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1. Introduction. In a VLSI semiconductor component, a contact is the place where
the semiconductor is attached to a metal layer, serving as an access to the semicon-
ductor. The main parameter that describes the quality of the contact interface is
its resistivity pc. It is well known that pc becomes a dominant design factor as
components reduce to submicron size, so it is important to obtain accurate values of
pc. Due to the complexity of manufacture and miniaturization, it is impossible to
directly measure the contact resistivity and to exactly control the location of the con-
tact window. In order to estimate pc and detect the location of the contact window,
current is applied to the component and voltage is measured at some accessible place
far away from the contact window. There are extensive experimental and computer
simulations on this identification problem (see, e.g., [4] and the references therein).

In [1] this situation is modeled as an inverse problem for an elliptic equation which
is formulated as follows: Let u(x), the voltage, be the solution to the elliptic problem

Au—p/(S)u = 0 in Q c R2 , (1)

= g > 0 but g ^ 0 on dft, (2)

where S c Q. and p > 0 are unknown, /(S) is the set characteristic function of S,
g is the given density of the applied current, S is the location of the contact window,
and p is a given positive function of the contact resistivity (e.g., in the following
we will assume that p = RJpc, with Rs the known sheet resistance characterizing
the semiconductor layer). We wish to recover p and S from a one-point boundary
measurement u(x0) for some xQ e <9fi. In [1] the identifiability of the unknown pair
{p, S} from a one-parameter family {p(t), S(t)}t€^0 1} is studied, and uniqueness,
stability, and continuous dependence results for the one-point measurement on the
boundary are obtained.
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In this paper, we consider the identification of p when the contact location S is
known. Obviously this is a special case of the one-parameter case studied in [1], so we
have the uniqueness, stability, and continuous dependence results, but in this simpler
case, we have much more detailed properties, as will be shown in Sec. 2. We also
establish some quantitative properties for the measurement on the boundary, and
apply these to analyze the formula commonly used in industry to extract the contact
resistivity from the measurement. We prove that the formula is good only when the
true resistivity is large enough, and it overestimates the true resistivity severely when
the true resistivity is small. In Sec. 3, based on the properties we develop in Sec. 2,
we establish a numerical iteration scheme for identification of the contact resistivity
from a given boundary measurement, and prove the convergence of this scheme. We
illustrate the use of this scheme with a numerical example in Sec. 4 by using the
elliptic PDE solver ELLPACK (see [7]).

We wish to thank Ellis Cumberbatch with whom we had a number of useful dis-
cussions concerning the results presented in this paper.

2. The extracted contact resistivity. In applications, in order to identify the contact
resistivity pc = RJp in problem (1), (2), the voltage u is measured at some x0 e
dQ . Then the following formula is used to extract the contact resistivity, that is, the
so-called extracted contact resistivity:

r In s >'-■
This formula is based on a simple argument using Ohm's law (see, e.g., [4, 5] for
details). Computer simulations of this problem are also given in [5], In this section
we study the quantitative behavior of this extracted contact resistivity pce in terms
of the true resistivity pc as given by (3).

Let Q be a bounded connected domain in R~ and S a given subdomain in Q
with C1'1 boundaries dQ and dS. Points in R2 are denoted by x = (x{, x2).
Suppose g(x) £ Ca(dCl) for some 0 < a < 1 and g > 0 but g ^ 0.

It is well known that the solution to (1), (2) is in C1 '^(fi) for some 0 <
/? < 1 (see, e.g., [2]). Denote this solution by u(x ; p). Our identification problem is:
recover the positive constant p from the one-point boundary measurement u(x0),
given the geometric setting and the applied current g on the boundary.

Since this is a special case of the one-parameter monotone family studied in [1],
we have from there the uniqueness, stability, and continuous dependence of this
identification problem. In fact, for this special case we have much better properties
and an easier proof.

Theorem 1. The solution u(x; p) to (1), (2) is C°° in p , and the Arth order deriva-
tive with respect to p , denoted by u '(x; p), is the solution to

Au{k)-px(S)u{k) = kx(S)u{k~l) in Q,

^ = 0 on3Q, (4)k
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where k = 1,2,... and w(0) = u. Moreover, we have

p) > 0 in Q and (-l)^w(fc)(x; p) > 0 inQ\5\ (5)^

Proof. For a fixed p > 0, the solution u = u(x; p) e Hl(Q) satisfies

[[ {Vw -V(f) + px(S)u(p} dx = [ gcfrds for all </> e H'(Q). (6)
JJn Jdn

For small h ± 0 (|/z| < p/2) we set
u(x ;p + h) — u(x; p)

uh(x>P) — h

Then vh is in Hl(Q) and satisfies

JJjVvh-V4, + (p + l,MS)vh4,}dx = - J J U(f>dx for all 4> <E Hl(Q) .
By setting 0 = vh we have

// |VvA2 dx + {p + h) v2hdx = - uv. dx,
JJn JJs JJs

which implies that
P
2

so

JJsvh dx ̂  IIwIIl2(5)IIu/iIIz,2(5) '

p
Notice that the weak form of (4)fc is

W/iIIl2(5) - D IIWIIl2(5) •

JJ {Vuik)-Vcf) + px{S)u(k) (f)} dx - -k JJ u(k V'4>dx for all cp e Hl(Q),

k = 1, 2, ... . So for vh - u{ 1' we have

JJj.V{vh - u(l)) - V(t> + px(S)(vh - u(i))4>} dx = -h JJ vh(j)dx (8)
for all 4> e Hl{Q). Therefore, setting cf> = vh - u<l) yields

IIn 'V^A ~ "(1^'2 dx+P Hs^Vh ~ "(1)^ dx = ~h IIS Vf,<"Vh ~ uW">dx'

JJ(vh - "(1))2dx ̂ \h\ • KIIl2(S) • II% - w<1)Hl2(s) >
hence

P

i.e., by (7),

IIVh ~ U IIl2(5) - yllVAllz.2(5) - ~^fIIWIIl2(5) •

By the Poincare inequality, we have

CMIh'm < HV0lli2(n) + j|| {fl/dx}2 ' (")
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hence,
C, 2 ^ \it-? 1112 . „ , „2

1IIVII// (fl) < l|V^||L2(n) + ||^||L2(5)

for all (f> e //'(Q), where C, is independent of 0. For a proof of the Poincare
inequality as used here, see [9] for the case S = Q. Notice that the proof given there
is also valid for our case S c Q, under the assumptions we have on 5 and Q.. So
(9) yields

C\ min{p, lHK-w(1)||^.(n) < |A|-||«a||L2W-||«a-m(1)||l2(S),

and then by (7), we have

Wvh~u — Cp\h\" IIwIIl2(s) ' (12)
where Cp is a constant independent of h .

It is clear that vh - w(1) satisfies

- w(U) = x(S)((p + h)vk-pu(X)) in Q,
d(v. - w(1)) ^
  = 0 on dQ.dn

Let G0(x, £) be a Green's function for the Laplace equation in Q with Neumann
boundary condition (it is also called the Neumann function, see, e.g., [8]). Then,
since 0 5 = 0, for any x € Q we have

vh(x) - u[l\x) = JJ G0(x,e){p[vh(£) - u[l)(Z)] + hvh(Z)}d£ + vh-u{l] (13)

(see, e.g., [8, Chap. 9]), where 0 denotes the average of <j> over Q:

ikJL**'"'*-
Clearly \<f>\ < \\<f)\\L2{Cl)/y/\Q\. Hence, from (12),

\vh-uw\<Cp\h\-\\u\\Li{sy (14)

Noting that the singularity of G0 at x = £ is square integrable, for x e Q., from
(7), (10), and (14), we have

\vh(x) - u{]\x)| < ||G0(x, •)ll^(j)(Pl|uA - w<1)Hl2(5) + \h\' KHlW + K - ""'I

,2(S) -»0 as h -> 0.— 1^1 (^p l|G0<* ' '^Il2(5) + ||w||l2

Therefore, u{l\x; p) is the derivative of u(x; p) with respect to p for each xefl.
The same argument applies to show that u{k\x\p) satisfying (4)k is the A:th order
derivative of u(x; p) with respect to p , k = 2,3,....

To prove (5)k , we consider the equation

Aw - px(S)w = x{S)F in Q
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with homogeneous Neumann condition on 9Q, where F is continuous in Q. It is
known that w e C'(fi). By applying the maximum principle for elliptic equations
(see, e.g., [6]), we can obtain the following conclusion:

F < 0 in S implies w > 0 in Q and w > 0 in Q\S\ (15)

From Lemma 2.1 in [1], we have u > 0 in Q. Therefore, we can establish (5)k by
applying a simple induction on n and (15). Thus the proof is completed.

Remark. The Green's function G0 we chose in the proof is unique up to an
arbitrary constant, but expression (13) does not depend on the choice of the constant.
We can see this by setting 0=1 in (8).

Next, we study the quantitative behavior of the extracted contact resistivity given
by (3). For simplicity, we set Rs = 1, i.e., pc = 1 /p. Then the extracted contact
resistivity pce is a function of the true pc given by

'«=/Wse!7s"('';?:)' (16)
where u{x; p) is the solution to (1), (2) and x0 is a point at d£l where the mea-
surement is made. For the so-called Kelvin resistor (a special choice of the density
distribution g and the measurement location xQ), some asymptotic properties of pce
are observed in [5] by using computer simulations. In general, we have the following
properties for /(•) which agree with the observations made in [5], Let

A _ fan 8 ds > q
A o- |Sj >U.

Theorem 2. The function /(•) given by (16) has the following properties:
(i) /(•) is in C°°(0, oo) and is strictly increasing in (0, oo).

(ii) As pc —• oo,

= i + o(—
Pc \Pc

(iii)

ton+/W=/0= sM_„oW>°,
where u0(x) is the solution to

Au0 = 0 in Q\5,
uQ = 0 on dS, (17)

du0/dn - g on <9Q.

Proof, (i) follows from Theorem 1 directly.
(ii) Let v(x; p) = u(x; p) - AJp . Then we have

v (*°; j) =Mf(pc)-Pc) (18)

and v{x\p) satisfies
Av - px{S)v = A0x(S) in Q,

dv/dn = g on <9Q.
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Notice that setting 0=1 in (6) leads to

p u(x \ p)dx — / gds.
JJs JdQ.

Therefore
J J v(x; p) dx = 0, (20)

and the Poincare inequality (11) applied to v gives

C|Mlz.2(n) - ll^ullz.2(n)'
or, equivalently,

ll//'(£2) - ll^ulli,2(n)' (21)
where C > 0 depends only on S and Q. In the weak form of (19), that is,

JJ {Vv ■ V(f> + px{S)v(t>} dx - J gfpds - A0 JJ <f>dx for all 0 e//'(Q),
we set 4> = v and use (20) to obtain

IIVvlli2(n) = jjn IVy|2 dx ^ JgQ SV ds < C\\
t/ C/i£

1 2where the trace embedding H (Q) <-► L (c>Q) is used in the second inequality, and
C > 0 is a constant independent of p. Hence, by (21) we have

HvIIl2(Q) — II//'(O) — C ■ (22)
From (19), for x e £2,

v(x;p) = -J G0(x , £)g(£)d€+A0 J J G0{x , £) d£+p JJ G0(x; Z)v(€; p) d£+v ,
(23)

where G0 is the Green's function defined in the proof of Theorem 1 (see, e.g.,
[8, Chap. 9]). By the continuity of v up to 3D. and the integrable singularity of
G0(x, £) at x = Jf, (23) is also true for x e dQ.. Therefore, from (22) it easily
follows that

|w(x0; p)\ < C, + C2p for any p > 0,
with C, , C2 independent of p. That is, v(x0; p) = 0( 1) as p —► 0. So we have
(ii) by (18).

(iii) Setting 0 = m in (6) yields

[f {|Vw|2 +px(S)u2}dx = f guds < C2\\u\
JJn Jon h\q)

where the trace theorem is used. Hence, by (11

for p > 2 . That is

CyWuf^^ + ip- 1)||h|£2W < C2||m||w.(0) (24)

c, v  2 . c;
^Hwll//'(ii) 2C, J + ^ 1)HmIIz.2(5) - 4^-j •
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Hence

Mkm s 4c§^Y) s J ' <25>
Also from (24), we have

llWH//'(5) — • (^6)

For a fixed e e (0, 1/2), is defined as the interpolation space between
H°(S) = L2(S) and Hl(S) (see e.g., [3, Chap. 1, Sec. 9]) and there holds the inter-
polation inequality

— ̂ H^H/Z^S) ' II//1 (S) (^7)
for any w e H (S), where C depends only on S and e. Combining (25), (26),
and (27), we have

ii ii ^ CHmII//'-£(s) - pC/2 ■

Then the trace embedding in Hl~e(S) gives

Hl~e{S) — HX,2~\dS) <-+ H°{dS) = L2(dS)

since 0 < e < \ (see, e.g., [3]). Hence

HMllz.2(dS) - ^e/2 ' (^8)

Notice that u - uQ {u0 given by (17)) satisfies
A(u - u0) - 0 in £2^,

u - u0 = u on 35,
d(u-uQ)/dn = 0 on<9£2.

Let G(x, g) be the Green's function of the Laplace equation in Q\S with Neumann
boundary condition on dQ and Dirichlet on dS. Then for x € Q,

u(x ;p)-uQ(x)= [ j£-{x,Z)u(Z\p)d$. (29)
JdS an

Since dist(<9Q, dS) > 0, dG/dn(x, •) is regular on dS for each x 6 dQ. Also G
is independent of p . Therefore, (29) is true for x € dQ, and by (28)

C
\u(x; p) - u0(x)| < C||m||L2(8J) < >

i.e., for each x 6 dQ,
u(x; p) —* uQ(x) as p —> oo.

Applying the maximum principle to u0 easily yields uQ > 0 on dQ. Thus (iii) is
proved.

From (ii) of this theorem, we can see that this extracted resistivity is a good
estimate when the true resistivity pc is large. However, from (iii) it is seen that for
small pc the extracted resistivity overestimates pc severely, since the limiting value
f0 of p as pc —► 0 in (iii) is a positive constant. Also (iii) provides a method to
calculate fQ . For physical interpretations of these properties, see [5].
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3. Identification of the contact resistivity. In this section, we construct a numerical
iteration scheme for identification of the contact resistivity pc, or, equivalently,
the constant p , from the one-point boundary measurement. Assume the geometric
settings of the problem (1), (2) are given, i.e., Q, the contact window S, the point
x0 e 9Q where the measurement is made, and the applied current density g are
given. Then we wish to estimate the constant p* from the measurement u*.

From Theorem 1, w(x0; p) is strict decreasing in p and is convex. So for each
measurement u > u0(xQ) (u0(x) is given by (17)) there is a unique p* > 0 such
that u* = m(x0; p*), where u(x\ p) is the solution to (1), (2). To ensure unique
identifiability, in the following we assume that u* > u0{x0).

By Newton's method of finding a zero of a function, we construct the following
iteration scheme:

u(xQ;pj)-u
p'^p'~ ' { )>

where u(x; Pj) is the solution to (1), (2) with p = p., and u{l\x; Pj) is the deriva-
tive of u(x; p) with respect to p given by (4), with p - p..

Besides the quadratic convergence property of the general Newton's method, for
this specific problem, we have

Theorem 3. If the initial guess p0> 0 is such that u(x0; p0) > u*, then the sequence
{Pj}^" given by (30) is strictly increasing and convergent from below to p*, the
unique value such that u* = u(x0; p*).

Proof. First we prove the strict monotonicity. For j = 0,

u(x0-,p0)-u
P\ ^0 (1)/ v ^ ^0

W '(x0-,p0)

since u[l} is negative and by the assumption u(x0; pQ) > u . For j > 1, from
(30),,

u = U(x0- pj_l) + (Pj- Pj_l)u{l\x0] Pj_{),

therefore, for (30),,

(Pj+1 - Pj)u(X)(xo; Pj) — u* — u{x0; p})

= - {u(x0; pj) - u{x0- Pj_{)} + (Pj- Pj_y)u({)(xQ \ pj_{)

(S,j is between p. and PJ_l). By Theorem 1, we have w(l)(x0; p) < 0 and w(2)(x0; p)
> 0, hence, from above, pj+l > for j = 1,2,.... Thus the sequence is
strictly increasing.

Therefore /?. T P for some p > 0 as j —► oo. Letting j tend to oo in (30), we
have u(x0; p) = u . Hence p = p* by the strict monotonicity of u in p . Thus the
iroof is completed.
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Next we consider an appropriate choice of the initial guess p0. We call p0 an
eligible initial value if u(x0; p0) > u*, or, equivalently, pQ < p*. So if p0 is
eligible, by Theorem 3 the Newton iteration scheme (30) starting at this p0 is mono-
tonely increasing and converges to p*. On the other hand, if p0 is not eligible, i.e.,
u(x0; pQ) < u*, then p0> p*, and clearly the next iteration pl by (30) may become
nonpositive, so the iteration cannot proceed. In this case, instead of using (30) to
obtain the next iteration, we set px = pj 4. We can continue this procedure until we
come up with a pi such that u(x0; pt) > u*, then we turn to the Newton scheme
(30) for the rest of the iterations, using this pt as the initial value. At each iteration
step, two elliptic problems, one for u and one for w(1), need to be solved to obtain
the next iteration value.

We remark that we can also use the bisection method to identify p*. For this
method we need to search for the interval on which we start the bisection procedure.
Similar ideas as in the search for the eligible initial value p0 above can be used to
find this interval. At each iteration step, only one elliptic problem (for u itself)
needs to be solved.

Comparing these two schemes, we notice that we compensate the speed of conver-
gence in the bisection method for the ease of solving only one elliptic problem.

Finally, we remark that in the above we assume that there is no noise in the
measurement. In the case that there is noise in the measurement but the experiment
is repeated for a number of times, we should take the mean value for these data first
and then use the above scheme to find the p corresponding to this mean value as
the estimate for the true p .

4. A numerical example. In this section we consider an example where Q and S
are two nonconcentric discs. Let

Q = the unit disc, S = a disc centered at (0, 0.2) with radius ^ .

The applied current density is given by

( Ix, + 41 when x, < — A ,
X) = \ n h :I 0 when x2 > - £ ,

and the measurement is made at xQ = (1, 0).
For any given u*, we pick an arbitrary initial p0 . Then we solve (1), (2) with this

p0 and test if the p0 is eligible. If not, we reduce to a quarter of p0 and test again,
until we get an eligible initial value. Once we get an eligible pQ , we use the Newton
iteration scheme (30) to obtain the next value, until the present value is close enough
to the previous one, or the calculated u value is close enough to the measured u*.
At each iteration step, we use the elliptic problem solver called ELLPACK (see [7])
to solve for u(x; /r) and m(1'(x ;/? ■). Notice that in the problem for u[X\x-,Pj),
that is, (4)j , we need the values of u(x\ Pj). The result is given in Table 1. For
comparison we use the bisection method shown in Table 2. Notice that the same
problem takes Newton's method eight iteration steps (i.e., solve 16 elliptic problems)
to converge while the bisection method takes 21 steps (solve 21 elliptic problems).
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Table 1. Newton's method with p0 — 2.0 and u* = 1.0.
The estimated p* — 0.971166 .

J Pj

2.000000

0.500000

0.734298

0.904528

0.962841

0.970565

0.971127

0.971164

0.971166

"(*o; Pj)

0.527925

1.863598

1.295691

1.067542

1.007927

1.000568

1.000037

1.000002

1.000000

Table 2. Bisection method with pQ = 2.0 and u* = 1.0.
The estimated p* = 0.971166.

10

Pj

2.000000

1.000000

0.500000

0.750000

0.875000

0.937500

0.968750

0.984375

0.976563

0.972656

0.970703

u{x0 ■ p.)

0.527925

0.973563

1.863598

1.270314

1.100757

1.032924

1.002287

0.987697

0.994934

0.998596

1.000437

J

11

12

13

14

15

16

17

18

19

20

21

Pj

0.971680

0.971191

0.970947

0.971069

0.971130

0.971161

0.971176

0.971169

0.971165

0.971167

0.971166

"(*o; Pj)

0.999516

0.999976

1.000207

1.000092

1.000034

1.000005

0.999991

0.999998

1.000002

0.999999

1.000000
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