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HEAT TRANSFER FOR THE FLOW THROUGH A PIPE
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Abstract. The heat flux per unit length through the wall of a straight pipe of arbi-
trary but uniform cross section is shown to be the product of the constant pressure
gradient and the volume flux, when a steady Poiseuille flow of a viscous incompress-
ible fluid is maintained through it, and its wall is kept at a constant temperature.
Bounds on the heat flux are obtained using the methods of isoperimetric inequalities.

1. Introduction. Consider the steady Poiseuille flow of a viscous incompressible
fluid through a straight pipe of uniform but arbitrary cross section, when its wall is
maintained at a constant temperature T, . Taking the z-axis along the length of the
pipe, neglecting the variations of the coefficient of viscosity x4 and the conductivity k
of the fluid with temperature, but taking into account the dissipation of energy due to
viscosity, the equations for the velocity w(x, y) along the pipe, and the temperature
T(x,y) in it, are [2, p.39]:

Vw = -P/u, (1.1)
VT = —(u/k)(w} + w) (1.2)

in S, while
w=0, T=T, ondS. (1.3)

Here S is the cross sectional region of the pipe bounded by a closed curve 4S5 and
—P (P > 0) is the constant pressure gradient along the pipe.

It is possible (i) to express the mean temperature in S, the mean temperature
gradient over .S, the mean Nusselt number, and the heat flux H across the wall
per unit length of the pipe in terms of certain integrals of w , without requiring a
pointwise solution of (1.2), (1.3), (ii) to obtain the bounds on them, and thus (iii)
to develop a qualitative theory of heat transfer. To illustrate this, we obtain an
expression for the heat flux H in the next section.

2. The heat flux H . This is the most important quantity. It is given by

H=|[ kdT/dn)ds

A

. (2.1)
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Using (1.1)-(1.3) and the Green’s identities, we obtain
/VZTds /(wi+wj)dS‘
s s

=u‘/ w(aw/an)ds—/wvzwdS‘.
EN s

H=k =U

Therefore
H=PQ, (2.2)

where

Q=/SwdS (2.3)

is the volume flux of fluid through S. Equation (2.2) is an expression for an obvious
energy balance.

3. General results on heat transfer. Since w and hence Q is proportional to P/u,
we may write (2.2) in the form

H=(P'lu)gq, (3.1)

where ¢ is a purely geometric quantity. When S is simply connected, g is 1/4
of the torsional rigidity [1, p. 64]. Thus several standard properties and bounds on
torsional rigidity (which is proportional to ¢ ), for example, [1, pp. 64, 67, 150,
152], are directly applicable to (3.1) when P’ /u is fixed. Some of the results thus
obtained when P, u are fixed, are given below.

(i) H is independent of k, the conductivity.

(ii) For a given area of cross section, the circular pipe offers the maximum H .

(iii) H is an increasing functional of of the domain § (ie., $, C S, => H, <
H)).

(iv)

H > (P’S’[8ru)[1 - 287(1 = B) ™' = 4p" (1= p*) " log ], (3.2)
where S is the area of S, L is the lengthof 6S,and f=1- 47tS/L2 . Inequality
(3.2) becomes an equality for a circle with g =0.

(v)
H > P'S*/3L°,. (3.3)

Statements (ii) and (iii) hold for the torsional rigidity, and therefore, in view of (3.1),
they hold for H . (iv) and (v) are direct consequences of (3.1) and the corresponding
results for the torsional rigidity due to Payne-Weinberger and Polya [1, p. 150].
These results give some lower bounds on H in terms of the geometric constants of
the domain, and the physical constants P, u.

3.1. Trap-domains. Since Q (and hence ¢q) is explicitly known for several stan-
dard domains such as the regions bounded by (i) a circle, (ii) a pair of concentric or
eccentric circles, (iii) an ellipse, (iv) an equilateral triangle, and (v) a rectangle [4], a
semicircle, and its diameter [3], H is known explicitly for these domains from (2.2)
or (3.1) without requiring a pointwise solution of (1.2), (1.3). An arbitrary region S
may be trapped between any two such best fitting standard domains §,, S, in the
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sense that the difference of the areas |S -S|, i =1, 2, is as small as possible and
S, € § CS,. Then using the result (iii) above upper and lower bounds for H are
easily obtained. For example, when S, are circles of radii r;, i =1, 2, so that 2r,
and 2r, indicate ‘the width’ and the ‘length’ of S respectively,

(nP*/8u)rt < H < (nP*/8u)r3. (3.4)

Obviously the upper bound in (3.4) is never better than the isoperimetric bound given
by result (ii) above.
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