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¢1. Introduction. In this paper, we consider the problem

ut—uxx=(l—u)_ﬁ, x| <l,t>0,
u(xl, 1) =0, t>0, (1.1)
u(x, 0) = uy(x), x| <1,

where >0, [/ >0, 0 <u, <1 is smooth. The solution u of (1.1) is said to
be quenching if # reaches 1 in finite time 7. Note that in this case u, blows up
at the same time 7 . This phenomenon has been studied by many authors (see, for
example, the references cited in [8] and [11]). In particular, for any g > 0 there
exists a positive constant /, = / (8) such that u quenches for any u, if / >/ .
Hereafter we shall assume that u quenches and that u, satisfies

uy +(1—u) "’ >0. (1.2)

Let T € (0, o) be the quenching time for . We say that a is a quenching point for
u if there exists a sequence {(x,, ¢,)} suchthat x, —a,¢, 1T, and u(x,,t,) — 1
as n — oco. The set of all such points (for the same 7) is called the quenching set.

In [8] we first proved that the quenching set consists of finite points which remain
a positive distance from x = +/. Then we studied the quenching rate of the solution
near any quenching point. Let y = (8 +1)"' and k = 7. We obtained the
following quenching rate estimate.

THEOREM A. If a is a quenching point, then

1[%1(1 —ulx, (T -t)"=k (1.3)

uniformly for |x —a| < CV/T —t for any positive constant C .

But, there we only proved this theorem for # > 3. In [11], Levine conjectured
that this theorem should hold for all # > 0. Recently, Fila and Hulshof [3] improved
this result to any 8 > 1 using a convexity argument of [5]. The purpose of this paper
is to complete this quenching rate estimate for any 8 > 0.
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Recall the similarity variables
y=(x-a)/VT -1, s=-In(T -1,
w(y,s)=1-ux, ) (T-0".
Then w satisfies the equation
w5=wyy—%ywy+yw—w_ﬂ (1.4)

in the set W = {(y,s) : |vexp(—s/2)+a| <l,s > —InT}. The key step for the
proof of Theorem A is to show that the only positive global solution to

w"—%yw/+yw—w_/3=0, y €R, (1.5)
under some growth condition at |y| = oo, is the constant solution w =k .

We note that the quenching rate estimate for the corresponding higher-dimensional
radial case for f > 1 was obtained by the author in [9]. Recently, Fila, Hulshof,
and Quittner [4] have completed this result for all § > 0.

This paper is organized as follows. In Sec. 2, we give the asymptotic behavior of

solutions w of (1.5) at |y| = oo by using the method of [9](see also [2]). Then we
apply this result to obtain the quenching rate estimate (1.3) for 0 < # < 1 in Sec. 3.

§2. Asymptotic behaviors. In this section, we let w = w(y) be any positive global
solution of (1.5). The main result of this section is as follows.

THEOREM 2.1. If w(y) is not identically equal to k, then w(y) behaves either as
y*" oras [y|""** exp(y?/4) at |y = .
Let w
f(w):yw—w_ﬁ and F(w)=/k f(s)ds, w > 0.

Note that f(w) >0 if w>k, <0 if w<k;and F(w)>0 for w # k. Rewrite
(1.5) as
[w”/2+ Fw)] (v) = yw”(y)/2. 2.1)

Since the right-hand side of (2.1) is nonnegative for y > 0, the limit
lim [w'?/2 + F(w))(y) = [,
y—00

exists and is nonnegative. We claim that /, > 0 if w # k. Indeed, if /, = 0, then
w'(y) — 0 and w(y) — k as y — oc. By integrating (2.1) from y to oc, we obtain
that w'(y) =0 and w = k for y > 0. This contradiction leads to the conclusion
[,>0.Let v=w". Then v' = (y/2)v - f(w).

LEMMA 2.2. Let o be a positive constant. Then the region
A, ={(w,v):w>k,v>ow}

is a positively invariant region, i.e., there exists y, = y,(a) such thatif y, >y, and
(w(y,), v(y))) € 4, then (w(y),v(y))€4,, vy 2y,.

Proof. Take y, = 2(a + y/a). Since the vector field (w'(y), v'(y)) is always
pointing inward to the region 4, for y > y,, the lemma follows. O
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LEMMA 2.3. Suppose that w(y) # k. Then w cannot assume the value k at in-
finitely many points as y — co.

Proof. Suppose that there is a sequence y, — oo as m — oo such that w(y, ) =
k , Vm . Without loss of generality we may assume that w'(ym) > 0 for all m. Recall

that /, > 0. Hence
w'(ym) — /2l asm — ooc.

Take any number a € (0, \/EZ ) and consider the positively invariant set 4 = A4 Ik -
Let y, = y,(a/k) be the constant obtained in Lemma 2.2. Then there is an m,
sufficiently large such that w'(ymo) > o and Ym, >, - Since (w(ymo) , v(ymo)) €A,
from Lemma 2.2 it follows that (w(y), v(y)) € 4 for all y > Ymg - Thus v(y) >
0,vy> Yy » which is a contradiction and the lemma is proved. 0O

Let w(y) be a nonconstant positive global solution of (1.5). From Lemma 2.3 it
follows that either w(y) > k,Vy >y,or w(y) <k, Vy >y, forsome y > 0. From
the differential equation (1.5), we observe that any critical point y of w is a local
maximum point if w(y) > k, and is a local minimum point if w(y) < k. Moreover,
by the local uniqueness of solutions of ordinary differential equations, there cannot
exist a point y with w(y) = k and w'(y) = 0 except when w = k. Therefore,
there is y, > y such that either

w'()>0, Vy>y,, or w(y)<0, Vy>y,

Let
L = lim w(y).

y—00

We claim that L > k, if w'(y) > 0 forall y > ¥, - Indeed, if L <k, then from the
equation
w” =yw' /2 - f(w)

we obtain that w”(y) > 0 for y > Yy - Thus
y
wy) =wy,) + [ w(E)dé>w ¥y -y, =
Yo
as y — oo, a contradiction. Hence L > k, if w' >0, vy > Yo - Similarly, L <k,
if w'(y) <0 forall y> Yo -

LEMMA 2.4. If w # k, then w must be strictly increasing to +oc as y — oo.
Proof. Suppose that L < oc. Since the integral

/ "W (p)dy = L—w(yy)
Yo

is finite, there is a sequence y, — oo such that w'(ym) — 0 as m — oo. Rewrite
1.5) as

w'fy—w'/2=~f(w)]y
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and integrate it from y, to y, . Using an integration by parts for the first term, the
integral on the left-hand side remains bounded as m — oc. But,

W),

Yo y

as m — oo. This contradiction leads to the conclusion of the lemma. 0O

Proof of Theorem 2.1. From Lemma 2.4 we can easily obtain the asymptotic be-
havior of w(y) at y = oo by the method used in [9]. The motivation is from Remark
2 in [2] and the proof is based on using L’'Hopital’s rule (cf. [2] and [9]). For the
reader’s convenience, we outline the proof here.

First, using Lemma 2.2 and 2.4, we can show that the limit

exists and that « is either 0 or oc. Suppose that @ = 0. Then we have

. yw'(y)
lim Z—22 = 2y,
y=oo w(y) /

by applying L’Hopital’s rule and using the formula

w'(y) _ 20 [T _
o) = exp(y /4)/y [y + a(s)]exp(—s~/4)ds,

where a(s) — 0 as s — oo. Thus, from

lim y‘s l% —ZyJ =0

for 6 € (0, 2), we conclude that for any ¢ € (0, 2) there exists a positive constant

C; such that
5

w(y) = Cy[1+0(y™)]

as y — oo. The case for a = oc is similar.

The asymptotic behavior of w(y) at y = —oc follows by a similar argument and
the theorem is proved. O

In the sequel, we shall call a nonconstant positive global solution of (1.5), which
behaves as |y|27 both at y = o and at y = —oc, as a slow orbit.

REMARK 2.5. For any £ > 0, using the Sturm comparison theorem (cf. [10]), we
can show that every nonconstant positive solution of (1.5) must be strictly convex for
all y sufficiently large and/or for all —y sufficiently large. Hence there is no slow
orbit for f > 1.

The proof of Remark 2.5 is quite similar to that of [10, Theorem 2]. Here we
compare the function w” with the function w™® — w” and compare the function
w™? —w” with w’. Then, for a nonconstant positive solution w(y) of (1.5), if
Yo 2 0 (which we may assume without loss of generality) is such that w'(yo) =
and w'(y) >0 forall y > y,, we have w”(y) >0 forall y>y,.
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For 0< g <1,let
2 —_
o) =Kyl”, K=[2yQ2y-1]".
Note that K is positive, since y > 5 in this case. Also, ¢(y) is a continuously

1
2
differentiable function satisfying (1.5) for all y # 0. Similar to [9, Theorem 3.4], we
have the following result.

THEOREM 2.6. Any slow orbit w(y) must intersect the function ¢(y) at least twice
in y>0 and/orin y <0.

Proof. Since the proof is quite similar to that of [9, Theorem 3.4], we only sketch
the proof. To begin with, we take the minimum point y, of w. Without loss of

generality we may assume that y, > 0. First, let
li

gy) = ywy) - yw'y), hy)=w"(y), and V() =gk ) - & @)hY).
Then
Y
V) =p" 0PV () + / p(B(B+ Dw PP’ (01 g(1) dt}

Yo

where p(y) = exp(—y2/4) , and

_ ko) / gl
h(y) = g(yo)g(y)+g(y) 220 dt.
Recall that g(y) — 0 and g'(y) — 0 as y — oo for any slow orbit w(y). By the
choice of y,, we have V(y,) >0 and g(y,) >0. If g(y) >0 forall y > y,, then
we will have V' (y) - oo as y — oo. Hence h(y) — oo as y — oo, a contradiction.
Therefore, g(y) must have a zeroin y >y, .
Next, let

Up) =w»)$' () - w' ()e).
Then U(0) =0 and U satisfies

U) =2ky"""g(y),
U'-3U=wgl” " —w "),y 20,

If w(y,) < #(y,), then clearly w intersects ¢ at least once in (0, y,). From here
and proceeding as in the proof of Lemma 3.6 of [9], we obtain that w intersects ¢
at least twice in y > 0. Hence the theorem follows. O

§3. The quenching rate. We assume that f € (0, 1) and hence 2y > 1. Let a
be a quenching point for u. Without loss of generality we may assume that a = 0.
First, we recall that w(y, s) > 1/B in W for some positive constant B. Applying
the maximum principle (cf. [6]) to the function

J(x, 1) = %ui - l—f—ﬂ(l —u)'t

for some constant C > 1, we obtain that

lu, | < ,/%(1 — )" iy (-1, ) x (0, T). (3.1)
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From (3.1) it follows that
w(y,s) <Cy7 +1) inW. (3.2)

Now, applying the energy method of [7] (for details see [8]), we can show that w(y, s)
tends to a positive global solution of (1.5) as s — oo. By (3.2), this limit function
must be a slow orbit, if it is not identically equal to the constant k.

We claim that this limit function intersects ¢(y) at most once both in y > 0 and
in y < 0. First, consider the case y > 0. If w(y,s) > ¢(y) in Wn{y > 0}, then
we are done. Otherwise, we choose s, < oo such that w(y,, s,) < ¢(y,) for some
Yo > 0 with (y,,s,) € W. Then proceeding as in the proofs of [1, Sec. 3] there is
a 0 > 0 such that w(y, s) intersects ¢(y) exactly once in (0, J exp(s/2)) for all
s > s, . The case for y <0 is similar. Therefore, the assertion follows. By Theorem
2.6, this limit function must be identically equal to the constant k. Hence Theorem
A is proved for O0< < 1.
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