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§1. Introduction. In this paper, we consider the problem

Ut ~ uxx = (! - uVfi > \x\<l,t>0,
u(±l,t) = 0, t > 0, (1.1)
u(x, 0) = uQ(x), |x| < /,

where /? > 0, / >0, 0 < w0 < 1 is smooth. The solution u of (1.1) is said to
be quenching if u reaches 1 in finite time T. Note that in this case ut blows up
at the same time T. This phenomenon has been studied by many authors (see, for
example, the references cited in [8] and [11]). In particular, for any /? > 0 there
exists a positive constant lt = lt(P) such that u quenches for any u0 if I > lt.
Hereafter we shall assume that u quenches and that u0 satisfies

«o + (l -"0)_/? >0. (1.2)

Let T e (0, oo) be the quenching time for u. We say that a is a quenching point for
u if there exists a sequence {{xn, tn)} such that xn -> a, tn | T, and u(xn, tn) -> I
as n —> oo . The set of all such points (for the same T) is called the quenching set.

In [8] we first proved that the quenching set consists of finite points which remain
a positive distance from x = ±1. Then we studied the quenching rate of the solution
near any quenching point. Let y = (/? + l)-1 and k = y~y. We obtained the
following quenching rate estimate.

Theorem A. If a is a quenching point, then

lim(l - u(x, t))(T - t)~y = k (1.3)

uniformly for |x - a\ < C\/T - t for any positive constant C.
But, there we only proved this theorem for (1 > 3. In [11], Levine conjectured

that this theorem should hold for all /? > 0 . Recently, Fila and Hulshof [3] improved
this result to any fi > 1 using a convexity argument of [5]. The purpose of this paper
is to complete this quenching rate estimate for any ft > 0.
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Recall the similarity variables

y = (x- a)/y/T - t, s = — ln(r - t),

w(y, s) = (1 - u(x, t))(T - t)~y.
Then w satisfies the equation

ws = wyy - ?ywy + yw - w~p (1.4)

in the set W = {(y, s) : \y exp(-5/2) + a\ < I, s > - In T) . The key step for the
proof of Theorem A is to show that the only positive global solution to

w" - \yw' + yw - w~^ = 0, yeR, (1.5)

under some growth condition at \y\ = oc , is the constant solution w = k .
We note that the quenching rate estimate for the corresponding higher-dimensional

radial case for /? > 1 was obtained by the author in [9], Recently, Fila, Hulshof,
and Quittner [4] have completed this result for all /? > 0.

This paper is organized as follows. In Sec. 2, we give the asymptotic behavior of
solutions w of (1.5) at |y| = oc by using the method of [9](see also [2]). Then we
apply this result to obtain the quenching rate estimate (1.3) for 0 < ft < 1 in Sec. 3.

§2. Asymptotic behaviors. In this section, we let w = w(y) be any positive global
solution of (1.5). The main result of this section is as follows.

Theorem 2.1. If w(y) is not identically equal to k, then w(y) behaves either as
|2"o
Let

\y\2y or as |y| (l+2y) exp(y2/4) at |y| = oo.

pW
f(w) = yw-w and F(w)— / f(s)ds, w > 0.

Jk
Note that f{w) > 0 if w > k, < 0 if w < k \ and F(w) > 0 for w ^ k. Rewrite
(1.5) as

[wa/2 + F{w)]\y) = yw'2(y)/2. (2.1)
Since the right-hand side of (2.1) is nonnegative for y > 0, the limit

lim [wt2/2 + F(w)](y) - /,
y—+ oo 'r

exists and is nonnegative. We claim that /+ > 0 if w ^ k. Indeed, if /+ = 0, then
w'(y) —> 0 and w(y) -+ k as y —► oo . By integrating (2.1) from y to oo , we obtain
that w'(y) = 0 and w = k for y > 0. This contradiction leads to the conclusion
/+ > 0. Let v = w'. Then v' = (y/2)v - f{w).

Lemma 2.2. Let a be a positive constant. Then the region

Aa = {(w , v) : w > k, v > aw}

is a positively invariant region, i.e., there exists y0 = y0(a) such that if yx > y0 and
{w{yl),v(yl))eAa then (w(y), v(y)) £ Aq , Vy > yl .

Proof. Take yQ = 2(q + y/a). Since the vector field (w'(y), v'(y)) is always
pointing inward to the region Aa for y > y0, the lemma follows. □
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Lemma 2.3. Suppose that w(y) ^ k. Then w cannot assume the value k at in-
finitely many points as y —► oo .

Proof. Suppose that there is a sequence ym —► oo as m —> oo such that w(ym) =
k, Mm . Without loss of generality we may assume that w'(y ) > 0 for all m . Recall
that /+ > 0 . Hence

w (y ) -> J21 as m —> oo.

Take any number a e (0, yj2l+) and consider the positively invariant set A = Aa^k .
Let y0 = y0(a/k) be the constant obtained in Lemma 2.2. Then there is an m0
sufficiently large such that w'(ym ) > a and v > yn . Since (w{ym ), v(ym )) e A ,rno m0 u m0 0

from Lemma 2.2 it follows that (w(y), v(y)) e A for all y > ym ■ Thus v(y) >m0

0, Vv > v , which is a contradiction and the lemma is proved. □
0 ^

Let w(y) be a nonconstant positive global solution of (1.5). From Lemma 2.3 it
follows that either w(y) > k, V> > y , or w(y) < k ,Vy > y , for some y > 0. From
the differential equation (1.5), we observe that any critical point y of w is a local
maximum point if w(y) > k , and is a local minimum point if w(y) < k . Moreover,
by the local uniqueness of solutions of ordinary differential equations, there cannot
exist a point y with w(y) = k and w'(y) = 0 except when w = k. Therefore,
there is y0 > y such that either

w'{y) > 0, vy>y0, or w'(y)<o, Vy>y0.

Let
L = lim w(y).

y—> OO

We claim that L > k , if w'(y) > 0 for all y > y0. Indeed, if L < k , then from the
equation

w" = yw'/2 - /(w)
we obtain that w"(y) > 0 for y > y0 . Thus

ry /
w(y) = w(y0) + / w{i)di > w'{y0)(y - y0) — oo

Jy0

as y —> oo , a contradiction. Hence L > k , if w' > 0, Vy > y0 . Similarly, L < k ,
if w\y) < 0 for all y > y0 .

Lemma 2.4. If w ^ k , then w must be strictly increasing to +00 as y —► 00 .
Proof. Suppose that L < 00 . Since the integral

r OO

/ w\y)dy = L-w(y0)
Jy0

is finite, there is a sequence ym -+ 00 such that w'(ym) -»0 as m —> 00. Rewrite
1.5) as

w"/y - w'/2 = -f(w)/y
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and integrate it from yQ to ym . Using an integration by parts for the first term, the
integral on the left-hand side remains bounded as m —> oc . But,

Ly- f(w(y)) .
y0 y

00

as m —> oo. This contradiction leads to the conclusion of the lemma. □
Proof of Theorem 2.1. From Lemma 2.4 we can easily obtain the asymptotic be-

havior of w(y) at y = oo by the method used in [9]. The motivation is from Remark
2 in [2] and the proof is based on using L'Hopital's rule (cf. [2] and [9]). For the
reader's convenience, we outline the proof here.

First, using Lemma 2.2 and 2.4, we can show that the limit

- lim W'Wa = lim —-—
y-oo w(y)

exists and that a is either 0 or oo . Suppose that a = 0. Then we have

lim ^ = 2 ,,
y^oo W{y)

by applying L'Hopital's rule and using the formula

w'(y)
w(y)

where a(s) —> 0 as 5 —► oo. Thus, from

yw'(y)
w(y)

2 f00 2= exp(y /4) / [y + a(5)]exp(-j /4)ds,Jy

lim yS
y—+ oo

-27 = 0

for S e (0, 2), we conclude that for any S e (0, 2) there exists a positive constant
Cs such that

w(y) = Csy2y[ 1 +o(y ^)]
as y —> oo . The case for a = oo is similar.

The asymptotic behavior of w(y) at y — -oc follows by a similar argument and
the theorem is proved. □

In the sequel, we shall call a nonconstant positive global solution of (1.5), which
behaves as |y|2' both at y = oo and at y = -oo , as a slow orbit.

Remark 2.5. For any /? > 0, using the Sturm comparison theorem (cf. [10]), we
can show that every nonconstant positive solution of (1.5) must be strictly convex for
all y sufficiently large and/or for all —y sufficiently large. Hence there is no slow
orbit for /? > 1 .

The proof of Remark 2.5 is quite similar to that of [10, Theorem 2], Here we
compare the function w" with the function w"^ - w" and compare the function

- w" with w'. Then, for a nonconstant positive solution w(y) of (1.5), if
y0 > 0 (which we may assume without loss of generality) is such that w\y0) =
and w'(y) > 0 for all y > y0 , we have w"(y) > 0 for all y > y0 .
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For 0 < /? < 1, let

d>(y) = K\y\2y, K — [2y(2y - 1)]~
Note that K is positive, since y > j in this case. Also, cj)(y) is a continuously
dilferentiable function satisfying (1.5) for all y ± 0. Similar to [9, Theorem 3.4], we
have the following result.

Theorem 2.6. Any slow orbit w(y) must intersect the function <j>(y) at least twice
in y > 0 and/or in y < 0.

Proof. Since the proof is quite similar to that of [9, Theorem 3.4], we only sketch
the proof. To begin with, we take the minimum point y0 of w. Without loss of
generality we may assume that y0 > 0. First, let

g(y) = yw(y) - \yw\y), h{y) = w"(y), and V(y) = g(y)h'(y) - g'(y)h(y).
Then

v{y) = p~\y){p(yo)V{yQ) + f p(t)p{p + l)w~ip+2](t)[w\t)]2g(t)dt}
Jy0

2where p{y) = exp(-y /4), and

h(y) = jr^\g(y) +g(y) [ ^rr:dL8%) Jy0 g (0
Recall that g(y) -+ 0 and g'(y) —► 0 as y —* oo for any slow orbit w(y). By the
choice of y0, we have V(y0) > 0 and g(y0) > 0. If g(y) > 0 for all y > y0, then
we will have V(y) —» oo as y -* oo. Hence h(y) —> oc as y —> oo, a contradiction.
Therefore, g(y) must have a zero in y > y0.

Next, let
U(y) = w(y)<f>{y) - w'{y)<p{y).

Then U{0) = 0 and U satisfies
U(v) = 2Ky2y~lg(y),

U' -y^U = W(t>[<t>~(IS+X)-W~[l3+X)], y± 0.

If w(y0) < <f>(y0), then clearly w intersects 0 at least once in (0, y0). From here
and proceeding as in the proof of Lemma 3.6 of [9], we obtain that w intersects <f>
at least twice in y > 0. Hence the theorem follows. □

§3. The quenching rate. We assume that (1 e (0, 1) and hence 2y > 1 . Let a
be a quenching point for u . Without loss of generality we may assume that a = 0.
First, we recall that w(y, s) > l/B in W for some positive constant B . Applying
the maximum principle (cf. [6]) to the function

TV ^ 1 2 C . .1 -PJ(X, t) = -^ux- -u)

for some constant C > 1, we obtain that

W2 in (-/,/) x (0, T). (3.1)
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From (3.1) it follows that

w(y,s) < C(\y\2y+ 1) in W. (3.2)

Now, applying the energy method of [7] (for details see [8]), we can show that w(y, s)
tends to a positive global solution of (1.5) as i -» oo. By (3.2), this limit function
must be a slow orbit, if it is not identically equal to the constant k .

We claim that this limit function intersects <f>(y) at most once both in y > 0 and
in y < 0 . First, consider the case y > 0 . If w(y, s) > <p(y) in W n {y > 0}, then
we are done. Otherwise, we choose s0 < oo such that w{y0, sQ) < 4>{y0) for some
y0 > 0 with (y0, s0) 6 W. Then proceeding as in the proofs of [1, Sec. 3] there is
a 5 > 0 such that w(y, s) intersects cp(y) exactly once in (0, Sexp(s/2)) for all
s > s0 . The case for y < 0 is similar. Therefore, the assertion follows. By Theorem
2.6, this limit function must be identically equal to the constant k . Hence Theorem
A is proved for 0 < /? < 1.
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