leaving €, has to be zero. Since electrons and holes can
only leave and enter Q, through pn-junctions the current can be given in the form
(4.2) . Thus, we obtain an algebraic equation for u. This equation is linear in terms
of u. However, the values of the majority carrier Slotboom variables of other n- and
p-regions enter the equation in the form of quadratic terms. Of course, we have such
an equation for each floating region. Thus, in general we are dealing with a system
of nonlinear algebraic equations. Its solvability is guaranteed by the results of the
preceding section but we do not have a uniqueness proof. Nevertheless, uniqueness
is obvious for devices with only one floating region because of the above mentioned
linearity of the equation. Apart from that, Sec. 7 of this work contains an example
of a device with two floating regions where the solution is also unique.

where

5. The pn-diode. A pn-diode is a device having one n-region Q, and one p-
region Qp with adjacent Ohmic contacts I', and Fp , respectively. The pn-junction
is denoted by I' (see Fig. 2).

The function of a pn-diode is that of a valve. Whereas in one direction only a small

akage current can pass through the device, significant current flow is possible in the
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Q, r
Q,
! T,
U

Fig. 2. Cross section of a pn-diode.

other direction. By looking at a simple one-dimensional model problem (essentially
assuming zero space charge and low injection) Shockley (1949, [15]) computed the
approximation

I=1" -1 (5.1)

for the voltage-current characteristic which is now known as the Shockley equation.
In (5.1), I denotes the current through the device and U the contact voltage. The
characteristic shows the expected behaviour. Under reverse bias (U < 0) the current
saturates at the value I, which has been determined by Shockley as a function of the
doping levels in the n- and p-regions, the mobilities and recombination parameters.
For positive voltages (forward bias), on the other hand, the current grows exponen-
tially. An application of the theory of this work will show that the Shockley equation
remains valid in the multi-dimensional case with an appropriately chosen value of
I .
’ With the contact voltage U, the Slotboom variables satisfy the boundary condi-
tions

U -U
u=v=1, atl"p, u=e , v=e , atl.

We immediately obtain
U . .
u=e , inQ,, v=1, me.

On the other hand, the procedure described in the previous section leads to the
representations

u=1+(eU—l)¢p, inQ,, v=e_U+(l—e_U)(pn, inQ,

where ¢, and ¢, are the solutions of linear elliptic boundary value problems similar
to (4.1) with the boundary conditions

¢, =¢,=1, al, 9,=0, atl, ¢,=0, atT,
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With the formulas for the current densities from the previous section we obtain (5.1)
by integration along I'. The saturation is current is given by

— K v ! IR v} .
Is /1' <|Cp| ?» Cn ¢”> vds
and Cn (C) is

where v is the unit normal vector along I' pointing into Q,, )
the doping profile evaluated at the n-(p-)side of the junction. It is easy to see that
both terms which sum up to the integrand are positive. If a one-dimensional model
with constant mobilities and a piecewise constant doping profile is considered, the
differential equations for ¢, and ¢, are linear ODEs with constant coefficients. In
this case, /. can be computed explicitly recovering Shockley’s formulas.

6. The bipolar transistor. A bipolar transistor consists of three differently doped
regions each having a contact. Among the two possibilities of npn- and pnp-
configurations we choose to consider the latter. The arguments of this section carry
over to mpn-transistors with the obvious changes.

Note that three contacts cannot be incorporated into a one-dimensional model.
Therefore we have to assume k& = 2 or 3 for the space dimension in this section.
Below we shall see that multi-dimensional effects are indeed important for the per-
formance of bipolar transistors.

The outer (p-)regions are called emitter (2,) and collector (L2.), the sandwiched
n-region is the base (Q,). The corresponding contacts are denoted by I'y., I'-, and
'y, respectively, the emitter junction by I'y; and the collector junction by T’y
(see Fig. 3). Contact voltages are measured with respect to the emitter: Up, is the

Tes ¢33 =0
w2 =0, p3=1
Tpc ps=1

Ucke

Fig. 3. Cross section of a bipolar transistor.
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base-emitter voltage and U, the collector-emitter voltage. The Slotboom variables
then satisfy the boundary conditions

u=v=1, atl,, u=eU"5, v=e—UCE,atI“C,
u=eUBE, v =e_U“’, at I'p.
The arguments of Sec. 4 lead to the representations
u=1+(eUBE—1)(ol, v=1, inQ,
u=et, y=e U (1= e_U"E)(p2 + (e

Uep U U U .
u=e “+(e”"-e o, v=e *, inQ,

-U,.,. -U .
““—e ey, in Qp,

where the reference functions ¢, ... , ¢, solve boundary value problems similar to
(4.1) with boundary conditions as indicated in Fig. 3.

The currents I entering the device through the emitter, and /., leaving the
device through the collector, can be computed by integrations along the emitter and
collector junctions. Then the base current is given by Iy = I — I .. The bipolar
transistor serves as an amplifier in the following way. A certain collector-emitter
voltage is applied and the base current is used for triggering the collector current.
Thus, we are interested in the dependence of /- on I and U, . This is achieved
by computing Up, from the formula for I, and substituting the result into the
equation for I.. Straightforward algebra gives

—Upp
a2€

= (I +a3+a4) —

—a +a,

with parameters

'uP
- —£Vo, - vds,
'/rac' CB 2

(P .
w= [ (2o cryve) vas.

BC

u
a3=—/ |C|V¢' l/dS—/ C"V(pz-uds,

U
a,=-— / lC”IV(p4 / V(p3 vds.

Here C, denotes the doping profile evaluated at the base-side of the junctions, with
similar definitions for C, and C,

A measure for the device performance is the so-called common-emitter current
gain

-U,..
5= ol. _ a4 -ae “«.
g a,+a,e Ve

For significant collector-emitter voltages it can be approximated by a,/a, which is
large iff both terms summing up to a, are small compared to a, . Usually the doping
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in the emitter region is much higher than that in the base region implying that the
ratio between a, and the first term in a, is large. However, we also require

u, 7
- | £V, -vds << —/ 2LV, vds (6.1)
/rB CB ? Tpe CB :

which refers only to the base region. The reference function ¢, describes a situa-
tion where the potential at the emitter junction is raised. The hole current entering
through the emitter junction is split into two parts leaving through the base contact
and the collector junction, respectively. The above inequality means that the current
through the base contact is much smaller than that through the collector junction, i.e.,
essentially all the holes injected into the base reach the collector region. Consider a
simplified model with constant hole mobility, constant doping in the base region and
neglecting recombination-generation effects. Then ¢, solves the Laplace equation
and the validity of (6.1) only depends on the geometry of the base region.

The classical analysis of bipolar transistors (see e.g. [18]) uses a one-dimensional
model. As pointed out above, this means that there is no obvious way of incorporating
the base contact into the model. A priori assumptions on the flow in the base region
have to be made. It turns out that for the classical model it is assumed that the
left-hand side of (6.1) vanishes, i.e., there is no minority carrier current through the
base contact. However, situations where in a, the second term dominates can be
easily imagined. Then it is necessary to use the more general theory of the present
work.

7. The thyristor. A thyristor has four differently doped regions Q , ... , Q,. We
assume Q, and Q, tobe p-regionsand €, and Q, tobe n-regions. A device where
only the outer two regions , and Q, have contacts (I'y and I',, respectively) is
called a Shockley diode (see [18]). The pn-junctions are denoted by I',, I',, I'; (see
Fig. 4).

The contact voltage is denoted by U, and the Slotboom variables satisfy the
boundary conditions

U -U
u=v=1, atl,, u=e , v=e , atl,.

Applying the reasoning of Sec. 4 we obtain the representations

=1+ -1p,, v=1, nQ,

u=e’, v=e_V+(1—e—V)(02+(e_W—e_V)¢3, in Q,,

w v oow U w -w .
u=e +(e —e Jp,+(e —e )p;, v=e ~, inQ,,
- -w - )
u=eU, v=e U+(e —e U)(p6, in Q,
where the reference functions ¢, ... , ¢, are the solutions of linear boundary value

problems similar to (4.1) with boundary conditions as indicated in Fig. 4. The values
of the constants ¥ and W determining u in Q, and v in Q,, respectively, will
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ps =0, ps=1
T3 we =0
we =1
T4
U

Fig. 4. Cross section of a Shockley diode.

be computed in the following. The currents through the pn-junctions are given by

_ Bn ¥V _ K v _Hyr-w .
I, _/I'. (|C1|(e 1)V, Cz(e 1)V, Cz(e 1)V, ) -vds
= (" =), +x,) - =y,
U V-w u U-w
I=/(”e -1)Vo, + ==(e -1V
2 r, |C3|( ) ¢4 |C3|( ) ¢5
B v B ).
c, (e 1)V, c, (e 1)) vds
= (eV - Dy, — (eV—W = 1)(Kkyy +K,4) + (eU_W - Dy,
I =/ ( Ba "% — 1)Vp, + L2 (V™ - 1)vp, - BooV=" _ I)V(o6) -vds
r, |C3| C4

1G5
w

V— U-w

=—(e — DKy, + (e — D)(Ky5 + K36)

where the definition of the positive quantities ; is obvious from the above for-
mulas and C i denotes the doping profile evaluated in ;- Note that the k; ; are
independent of the applied voltage U . For a one-dimensional model with constant
mobilities and piecewise constant doping profile they can be computed explicitly.

The currents through the junction have to be equal. Their common value is the
total current through the device. The equations

I,=1=1

can be used for the computation of V' and W . Elimination of V' leads to a quadratic
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equation of the form
ae’ " + (b+ce¥)e™ +d =0 (7.1)

fore e~ " , where the coefficients can be given be in terms of the «; ;e In particular,
we have
€ = (Kag + Ky — Kys)(Kyy +Kpy = Kpy) = KysKpy (7.2)

which will be used below. It can be shown that a is positive and d is negative.
Therefore, (7.1) has a unique solution. Note that the existence but not the uniqueness
of the solution has been guaranteed by our previous results. This uniqueness result
seems to contradict the common knowledge that thyristors have multiple steady states
in certain biasing situations. For the one-dimensional case it has been shown in [17],
however, that the voltage-current characteristic consists of two branches called the
blocking branch and the conduction branch, where the currents on the conduction
branch are 0((5'4) in terms of our scaling. Thus, the present analysis cannot be
expected to provide an approximation for the conduction branch. Another result
in [17] is that the characteristics of pnpn-devices can have two different kinds of
qualitative behaviour for positive applied voltages. In one case the characteristic is
like that of a diode, i.e., the current grows exponentially with U. Such a device
would not be called a thyristor. The second possibility is the existence of the two
branches mentioned above, with a blocking branch where the current saturates as
U — oo. With the aid of our analysis we can distinguish between the two cases for
multi-dimensional problems. Considering (7.1) for U — oo leads to

V=U+0(l), W=0() forc<0,

V=0(1), W=U+0(l) forc>0.
The above formulas show that the current grows exponentially for negative ¢ whereas
it saturates for positive ¢. Thus, only devices with positive ¢ have a chance of
behaving like a thyristor should.

When recombination-generation effects are neglected (Q = 0), the formula (7.2)
for ¢ is simplified considerably. In this case the conductivities K, only take the
four different values

a, =Ky
Ay =Ky =Ky = K3 = Kyz
a3 = Ky = K3q = K5 = Kss5
a4 =Ksgo
associated with the four regions Q , ... , Q,, and c is given by
c=a,a, - a,a,.

This can be translated to the statement that a pnpn-device is a thyristor if the product
of the minority carrier conductivities of the outer regions exceeds the product for the
inner regions. Specialization to the one-dimensional case shows that this is equivalent
to the criterion derived by Steinriick [17].
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