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Abstract. This paper presents another method for finding the known wave motion
due to a vertical wavemaker in the presence of surface tension, either for finite con-
stant or infinite depth, by using the Fourier integral transform technique and suitably
exploiting the regularity condition of the transform.

1. Introduction. The problem of forced surface waves produced by a time-
harmonic plane vertical wavemaker was treated in 1929 by Havelock [1] within the
framework of linearized theory of water waves assuming the irrotational motion of
the liquid. Later Rhodes-Robinson [2] extended this classical wavemaker problem
to include the effect of surface tension at the free surface and used a method based
on the application of Green's integral theorem in the fluid domain to the potential
function and a suitably chosen Green's function to obtain the solution of the result-
ing mixed boundary value problem. Recently Mandal and Chakrabarti [3] solved
the two-dimensional plane vertical wavemaker problem in deep water (when the ef-
fect of surface tension at the free surface is neglected) using the Fourier integral
transform technique and suitably exploiting a regularity condition of the transform.
However, the extension to include the effect of surface tension requires considerably
more detailed analysis.

In the present paper the plane vertical wavemaker problem in the presence of
surface tension is reinvestigated for the two cases of infinite and finite constant depth
of fluid by using the Fourier transform method in the horizontal direction. This
reduces the problem to an ordinary differential equation on an interval over the
depth, for which the solution is known. The outgoing waves are obtained separately
using a regularity condition. The solution depends on a parameter A in the edge
condition that is regarded as known. However, it is not true that X is known; as
was supposed earlier. Recent studies by Hocking [4] show that a dynamical edge
condition must be satisfied, and from this X can be determined using this solution.

2. Formulation of the problem. We consider the irrotational motion of an incom-
pressible inviscid fluid due to a harmonically oscillating vertical plane wavemaker
under the action of gravity and surface tension. We use a rectangular cartesian
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coordinate system in which the y-axis is taken vertically downwards so that y = 0,
x > 0 is the undisturbed free surface and x = 0 is the wavemaker, and in the undis-
turbed state the fluid occupies the region x > 0 and y > 0 or 0 < y < h according
as it is of infinite depth or uniform finite depth h . The motion is two-dimensional
and time-harmonic and is described by a velocity potential <p(x, y, t) which is the
real part of ¥(x, y, t)e~,at, a being the circular frequency. Then 4*(x, y) satisfies

V24> = 0 in the fluid region; (2.1)

the linearized free surface condition

KV + fy + My/yyy = 0 on y = 0, x>0, (2.2)

where K = a1 / g and M = T/ pg , T being the surface tension, p the density, and
g the gravity; the wavemaker condition

x¥x-u(y) onx = 0; (2.3)

the bottom condition

V4* —► 0 as y —► oo for fluid of infinite depth, (2.4)

or
4^ = 0 on y = h for fluid of uniform finite depth h; (2.5)

and the condition that it represents outgoing waves at large distances from the wave-
maker, which can be mathematically expressed as

—► ce~k°y+'k°x as x —> oo, (2.6)

where, in the case of fluid of infinite depth, k = kQ is the unique positive real root
of

K - (1 + Mk2)k = 0, (2.7)

4* —> c0cosha0(/z - y)e'a°x asx—>oo, (2.8)
or as

W --(J waiiu0V

where, in the case of fluid of uniform finite depth h , k = a0 is the unique positive
real root of the equation

k(l + Mk2)sinhkh - Kcoshkh - 0. (2.9)
It may be noted that the constants c and c0 in (2.6) and (2.8) are unknown and

are to be determined. These will be determined by using a regularity condition of
the Fourier transform in the following sections.

Finally the edge condition prescribing the free surface slope at the wavemaker as
derived by Evans [5] in connection with the effect of surface tension on the waves
produced by a circular cylinder and used later by Rhodes-Robinson [2] is given by

4'xy(o+,o) = A, (2.10)

where k may be regarded as known. However, see the Introduction for a brief
discussion on k.
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3. Solution for fluid of infinite depth. Let us write
XJ> — ce koy+lkoX + <J)(jic j y) ;

then <E>(.x, y) satisfies

V20 = 0, y > 0, x > 0,
A'O + + MQ>vyy = 0 ony-0, x > 0,
<&x = v(y) onx = 0, y>0,
VO —► 0 as y —► oo,
O —> 0 asx-too,

<I> (o+, o) = A + iklc
where

Let

then x satisfies

\yyXVV-Z2X = v{y), y> 0,

(3.1)

xy\"^> ~ "--r ,

v(y) = u(y) - ick0e~k°y. (3.2)

roc

X(y,i)= $>{x,y)cos£xdx-, (3.3)
Jo

Kx + Xy(l+MZ2) + M(X + il$c) = 0 on y = 0, (3.4)^2) + ' "2

Xy -» 0 as y -+ oo.

The solution of (3.4) is given by (cf. Mikhlin [6])

X(y,4) = - G(y,5)|v(5)-^(A + /fc02cX2J ds

- j-^ + ikoC), (3.5)
where G(y, s) is the associated Green's function defined by

= .-"((■ + M{'Kcoshf,-*sinhW
{(II + -K\

for 0 < y < s. (For 0 < 5 < y, y and 5 are to be interchanged in (3.6).) Using
(3.6) and (3.2) in (3.5) we obtain

.! .. c°sh £y - K sinh£y
{(1 +M?){-K}Z

ick0 M , 2 . ...
^T(A+,«r0c)-a({) . .,2

K—(A + ik*c), (3.7)

where
a{£) - [ u(s)e is ds. (3.8)

Jo
Now x(y, £) is the Fourier cosine transform of a certain function, and treated as
a function of the complex variable t,, it cannot have a singularity on the real axis.
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This immediately suggests that the unknown constant c appearing in (3.7) must be
such that x(y '■> £) is regular at the point £ = kQ . This gives

c = _2jKa(k0)-k0Ml

yi + 3M02)

The Fourier cosine inversion formula gives 0(x, y) as

2 f°°®{x,y) = - x(£ > y) cos , (3.10)
" Jo

where y) is given in (3.7).
Writing 2cos£x as e'ix + e~'tx in (3.10) and rotating the contour along the pos-

itive imaginary axis for the integral involving e and along the negative imaginary
axis for the integral involving e~ltx we obtain

0>(x>y) = ~l f71 Jo

2(1 - Mk )k cos ky - K sin ky
(1 - Mk2)2k2 + K2

./*°° (1 — Mk2)k cosks-K sin ks ...-MX + /     t u{s)dsJo k
(3.11)

where we have employed (3.8). Hence *F(x, y) is found and we finally obtain

<p(x, y) = Re{vF(x , y)e~

fJo

?~k°y sin(/r0x - at), (3.12)

e kx dk,

2   f00 b(k)e **{(1 - Mk2)k cos ky - K sin ky} ^
COS a t I a t t i w/c

k2( 1 - Mk2)2 + K271

2 B
1 + 3 Mk2

where

1 f°° ,2b(k) = -t {k( 1 - Mk ) cos ks - K sin ks}u(s) ds + MX,
Jo ,oc t (3.13)

B = -(1 + Mk2) I u(s)e °s ds + MX.
rOC

i / u{s)e~
Jo

(3.12) coincides with the real part of the expression given in [2] obtained by a different
technique.

4. Solution for fluid of finite depth. In this case we write

cosh a0(h -y) jaoX

*o
Xh-v""'+**.yy.
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then 0(x, y) satisfies

V2<I> = 0, 0 <y<h, x>0,
K<3> + + MQ>yyy = 0 on y = 0, x > 0,
$>x = v(y) onx = 0, 0 <y<h,
Ov, = 0 on y = h , x > 0,
O —> 0 as x —► oo,

o) = k + z'a0c0tanha0/z,

where

Defining as before

X(Z\y) = ~ [ G(y,s)
Jo

M 2 2
v(s) - — (k + za0c0tanha0A)(*

where G{y, 5) is now given by

(4.1)

°w="w - 'v.cosch0°£<f„r) ■ (4-2>

roc

X(y;£)= ®{x,y)cos£xdx, 0<y<h,
J 0

we see that x satisfies

Xyy-^X = v(y), 0 < y < h,

Kx + Xy(1 + + M{A + ia2Qc0Xanha0h) = 0 on y = 0, (4-3)
Xy = 0 on y = h .

Its solution is

rh r M ,1
ds

Ad 2
- — {k + /a0c0tanha0/z), (4.4)

G(y,s) = C0S^} ~ m-M?) cosh &-K sinh fr] (4.5)

for 0 < y < s < /?, where

A(£) = £(1 + M^1) sinh^/z - K cosh^/z.

(For 0 < s < y < h , y and 5 in (4.5) are to be interchanged.) We note that A(£)
has two real zeros at £ = ±a0 and has an infinite number of imaginary zeros at
£ = ±ikn, n = 1,2,..., where the kn's satisfy (cf. Rhodes-Robinson [2])

kn( 1 - Mk2n) sinknh + Kcosknh = 0.
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Now (4.4) can be rewritten as

_ ATsinh<j;y-£(l+ M£2)cosh£j;x{y
ican Ka(i) - 7 [ £ sinh £h - -—cosh £h

1 + Ma0 J
\

2— (A + ia0c0tanhaQh)£ sinhc!;/?

M 2
- — {X + /a0c0tanha0/z), (4.6)

where roc

a(<H) = / u(s) cosh£(h - s) ds.
Jo (4.7)

As before, using the argument that x{y',€), regarded as a function of £, cannot
have a singularity on the real axis, we determine the unknown constant c0 as

24i cosh a0h{a(a0)(l + Ma0) - MX cosh a0h} fA
C°_ 2aQh(l+Ma20) + (1 + 3Ma2Q) smh2aQh

Employing the inversion formula for the cosine transform we obtain <J>(x, y) as

O(x,y) = - f x(y,Z)cosZxd£, (4.9)n Jo
where %(y; <!;) is now given by (4.6).

The contour in (4.9) can be extended to the whole real axis with 2 cos£x replaced
by e'ix . This may then be evaluated by the method of residues at the poles k — ikn ,
n = 1,2,.... Note that there are no singularities at £ = ±c*0 . Thus,

■y-v 4n cos kn(h - y) cosknh

„ 2knh(l - Mk2n) + (1 - 3Mk2n) sin2knh
1 - Mk2
cos kh - / u(s) cos k(h - s) ds + MX

' Jo
e k"x, (4.10)

so that we finally obtain
-4 sin(anx - at) cosh an/z cosh ajh - y)An

(J)\X V) —        —
2a0h(l+Ma20) + (l + 3Ma20)sinh2a0h

+ 4,COSatT A n cos knh cos kn(h -y)e~k"* 
V 2knh{\ - Mk2n) + (1 - 3Mk2)sm2knh

where
1 + Ma20

0 cosha0/z

1 - Mk2
A. =

f/ u(s) cosha0(/? - s) ds + MX,
Jo

rh

- / u(s) cos k (h - s) ds + MX.
' Jo

(4.11)

(4.12)

cos knh
(4.11) coincides with the real part of the expression given in [2] obtained by a different
technique.
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5. Conclusion. The Fourier transform technique is used to solve the classical wave-
maker problem in the presence of surface tension at the free surface for the two cases
of infinite and finite constant depth of fluid. By exploiting a regularity condition of
the transform the outgoing waves are obtained separately. The method seems to be
quite simple in comparison with the somewhat complicated method based on Green's
integral theorem used by Rhodes-Robinson [2],
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