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Abstract. The thermal effects of the currents induced in a massive conductor by
an external slowly varying magnetic field are studied with regard to existence and
uniqueness of solutions. In the first part a theorem of existence of solution is also
given for the thermistor problem with a current limiting device.

1. Introduction. In this paper we study various problems related to the Joule heat-
ing of a conductor. In Sec. 2 a theorem of existence is given for a version of the
"thermistor problem" first proposed in [3] and then studied for special boundary
conditions in [1], The boundary conditions here considered are quite general and the
same methods apply even to more general situations. In Sec. 3 a model is proposed
for describing the Joule heating due to the eddy currents in a very long cylinder when
the external variable magnetic field is parallel to the axis of the cylinder. A theorem
of existence is given for this problem.

2. The thermistor problem with a current limiting device. Let us consider a solid
body conductor of heat and electricity represented by an open, bounded, and con-
nected subset Q of i3. The boundary dQ e C2 consists of three parts, Sj, i =
0, 1,2, such that S0 ± 0, 5, ^ 0, SjCiSj = 0 when i / j, and dQ = SQUSl uS2 .
S0 and 5^ represent the metallic electrodes to which a difference of potential is ap-
plied. S2 is insulated both thermally and electrically. The conductor is connected
in series with a current limiting device of total resistance R . Steady conditions are
supposed. J is the current density, E the electric field, q the heat flow, and u
the temperature. The electric and thermal conductivities are given functions of the
temperature denoted by a(u) and k(u) respectively. From the constitutive relations

J = crE, q = -kVm, (2.1)

and the usual conservation laws

V*J = 0, V«q = E»J, (2.2)
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we obtain, since E = -V<p ,

V • (a(u)V<p) = 0, (2.3)

-V. (k(k)Vh) = a{u)\V<p\2. (2.4)

Denoting by n the exterior pointing unit normal vector to dQ, we have

i - - j J • nds = f a(u)^~ ds (2.5)
J Sg J Sg

for the total current i entering through S0. The surfaces SQ and 5, are almost
exactly equipotential, hence we have

cp = 0 on^, (p-V\ on 5,, (2.6)

where (p{ is an unknown constant satisfying the condition

V-r[ a{u)^-ds-(px = 0, (2.7)
J

which follows from V = <px + Ri. V is the total difference of applied potential, a
given positive constant. Since S2 is insulated, we have

dip
dn
du
dn

On the remaining part of the boundary we assume for the temperature a Dirichlet
boundary condition, i.e.,

u = u0 on^uS,, (2.10)

where u0 > 0 is the restriction to S0 U of a C2(Q)-function. We arrive to the
following problem Pb, :

Find (p{x) and u(x) such that (2.3) and (2.4) hold in Q. Moreover (2.6), (2.7),
(2.8), (2.9), and (2.10) must be satisfied on dQ.

Assume

<7(0 e <:'(<), K(C)ec'(<), (2.11)
> (7(C) > t70 > 0 VC > 0, (2.12)

k(Q > 0 vc>0, (2.13)
K(0

= 0 on S2, (2.8)

0 on S2. (2.9)

fJo
d{ = oc. (2.14)

In the sequel we need the following

Lemma 2.1. Given a(x) e C°(Q), b(x) e C°(5,), and a constant V > 0 such that

a(x) > a0 > 0, xeQ, (2.15)
b(x)>b0>0, xeS{, (2.16)
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the problem

V • (a(jt)Vp) = 0 inQ, .(2.17)
(p - 0 on SQ, (2.18)

(p = V - J b^ds on Sj, (2.19)

|2 = 0 on s2 (2.20)

has one and only one regular solution.
Proof. Uniqueness. Let f and <p' be two solutions. Define iff - cp - <p . The

function \p satisfies

V • (a(x)V^) = 0 inQ, (2.21)
y/ = 0 on S0, (2.22)

= -lb%is onS" (2-23)V

% = 0 o„S2. (2.24)

Let y/{ be the constant value of on 5, . We claim that > 0. Assume by
contradiction y/{ < 0. By the maximum principle in Hopfs form [7] we have

< 0 on 5, , hence by (2.23) we obtain y/x > 0. Similarly we have y/l < 0.
Therefore y/l = 0. This implies i// = 0 in Q .

Existence. Let Y e [0, V] and <p(x\ T) be the unique solution of the problem

V • (a(x)V<p) = 0 in Q,

<p = 0 onS0, <p - T on 5,, ^ = 0 on S2.

By standard results, p(x; T) is regular and depends continuously on Y. Define

^ = V-T~!sbTnds-

We have *(r) € C°[0, V], g(Q) = V, and g(V) = -fs b<£ds< 0, since d/n > 0
on 5, . Hence there exists 4>0 e (0, V) such that g{<j>0) = 0. The solution of
problem (2.17)—(2.20) is given by <p(x; <p0). □

Lemma 2.2. Let (<p , u) be any solution of problem Pb, . We have

>0 on 5,. (2.26)

Q<<p<V inQ, (2.25)
d(p
dn

Proof. Let (px be the constant value of <p on 5, . We claim that (px > 0. By
contradiction, let cpx = 0. This implies (p = 0 in Q against (2.7) since V > 0.
On the other hand, if <px < 0 we have, by the maximum principle, dIn < 0 0n Si
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which contradicts (2.7). Hence (px> 0. Therefore ^ > 0 on 5, and by (2.7) we
have (p{ < V. Again by the maximum principle we conclude that (2.25) and (2.26)
hold. □

Define
transformation of the problem. Define:

F{u)= f 7m dt (2"27)Jum o(t)

and
9 = <p2/2 + F(u). (2.28)

If {(p{x), u(x)) is a solution of problem Pb, , it is easy to verify that 9(x) given by
(2.28) satisfies

V*(<t(w)V0) = 0 in £2. (2.29)
Moreover, evaluating 6(x) on <9Q we have 9 — 60(x) on S0 with 90(x) =
F(uq(x)) >0, 6 = 0x(x) on S{ , where 9x{x) = F(u0(x)) + <p\/2, x e S{, and
^ = 0 on 52 by (2.8), (2.9). Define

6M = V2/2 + F(um). (2.30)
We have

0<6<eM onSgUS, (2.31)
by (2.25) and, by the maximum principle,

0 < 9 < 6M in H. (2.32)

Since lim^^ F(t) = oo and F'(t) > 0 , we can consider

u = F~\e-<p2l 2). (2.33)
Let us define

u = max F~l{9 - m"/2).
(?,*)€[ o,ejx[o,n

By (2.25) and (2.32) we have

0 < u{x) < u in Q. (2.34)

We are now in a position to state the main result of this section.

Theorem 2.1. There exists at least a regular solution of problem Pbj .
Proof. Let A = {w(x) £ C°(Q), 0 < w(x) < u}. Fix w(x) 6 A and consider the

linear problem

V • (a(w)V<p) = 0 inQ, (2.35)
dip
dn<p = 0 onS0, -j— = 0 on S,, (2.36)

+ a(w)~f~ds=V onSj. (2.37)
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By Lemma 2.1 there exists one and only one solution (p e C°'a(ft), a € (0, 1), of
problem (2.35)—(2.37). Besides, we have 0 < <p < V in £"2 and, by standard results
of regularity,

:°."(Q) < C,, (2.38)
where the constant C( depends only on a0, V, and ft. Next we solve the
problem

= F(uq) on SQ, 9 = F(u0) + on 5, , -S- = 0 on S2, (2.40)

V • (o(w)V6) = 0 in £2, (2.39)
2

*Q/ u - * yu0j -r ~Y Uiiop ~dn~KJ U11°2:

where <p] is the constant value on S{ of the solution <p(x) of (2.35)-(2.37). As in
(2.32) we have 0 < 9 < dM in ft and 9 e C°'a(ft). Moreover, by elliptic estimates,
we obtain

ll^llc°-*(S) - c2> ^€(0,1), (2.41)
where the constant C2 depends only on the data and not on w . Define

u(x) = F~\<p2(x)/2 - 6(x)).

We get 0 < u < u in ft and

Nlc°.»(5) ̂  c3, ye (0,1). (2.42)
It follows that the mapping u = Tw maps A into a compact subset of A. It is
also easy to check that T is continuous. Hence by the fixed point theorem of J.
Schauder, T has a fixed point. By the usual bootstrap argument, we conclude that
the regularity of the solution of problem Pbj depends only on the assumptions of
regularity made on a , K, and 9ft. □

Remark 2.1. Uniqueness is not to be expected for problem Pb, without further
hypotheses on a and k . An example of nonuniqueness is given in [1],

3. Heating in massive conductor caused by the eddy currents. In certain industrial
processes small pieces of metal are brought to the melting point with the intense Joule-
heating generated by the Foucault currents induced in the specimen by an external
variable magnetic field. Now the Wiedemann-Franz law relates the electrical and
thermal conductivities with the temperature in metals and reads a = Ck/u, where
C is a universal constant. This implies a substantial variation for a in the range of
temperature practically encountered. In this section we propose a model, valid for a
geometrically simple situation, for describing the heating due to the eddy currents.
A theorem of existence of solution is also given.

Let us consider a long, conducting, and homogeneous cylinder of magnetic perme-
ability n and orthogonal cross-section ft, an open and bounded subset of M2 with
a regular boundary 9ft. An insulating medium of permeability fiQ fills the space

utside the cylinder. Moreover, a time-periodic magnetic field is given at infinity by

H=77(T)i3, (3.1)
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where H{r) is a T-periodic regular function and i3 is the unit vector parallel to the
axis of the cylinder. We want to find the magnetic field H everywhere, the current
density J and the temperature U in the cylinder corresponding to the Joule heating
due to the eddy currents. Given the geometry of the situation, we assume

H = H(X, t)i3, X = (Xl,X2). (3.2)

By (3.2) the equation
V • H = 0 (3.3)

is satisfied.
We assume we operate with quasi-stationary fields, thus we neglect, the displace-

ment's current in the Maxwell equation

J_dE
C2 dt

Outside the cylinder, where J = 0, we have

V x H = 0, (3.5)

i.e., by (3.2), V// = 0. This implies the constancy in space of H in the insulating
medium. Inside the cylinder we get, by Ohm's law and (3.4),

V x H = J = crE. (3.6)

Hence
E = pVH x i3, (3.7)

where p = 1 /a . Recalling that

V x E = -/iHr (3.8)

we obtain from (3.7)
V •{pVH) = pHx. (3.9)

The energy equation reads in the present case

ecUx - V. (kVU) = p\VH\2, (3.10)

since the expression for the Joule heating is E* J = p\VH\2. In (3.10) £ is the mass
density, c the specific heat, and k the thermal conductivity. By the continuity of
H across the surface of the cylinder we obtain

H = H(t) on dO. x [0, oo). (3.11)

In addition, we assume

C/(X,0) = 0, (3.12)
U = 0 on dQ. x [0, oo). (3.13)

The thermal and electrical conductivities are supposed to be given functions of tb
temperature.
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If L, HQ, U0, p0, and kq are respectively characteristic constants for length,
magnetic field, temperature, resistivity, and thermal conductivity, we can write the
basic equations in nondimensional form defining

x — X/L, t-T/T, h(x, t) = H(Lx, Tt)/HQ,
0{x, t) = U(Lx, Tt)/U0, r = p/pQ, k = K/x0.

Equations (3.9) and (3.10) become

alht-V*{r(6)Vh) = 0, (3.14)
a29t - V • (k(0)V0) = a3r{0)\Vh\2, (3.15)

where ax , a2, and a3 are nondimensional parameters given by

2 2 2pL ecL p0H0
2"kJF' (3'16)

We want to treat the case in which the ratio a2/ax is much smaller than 1. This is
not an unrealistic assumption for certain highly ferromagnetic substances like Si-Fe
crystals for which a2/ax , as computed from the data for p given in [4, p. 374], is of
order 1CT3. For this reason we neglect, in a rather heuristic way, the time derivative
in (3.15). This implies of course the impossibility of satisfying the initial condition
0{x, 0) = 0. In this way we study the quasi-stationary situation which occurs after
the body is fully heated up. Let us assume

rx > r{0) > r0 > 0, (3.17)
kl>k(6)>k0>0. (3.18)

Putting

F(0) = f8 k(Q dC,, (3.19)
Jo

we can define a new scale of temperature u = F{0). By (3.18), F maps [0, oo) on
[0, oo) one-to-one. Let d(u) = r[F~l(u)]. We obtain the following problem:

ht-V • (d(u)Vh) = 0, (3.20)
h = h0(t) on <9Q x [0, oo), (3.21)

h(x, t) = h(x, t + 1), (3.22)
-Au = d{u)\Vh\2, (3.23)

u — 0 on <9Q x [0, oo), (3.24)

where we assume hQ(t) = h0(t + 1). We discuss first of all the nonphysical, but
elementary case in which

h0(t) = e~,2nt. (3.25)
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We look for solutions of problem (3.20)—(3.25) of the form h(x, t) =
e~'2nl[v(x) + iw(x)]. Substituting in (3.20)-(3.23) we arrive at the following non-
linear elliptic system:

V • {d{u)Vv) - w = 0, t> = lon3£2, (3.26)
V • (d(u)\7w) + v = 0, to = 0 on (3.27)

-Aw = ^(w)[|Vi;|2 + |Vw;|2], u = 0 on da. (3.28)

In view of (3.26), (3.27), and (3.28) we obtain, with a simple calculation,

V • [d(u)Vy] = 0, (3.29)
where

v2 w2 fu dty=~2+~2- + G(u), G(u) = J d{t)'
Since y = A on dQ. and d. > d(u) > d0 > 0, we conclude

y + ^ + G(W) = i. (3.30)
On the other hand, by the maximum principle we have u > 0 in Q. Hence |v|,
\w\, and u are pointwise bounded by an absolute constant. Moreover, since G maps
[0, oo) on [0, oo) one-to-one, we can write

G 1
t 2 21 V W
2 2 2

and problem (3.26)—(3.28) can be restated as follows:

V • [A(v , w)Vv] - w = 0, i> = lond£2, (3.31)
V • [A(v , w)Vuj] + v = 0, M = 0onSQ, (3.32)

where A(v , w) = d[G~l{\ - v2/2 - w2/2)].
The Schauder's fixed point theorem can be applied quite easily to problem (3.31)—

(3.32) and the existence of at least one classical solution can in this way be proved.

4. Existence for the eddy currents problem. In this section we study the following
problem Pb2:

ht -V • (d(u)Vh) = 0, (3.20)
h = h0(t) on <9Q x [0, oo), (3.21)

h(x, t) = h(x, t + 1), (3.22)
where h0(t) is now an arbitrary 1-periodic, regular function. Integrating equation
(3.23) over one time period we obtain

-Au-d(u) f |Vh\"dt, u - 0 on dQ. (4.1)
Jo

We want to prove that problem (3.20), (3.21), (3.22), (4.1) has at least one weak
solution. Let (2 = ^x(0,l), N = fl x K1 , and S = dfl x R1 . Let C^(Q) be
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the set of all functions t](x, t) of class C°°(N), periodic in t with period 1 and
0 1 0

vanishing near S. Define W2 (Q) as the closure of C^°(Q) with respect to the
norm

1/2
/ v2dxdt+ / |Vi>|'dxdt

.Jq Jq
11where Vt] = (tjx , t]x). Let W 2 (Q) be the closure of C£°(Q) with respect to the

norm
11/2

= | j v2dxdt + J |Vu|2 dxdt + J v2dxdt
As a weak formulation of problem Pb2 we take

h - h0 e Wl2'°(Q), f hrjtdxdt-( d(u)Vh »Vr] dx dt = 0 (4.2)
Jo Jo

for all tj e w\'1 (Q), and

u e h!(Q) , f Vu»Vvdx= [ d(u)\Vh\2v dx dt (4.3)
J n Jq

0 1 oc 0 1for all v e H (Q) n L°°(Q), where H (Q) is the usual Sobolev space obtained as
completion of the function v(x) e C (Q) vanishing near dQ with respect to the
norm

,2M [ m2Jn
dx

1/2

The main difficulty in treating problem Pb2 lies in the fact that the left-hand side of
Eq. (4.1) belongs "a priori" only to L1 (Q). For this reason we consider the following
sequence of approximating problems Pbn :

dh
-qJ- - V • (d(un)S7hn) = 0, (4.4)

hn = h0 on S, hn{x, t) = hn{x, t + 1), (4.5)

j-AAun-Aun =d(un) [ |Vh/dt, (4.6)
n J o

un-0, Aun = 0 ondQ, (4.7)
o i o

and the corresponding weak formulation: hn — h0 £ W2' (Q),

[ hnritdxdt- [ d(un)Vhn dx dt = 0 (4.8)Jq Jq

for all rj e w\'\Q),

une H\n)DH2{Q),

- [ Au Avdx+ [ Vwn-Vv dx = f d(u )| V/z \2v dx dt,n Jq Jq. Jq
(4.9)

for all v eH\Cl)nH2(ty.
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First of all we derive various "a priori" estimates for the solutions of problem
PbM . By the parabolic maximum principle we have in Q :

minhJt) < hjx, t) < maxhJt). (4.10)[0,1] u ~ " [0,1] 0

Moreover if we proceed as in Lemma 3.1 of [2], where a similar situation occurs, we
can show that

un > 0 in Q. (4.11)

Since un € H2{Q), we have hn - h0 e w\'x{Q). Choosing tj — hn - h in (4.8) we
obtain

,2
[ d{un)\Vhn\
Jo

dxdt < C,

and, by (3.17),

[ \Vh \2 dxdt <C2, (4.12)
Jq

where the constants Cx and C2 do not depend on n . Let us multiply (4.4) by hnun.
Since hnun = 0 on S, integrating by part over Q we have

h"Un dX + L U"d{Un)^h^ dx + jQ kndiu»)Vk" ' V"" dx = °'

By (4.10) and (4.12) we infer

r o r r i1/2
/ u d(uJ|V/z |2dxdt < C3 / |Vm \2dxdt . (4.13)Jq Uq

Selecting v = un in (4.9), we have by (4.13)

1 c c c *
- / |Am |2 dx + / |Vm \2 dx < C3 / \Vu \2dxn Ja Jq Uq

It follows that

[ |Vun|2 dx < C, (4.14)
Jq

i JjAun\2dx<C, (4.15)

where again C is a constant not depending on n .
The following lemma is a straightforward application of the Schauder fixed point

theorem.

Lemma 4.1. For every fixed n £ N, there exists at least one solution of problem

° 1
Sketch of Proof. We omit the index n . Let w e H (Q) and solve, using standard

results of linear theory, the problem

h - hQ € w\ '°(Q), [ hr]tdxdt- [ d(w)Vh ■ Vrj dx dt = 0
Jo Jo
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for all rj e Wl2''((?). Then we solve

u € h\Q) n H2{Q.),

/ AuAv dx + / \'u-Vvdx= / d(u)\Vh\2v dxdt
Jn Jn Jq

for all v G Hl(Q) n H2(Q) .
By the estimates (4.12), (4.14), and (4.15) there exists R > 0 such that the map

° i
u = Tw maps the ball BR of center zero and radius R of H (Q) into itself. By

° l(4.15) the set T(BR) is compact in H (Q). Besides, T is continuous, hence T has
a fixed point and problem Pb^ a solution. □

By (4.10), (4.12), and (4.14) we can extract from {hn,un} asubsequence {hm,um}
such that

hm -► h strongly in L2(Q), (4.16)

Vhm—*Vh weakly in L2 (Q), (4.17)
um —+ u strongly in L2(Q), (4.18)

V«ra-»Vi( weakly in L2{Q), (4.19)
d(um) d{u) strongly in Lp{Q), l<p<oo, (4.20)
d(um) —> d(u) a.e. in Q. (4.21)

By (4.16), (4.17), and (4.20) we can pass to the limit in (4.8). We get

h - h0 e Wl2'°(Q), f ht]tdxdt- [ d(u)Vh ■ Vt] dx dt = 0 (4.22)
Jo Jq

for all tj e W\'\Q).i
From (4.8) and (4.22) we obtain

/ d(um)V(hm - h) »Vt] dx dt - / {h -h)rjtdxdtJq Jq
= / (d(u) — d(u ))Vh •Vtjdx dt,

Jo

for all rj 6 w\'x{Q).
By (4.20) and (4.23) we conclude that

L
On the other hand,

d("m)\Vhm\2 = d(uJ\V(hm-h)\2
+ 2d(uWh.Vhm-d(uJ\Vh\2,

(4.23)

d(um)\V(hm-h)\2dxdt^0, (4.24)
Q
Vh —► Vh strongly in L2(Q). (4.25)



740 GIOVANNI CIMATTI

hence we obtain, by (4.24), (4.25), and (4.20),

f d{um)\Vh \2 dx dt —► f d(u)\X7h\2 dx dt. (4.26)Jq Jq
From (4.20), (4.25), and (4.26) we have, using Lebesgue's dominated convergence

theorem,
d(um)\vhm\2 — d(u)\Vh\2 strongly in Z.1 ((2). (4.27)

We are now in a position to pass to the limit in (4.9) as m —> oo . By (4.15) we infer

m Jqm Jq
and by (4.19)

AuAv dx —* 0,

/ ^um»Vvdx^> / VutVvdx.
J n Jq

Recalling (4.27) we obtain

f d(uJ\Vhm\2vdxdt - [ d{u)\Vh\
Jo Jq

2v dxdt.

Whence we have, for all v e //'(Q) fl H2(Q.),

we//'(ft), [ Vu*Vvdx= [ d(u)\Vh\2 dxdt. (4.28)Jq Jq

By density, (4.28) holds true also for all v e //'(ft) D L°°(ft). Hence (4.3) follows.
This proves that problem Pb2 has at least one weak solution.
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