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1. Introduction. In this paper we study a set of equations which have been proposed
by McTigue, Givler, and Nunziato [1] to describe the slow flow of a dilute suspension
of solid particles in a fluid. We examine uniqueness in the case of an inviscid fluid
(Sec. 4), a semiviscous fluid flow (Sec. 5), and a limited viscous fluid flow (Sec. 6).

2. Preliminaries.
A. Notation. We use the standard inner product u • v on M ; while on Lin = the

space of all tensors, we use the inner product

AB = tr{ABr)

with Bt the transpose of B and tr the trace. All norms are denoted by || • || and
1 denotes the identity tensor.

The tensor product of two vectors u and v, denoted by u ® v, is a tensor with
components (u <g> v)(.. = u^j.

We write V and div for the gradient and divergence operators in K3: for a vector
field u, Vu is the tensor field with components (Vu)^ = dui/dxj \ for a tensor

field S divS is the vector field with components J2j=\ 9Sij/dx]. We write the
symmetric part of Vu as Vu:

Vu = (Vu + (Vu)r)/2.

Finally, we let u, denote the time derivative of u.
B. The equations. We consider a dilute suspension to be a type of continuum. We

assume that the particles and fluid are incompressible and we assume further that the
fluid is homogeneous and isotropic. The particles are assumed to be rigid, spherical,
and of uniform size with radius a. We also assume that the mixture is sufficiently
dilute and the particles sufficiently small that Brownian motion may be important,
but that collisions between particles are negligible. The balance of force and mass
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equations for the solid and fluid, specialized from [1], are

+ y^Vuu = -V(ps(<t>, v)<t>) + ys<t>g+ &'{<!>, y)(w-u)
-&(</>, y) div(Vw) + pf((f>, y/)V(j),

yfy/yvt + yfy/Vww = -V(pf(<j>, y/)y/) + div(//(y/)Vw) + yfy/g

- y/){vt - u) + &(<(>, y/) div(Vw) (2-1)

-Pf{<t>, y/)V<j) + div(K(y/)Vv),
4>t + div(^u) = 0,

y/t + div(^/w) = 0.

Here ys and y^ are the actual densities of the incompressible solid and fluid, respec-
tively, and are constant. <f> and y/ are the volume fractions of the solid and fluid,
respectively, with 4>, y/ > 0 and <j> + y/ = 1. u denotes the velocity of the solid
and w denotes the velocity of the fluid. ps is the hydrostatic pressure of the solid
and p f is the hydrostatic pressure of the fluid, g is gravity, & is identified with
the Stokes drag force, and 5? is associated with the Faxen force. The viscosity of the
fluid is denoted by n and k is an interaction viscosity. Here , &, ps, p,, ju , and
k are positive C1 functions of the volume fractions. Finally, v is the velocity of
the mixture which we assume is a linear function of the sum of the solid and fluid
velocities, i.e., v = u + w.1

We now suppose that the suspension occupies a region 38 , with boundary .
We will let n denote the exterior normal to the boundary.

C. Background. The slow flow of a suspension of nearly rigid particles is seen
as a natural phenomenon and in industrial processes. Previously, people involved
with suspensions derived expressions for an effective viscosity [2-6] assuming that
the suspension was a homogeneous mixture. Nonhomogeneous particle distribution
usually exists within the flow field (cf., e.g., Parsi and Gadala-Maria [7]). The early
experiments of Segre and Silberberg [8], Karnis et al. [9], and more recently the
observations reported by Aoki et al. [10] illustrate particle migrations for dilute sus-
pensions in simple flows.

It is with this end in sight, therefore, that models are being developed with which
to explore the complex interactions of the fluid, particles, and boundaries of a given
device. One method by which to model this phenomena is based on the continuum
theory of mixtures. In the past, each constituent was assumed to be a fluid (cf.,
e.g., Williams [11]). More recently, classical mixture theory has been extended to
situations where one or more of the constituents is disperse. Thus each "phase" is
an interacting, interpenetrating continuum and hence it is possible to formulate the
individual equations for conservation of mass and momentum. In addition, these
conservation laws require constitutive assumptions regarding the behavior of each
contributing material. Also included are interaction forces leading to lift and drag in
specific flows. Finally, suitable boundary and initial conditions are found to complete

1 This is not the conventional definition of v but is convenient for the purposes of our calculations. For
further remarks see Sec. 7, or for a more detailed discussion the reader is referred to [1].
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the picture for the initial-boundary value problem studied in this paper.

3. Preparing the equations.
A. The basic problem. We will prove uniqueness for various situations of the

equations of (2.1) subject to the initial and boundary conditions stated below. By
a solution of (2.1) (or the appropriate modification of (2.1)) we mean functions
u, w: 38 x [0, T] —> R3 and <p, y/\ 38 x [0, T] —* (0, 1) that satisfy (2.1) and the
following initial and boundary conditions:

0) = 0o(x) and u(x,0) = u0(x) for all xe J,
yy{x, 0) = ^0(x) and w(x,0) = w0(x) for all x^38, (3.1)
u(x, t) = U(x, t) and w(x, t) = W(x, t) for all x € 838 .

It is unreasonable to specify the amount of fluid and particles leaving the region;
that is, y/ and <j> cannot be specified when w • n > 0 and u • n > 0, respectively.
It is, however, possible to specify the amount of fluid and particles flowing into the
body. At such points w n < 0 and u • n < 0 and here we specify that

y/(x, t) = ¥(x, t) for all x e 038^ := {x: w(x, t) ■ n < 0},
4>(x, t) = 0(x, t) for all x e 838^ := {x: u(x, t) ■ n < 0}.

We will also note here that henceforth ps, p f, &, &, n, and k are assumed to
be positive C1 functions of their respective arguments.

B. Some estimates. To prove uniqueness the basic idea will be to assume that
(0,, , Uj, Wj) and (f>2, y/2,u2, w2) are two solutions of (2.1) satisfying (3.1) and
(3.2). Using energy estimates we will show that Uj(x, t) = u2(x, t), Wj(x, t) =
w,(x, t), 0j(x, t) = 02(x, t), and <//{(x, t) = y/2(x, t) for all x e 38 and t e
[0,71.

Substituting (01, y/{, , wj and (<p2, y/2,u2, w2) into (2.1) and subtracting the
two solid force equations, the two solid mass equations, the two fluid force equations,

w 2 ;the two fluid mass equations, and letting u = u( — u2, (j> = cj>l — <j>2 , w = w,
^ = y/\ — t//2 , v, = u, + Wj , v2 = u2 + w2 , and v = Vj - v2 we see, upon rearrangement
of terms, that

^(0,11, + <f>{ u2), + 0Vu2u2 + </>j Vuuj + 0,Vu2u)
= -V((p,! -^2)02+pll</>) + y10g + (<^-^)(w2-u2)+^(w-u)

- ^ div(Vw) - (^ -S?2)div(Vw2) + (pfl - pf2)V(f>2+pflV(j),
yf{vx yy, + v(w 2), + ^Vw2w2 + ^1Vww1 + ^Vw2w)

= -V((pfI -pf2)y/2+pf[v) + yfyg - {?[ -3r1){y2 ~ u2) -5^(w- u) (3.3)

+ div(Vw) + (£j — S?2) div(Vw2) - (pfl ~/>/2)V02 -pflV</>
+ div[(jUj - n2)Vw2 +/i,Vw+ (Kj - k2)Vv2 + k,Vv] ,

4>t = - div(0u,) - div(02u),
V, = -div(^Wj) -div(^2w),

where psi =ps{<l>i, V,) (or ps(<f>.) where appropriate), pfl = Pf(<t>,, V,) (or p^)
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where appropriate), ^ = 9r{<j>i, <//,), , if/,), n, = M(t//,), and = k(^;.)
for / = 1,2.

Notice that <p, y/, u, and w satisfy the following initial and boundary conditions:

0(x,O) = O and u(x,0) = 0 for all xe&,
(//(x,0) = 0 and w(x,0) = 0 for all xe J1,
u(x, t) = w(x, t) = 0 for all xe 038, (3.4)
4>(x, t) = 0 for all x e
i//(x, t) - 0 for all x 6

Multiplying (3.3)3 by 0,^, integrating over 38, rewriting the right-hand side,
and applying the divergence theorem to the appropriate terms we obtain

-y:[ <frl<fr2/2= ~ [ divUj - f ^(V^) • ual J 38

- / 0,</>20divu + NP]
(3.5)

l'

where NPl = - f<%4> 0jUt • n/2. From before we see that <£(. cannot be specified
where u; n > 0. However at such points NP{ < 0. Recall also that <j> — 0 on 638^,
whence at such points NP] = 0. Thus 7VP, is nonpositive.

Throughout this paper we will need to bound integrals with terms involving <p ,
2 2 2||u|| , ^ , and ||w|| and we will frequently use the following arithmetic-geometric

mean inequality:

y-z< |l|y||2 + ^l|z||2, (3.6)

where e > 0 .
Applying (3.6) to the second and third integrals (on the right-hand side) of (3.5)

and noting that (divf)2 < 9||Vf||2 we see that

[ <fr{<t>2/2 <[ [cx4>2 + ||u||2 + 9e,||Vu||2]/2,at J& (3.7)

where c, = (-2<£, divu, + H^, V(/>2|| + {(pl4>2) /t\) and e, is an arbitrary constant
to be determined later.

Remark 3.1. Henceforth e(., i - 1,2,..., will be an arbitrary constant to be
determined later.

Similarly, multiplying (3.3)4 by y/ly/, integrating over 38, applying the diver-
gence theorem, and bounding the appropriate terms we arrive at

dtd f i//l y2/2 < I \c2V2 + ||w||2 + 9£2||Vw||2]/2, (3.8)
jgs J&

where c2 = (~2i//i divw, + \\y/xVy/21|2 + (<//l ̂ 2)2/e2).
Let us now turn our attention to (3.3), 2. Taking the inner product of (3.3)2 with

w, integrating over 38 , applying the divergence theorem, and rearranging terms we



obtain
d

THE SLOW FLOW OF A DILUTE SUSPENSION 613

Wdi L'/"■iw|2/2=L■ - - L wv"'* ■
- / ^T(w-u) -w - / (^T -Sr2){y/2 - u2) ■ wJ,ig§
+ f (J/, - ^2)(div Vw,) ■ w

-[ [(A«1 -/^2)^w2 + ('ci -k2)Vv2]-Vw (3.9)
J 38

— f Vw • W ® V^J - [ (^j + /^!)II Vw||2 - [ KjVv-Vw
JSS J.58 j.%

+ IJPfl ~Pf2^VV2)-W + -Pfl)V2 divw>
where a = [yy(g-(w2)f-Vw2w2)-Vpy,]. Here we have used the fact that <j>i+y/i = 1
and hence that V(</>. + y/^ = 0.

We will now bound the integrals on the right-hand side of (3.9). Applying (3.6),
the first integral is bounded by

[ {c3y/2 + ||w||2)/2, (3.10)
J 38

2where c3 = ||a|| . The second and third integrals are bounded by

I2' (3-H)

and
[ ^(||u||2-||W||2)/2, (3.12)

respectively, where lmw is the minimum eigenvalue of Vw2.
Recall that & , n, k e C1 and so by applying the Mean Value Theorem we

have that
9rx-9r1-.= 5r^x, «/,) v2) =<^(£i. W + >
^ - 5?2 := ^ ,¥l)~ ${<t>2, y2) = %, £4)0 + ^({3

fii-n2:=fi(^l)-n(i//2) = n'{^5)i//,
kx -k2 := KivJ - ic(y/2) = k (£6)yf,

where ^ = <9J?"/d(j), ̂ = d&~/dy , 2?^ = d2? jdfy , ^ = d&/dys , // = d^/dy/ ,
k = dic/dy/, and . e (0, 1), z = 1,..., 6. Hence the fourth, fifth, and sixth
integrals are bounded from above by

[ [c402 + cy + 2||W||2]/2, (3.14)
J38

f [c6d)2 + cy + 2||w||2]/2, (3.15)
Jsg
[ [c^y/2 + £3[|Vw||2]/2, (3.16)
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respectively, where c4 = ||5^(£,, £2)(w2 - u2)||2, c5 = ||^(^ , £2)(w2 - u2)||2, c6 =

||^(<f3, £4)divVw2||2, c7 = ||^(£3, £4)divVw2||2, and c8 = ||//(£5)Vw2 W(£6)Vv2||2
/e3.

Finally the seventh integral is bounded by

[ Mw||2 + e4||Vw||2]/2, (3.17)
J 38

where c9 = || ||2/e4 . Using (3.10)—(3.12), and (3.14)—(3.17) we have that
d_
dtd [ y/^il|w||2/2 < [ [c3 + c5 + c7 + cs]if/2/2 + f [c4 + c6]02/2

+ / [5 + 2y^JA l-^ + c9]||w||2/2

+ [ ^\\uf/2+ I [e3 + e4 - 2(^ + //,)]||Vw||2/2 (3.18)
J a J 38

- KjVv-Vw+ / (pn-pf2)Vy/2-w
J 38 J38

+ ~Pf2^2d[yyy-

If we now take the inner product of (3.3)j with u, integrate over 38 , and apply
the above ideas to the resulting equation we arrive at

-77/ ys4>\llul|2/2 = [ 0b u- f ys<t>^u2u-ual J 38

+ / ^(w-u)-u+ / (J?|" - ^Q(w2 - Ut) • u

- [ (^,-^2)divVw,-u + [ Vw-u®VS*.
J& J38

+ [ ^,Vw • Vu 4- f (pfx-pf2)V<t>2-u

+ [(Psl-Ps2)<t>2 + (Ps\-Pf\)<t)]dWu'
J 38

or

y </>,||u||2/2 < f [c4 + c6 + c10]//2+ [ [c5 + c7]yy2/2
al J 3$ J 3$ J 3$

+ [ [5 + 2y | + cu -^]||u||2/2

+ ( ||w||2/2+ /" e5||Vw||2/2+ f ^Vw Vu (3.19)

+ / (Pn -pf2)V(t>2- u

+ / [(^1 -^2)^2 + 0»,i — divu»

where b = [y5(g - (u2), - Vu2u2) - V/?n ], c10 = ||b||2, cn = || V^j ||2/e5, and AmH is
he minimum eigenvalue of Vu2.
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Depending on the various circumstances we will use slight modifications of (3.18)
and (3.19) to prove uniqueness for an inviscid fluid flow, a semi-viscous fluid flow,
and a limited viscosity fluid flow.

4. Inviscid fluid flow. We will now consider the problem of uniqueness for an
inviscid fluid flow. Here & = n = k = 0. We will further assume that ps and Pj
are strictly monotonically increasing with ps = ps(4>) > Pf(w) = Pf {— Pf{ 1 - <f>)) ■
It is now possible to state and prove the following uniqueness theorem.

Theorem 1. For every T > 0 there is at most one classical solution of

y^t + y>Vuu = - V(p^) + ys<f>g + ^"(w - u) +pfV(t>,
yfy/w( + yfy/Vww = - y/Vpf + yfi//g - ^(w - u),

(t>t + div(0u) = 0, y/t + div( y/w) - 0,

satisfying (3.1) and (3.2) on [0, T].
Proof. Consider (3.18) and (3.19). Since & = p = k = Owe need only set

c6 = c7 = cg = c9 = cu = e3 = e4 = e5 = ^ = p1 — k1 = 0. Adding the resulting
equations together we arrive at

j-JlmM' + yM* l'2]/2
< J {[c3 + 2c5]y/2 + [2c4 + c10]</>2 + [5 + 2yfy/{|AmJ]||w||2

+ [5 + 2v l]||u||2}/2

+ f (Pfi -P/2)(V^2-w + V02-u)

+ (Pn-Pn)V2 divw
J3$

+ {(Psi -Psl)<f>2 + (Psl -Pn)4>)dWu.

(4.1)

Remark 4.1. It is actually possible to get a better bound on ||w||2/2. Since S? = 0,
we no longer need (3.15). Hence the coefficient is (5 + 2yj-ii/x\kmw\). Correspondingly
the coefficient of ||u|| /2 is (3 + 2yi01|ATOM|). The stricter bound is not necessary for
our computations.

We now need to bound the last three integrals. Using the Mean Value Theorem
we see that

Psl ~Ps2 '=PMi) -PsWi) =PsiW' (42)
Pfi -Pfi ■= PfiVi) ~ P f(v2) = p'AQv ,

where p's - dps/d(f>, p'f - dp^/dy , and £7, <l;8 e (0, 1). Thus

[ (Pfi-p/-2)(v^2'w + v^2-u) ^ [ ci2^2+[ [llull2 +IIwII2]/2, (4.3)
J SB 1 1

where cn = ||/^-(<l;8)V^2||2 and we have used the fact that V</>2 = -Vy/2.
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Let us now rewrite the last two integrals as

/ /?.,^divw + / /?.0divu,
J& Js

where fix = (p's(Z1)(t>2+ PsX ~Pf\) and Pj = Reca11 that ps and pf are
strictly monotonically increasing and that psx-pfx > 0, hence /?, and /?, are strictly
positive. Consider now the following difference of two balance of mass equations:

at + (Vq) • Vj + adivVj + (Va2) ■ V + a2 divV = 0,

where (a,V) = (</>,u) in (3.3)3 and (a,V) = (1//, w) in (3.3)4 . Multiply this
equation by a and rearrange terms to obtain

adivV = - —
a.

2a + (aVa,) • V + a div V 1 '

where [ denotes the material derivative with respect to V, (i.e., [f]°v = f, +
(V/) • V,). Then for some /? we have that

f Pa div X = — f A %- -[ {JLva\.aX-[ ^-a2divV
J a J.5S a2 2 v J ■%> \a2 ) J58 a2

1

Following Graffi [12] we see that if fx — px(p2/24>x4>2, then we have that
d
dt L*<f'=-Lf'**-n+Lwx>

hi,rn+f,t
Jd£B <P2 2 JS

o no ±2

_(px(p 2_

<L + A_
2 + 0,02

Thus

I J'4, div»=-//(|V^)°
+ f ((h [-A_l -2 — div u ̂  — —— [ + NPV 1 k^-L, ^2 7 2 dt]^<t>22+ 2'

where NP2 = - fd^ Px<f)2ux • n/2<j>2. From before (see Sec. 3) we see that NP2 is
nonpositive. Using (3.6) on the first integral we arrive at

/,M*v.s/^V2 + /j.|V24£(££) • (4-4)
where c13 = (||(yS, V02)/02||2 + ~ 2(^i divui)/^2) • Similarly,

[ p2 y/ div w < f cX4v2/2+ [ ||w||2/2 - 4 / (^\\ > (4-5)
J& Jss at J^ \ ¥2 1 J

where cX4 = (||(yS2V^2)/^2||2 + y/1[fi2/yf2yf2]ll - 2(^2 divwi)/V2) •
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Thus, using (4.3)-(4.5), Eq. (4.1) becomes

j-t fjys<t>illuf + 7f¥i IIWH2 + P\<t>2/<f>2 + ̂ 2V2/V21

< J^[Klys(j>l ||u||2 + K2yfy/X ||w||2 + /<j)2 + K^2y/2/y/2],

where

K\ = sup{(7 + 2yJ^1|AMB|)/y4^1},

k2 = sup {(7 + ly fW\\hmw\) I y rV\ \ ,

K3= sup{(2c4 + c10 + c13)02//?j},
xe^"

K4 = sup{(c3 + 2c5 + c12 + c14)v/2/A2} •

Setting £,(0 := /^[J^INI2 + ||w||2 + /?,02/02 + P2ij/2/y/2] and Af,
sup;g[0 , AT2, AT3, AT4} we obtain dEJdt< M{E{ so that

E^t) <E(0)eM'1 = 0.

Therefore E{(t) = 0 for all f e [0, T], and u(x, t) = w(x, t) = 0 and <f>(x, t) =
y/(\, t) = 0. Whence Uj(x, t) = u2(x, t), w,(x, t) = w2(x, t), ^(x, t) = </>2(x, t),
and y/x (x, t) = ^2(x, t) for all x € 38 and t e [0, T]. □

5. Semi-viscous fluid flow. Let us consider the problem of uniqueness for a semi-
viscous fluid flow. Recall that in this type of flow there is no viscosity effect from
the solid. Hence there is no viscosity term in the solid equation = 0) and the
mixture velocity, v, depends only on the velocity of the fluid, w. We shall assume
further that ps is a strictly monotonically increasing function of (j>, pj- = pf(<fr, y/)
with ps> pf. We can now state and prove the following

Theorem 2. For every T > 0 there is at most one classical solution of

ys<fwt + y^Vuu = - V(ps<l>) + ys(j)g + y (w - u) + pfV<t>,

yfV wf + ww = - y/Vpf + yfy/ g - y (w - u) + div((// + k)V w),

(j)t + div(</>u) = 0, y/t + div(yw) = 0,

satisfying (3.1) and (3.2) on [0, T].
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Proof. Consider (3.8), (3.18), and (3.19). Since f e 0 we set c6 = c1 = c9 =
Cj, = ^ = e4 = e5 = 0. Adding the resulting equations together we arrive at

d_
dt

(5.1)

f (V\V2 + l|w||2 + ys<Pl\\u\\2)/2

— f (c2 + c3 + ^c5 + cs)y/ /2 + f (2c4 + cl0)(f> /2
J& J 58

+ Jj 6 + 2 yf¥l |AmJ)||w||2/2 + Jj5 + 2ys<f>l KJ)||u||2/2

+ [ (9e2 + e3 - 2{nx + «r,))||Vw||2/2 + f {pfl -pf2)y/2 divw
J 58 J 58

+ [ (Pn -P«)((V^2)-W+(V02)-U)
J 38

+L[{Psi -PslW2 + (Psl -PflW] divU.

See Remark 4.1 in regard to the bounds on ||w||2 and ||u||2. Note also that v2 - w2
in cg (see Sec. 3). Let us turn our attention to the last three integrals. Using (4.2)t
and Graffi's argument (see the previous section) the last integral is bounded by

<5-2)

where /?3 = (p's(Q<t>2 + Ps\ ~Pfi) and ci5 = (H^^V^II2 + ~
2/?3(divu,)/</>2). (Notice that now pf = pf(<j>, y/).)

Applying the Mean Value Theorem to pf we see that

■={Pf)^ + (Pf)v¥,

where (pf)J(9, £10) = (dpf/da)\^t r)=K9>{ j» a = </> or y/ , respectively, and £9,£10
2 ^ 2€ (0, 1). Recall that (divw) < 9||Vw|| , hence integrals six and seven are bounded

by

[ [c1602 + c17V/2 + 2||w||2 + 2||u||2 + 9(£6 + e7)||Vw||2]/2, (5.4)
J&

where c16 = {2\\{p f)^y/2\\2 + ({Pf)^)2/fi6) and c!7 = (2||(p/)((/V^2||2 +
{{pf)vys2)2/e7) • Using (5.2) and (5.4) we see that (5.1) can be rewritten as

f iII"!!2 + >7^i llwH2 + ̂ 3^2/<^2 + Vi

< ^[^y^illull2 + A"6y/^il|w||2 + K-,^4)2/(f)2 + K&y/ly/2]

+ [ (9(e2 + e6 + e7) + e3-2(^1+/c1))||Vw||2/2,
J58
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where

K5 = sup{(8+ 2^,1^1)/^},
xe^1

K6= sup{(8 + 2yy^,|A D/jy^j} ,
xe^

K7 = sup{(2c4 + c10 + c15 + c16)02//?3},

Ks = sup{(c2 + c3 + 2c5 + cs + c17)/^J .

Choose positive e2, e3, e6, and e7 such that 9(e2 + e6 + e7) + e3 - 2(fil + Kj) < 0.
Setting E2(t) = f^[ys4>l ||u||2 + yfy/l ||w||2 + £3</>2/02 + V\ ̂  and

M2= sup {K5 ,K6,K7, K&}
/€[0, T]

we have that dE^/clt < M2E2 and the desired result is obtained. □

6. A limited viscosity fluid flow. Finally we will consider the problem of uniqueness
for a limited viscosity fluid. We will assume that ps = ps(</>, y/), Pj. = pf(4>, y/), and
u = v + w, and that 8? > 0, n > 0, and k > 0 satisfying the following relationship:

- "§1 + 2(Kj + ys4>i^i + 3ys(f>iKl + yfy/xKx)&x -k]- 2K.\yfy/X

- (y>i(j"i + K\) - yfVxKi)2 + 2ys4>lKl(/i1 + k{) > 0.

(See Sec. 5 for 8? = 0.) Then we have the following

Theorem 3. Suppose that 8? > 0, n > 0, and k > 0 satisfy (CI). Then for every
T > 0 there is at most one classical solution of

ys<t>ut + ys<j)Vuu = - V{ps<j>) + y^g + ^w-u) -3* div(Vw) + pfV<j),

y fyj w( + yfy/V ww = - V(pfy/) + div(^Vw) + yfy/ g - y(w - u)

+ 8? div(Vw) - pfV<t> + div(/cVv),
(pt + div(^u) = 0, y/t + div( y/w) = 0,

satisfying (3.1) and (3.2) on [0, T].
Proof. The relationship (CI) will not be needed until the end of the proof. Even-

tually we will need Eqs. (3.7), (3.8), (3.18), and (3.19). We will also need one ad-
ditional equation. To arrive at this additional equation, we begin by adding (3.3),
and (3.3)2. Taking the inner product of the result with (y^^ + yj-y/,w), integrating
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over 38 , and applying the divergence theorem to the appropriate terms we see that

d_
dt f llyi</>1u + y/^1w||2/2

J &

= f Uxy^2 ■u + J •w + j tviyfi.■2-W

w1)||w||2/2

+ y/(t>jsa2 \i- ysyf(V\ div(0jU,) - i//1wl ■ V</>,)u • w
J 38 J 38

- JJysyf^i^i(Vu2 + (Vw2)r)u] •w - y2s<t>iVu2u•u

- J^[y/Vi2Vw2w] • w - J y2<^(divu,)||u||2/2 - j yji//2(div

-/ -w,)-w+ I ((psx-psl)<t>2+psx<t>
J 38 J 38

+ (p7, -p/2)v2+p/1^)div(y^1u + y/^1w)

- / [(//j -/i2)Vw2 + /i1Vw + (K1 -k2)Vv2 + /c1Vv]- VO^u + y^w),

where b2 = ys(g - (u2), - Vu2u2) and a2 = yf(g - (w2)( - Vw2w2). Applying the
arithmetic-geometric mean inequality, (3.6), to the first six integrals on the right-hand
side we see that the first ten integrals are bounded by

[ (c1802 + cl9y/2 + c20||u||2 + c2i||w||2)/2, (6.2)
Jss

where c18 = ((^yj2 + (V,y^HM2 , c19 = ((0,75)2 + (^,y/)2)||a2||2 , c20 = [2 +

(J^/) Vi II div^iuj - Wj • V0, ||2 + (^,)2||Vu2 + (Vw2)r||2) + y](j)]{2\Xmu\- divuj],
and c21 = (4 + y^,2(2|/lmu)| -divw,)).

Letting c22 = ||ysy ,</>, i//i(u, - w,)||2, integral eleven can be bounded by

- Vivu(u, - Wj) ■ w

< f [c22e8||Vu||2 + ||w||2/e8]/2 (6.3)
)3§

< [ [2c22e8||Vu||2 + ||w||2/e8]/2,
J 38

by Korn's inequality (recall that u = 0 on 838) (cf., e.g., Gurtin [13]).
Applying the Mean Value Theorem to ps we see that

Psi -Ps2 '=PSU> 1' ^1 )-PMl> V2) = (Ps)*(Z+
■= (ps)^ + {ps)vw,

where € (0, 1). Using (5.3) and the above we have that integral twelve
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becomes

/ (c2i(j) + c24y/){ysu ■ + yfw-Vi//l + ys(f>ldivu + yfi//i divw)
J &

< [ [c25<p2 + c2y + 2||u||2 + 2||w||2 + 9(e9 + en)||Vu||2 + 9(e10 + e12)||Vw||2]/2,

(6.4)
where c23 = ((ps)^2+psl + (pf)<j>V2), c2A = {(j)s)v<t>2 + {pf)¥v2 + Pfl), c25 =

c23(ll^v<^iH2 + lly/v^H2 + W>iys)2/£9 + (y/^i)2/eio) > and

C26 = C224(ll^V^lH2 + II^Vlll2 + (7s4> l)2/fill + (7/^)2/«12)-

Let us now turn our attention to the last integral in (6.1). Using (3.13)3 4 this
integral can be rewritten as

- / [ys{yA + B) ■ u® V0, + y<f>.(y/A + B) ■ Vu
J a

+ yf{y/A + B) • w® + yfy/x(y/A + B) ■ Vw],

where A — (//(£5)Vw2 + k'(<^6)Vv2) and B = (fil Vw + k, Vv) . Now

- J [ysy/A-u®V(t)l + yfi//A-w®V^,]< J [c21ij/2 + ||u||2 + ||w||2]/2, (6.5)

where c21 = \\ySAV<f>x\\2 + \\yfAVy/x\f . Also

- fjysB ■ u® V0J + ys(t>xysA ■ Vu + yfB ■ w® Vi//l + yj-fj/^A ■ Vw]

< [ [c2iy/2 + c29||u||2 + c30||w||2 (6-6)

+ (£[3 + £ 17 + e 18 ) 11 Vu 11 + (fi|4 + £]5 + Cig)||Vw|| ]/2 ,

where c28 = {\\ys(j){A\\2/eu + ||7/^,^||2/eI4), c29 = (Hy,^ + k^V^, ||2/e15 +

V0, ll2/^!?), and c30 = (||y/(/i1 + K,)V|p, ||2/e16 + \\yfKxV^y2/^). Then last
terms to be considered are

- ^[7^,5 • Vu + yfy/xB ■ Vw]

= - / l» 1(^1 +Kj)Vw- Vu + y^^jUVull2 (6-7)

+ 7/^(^1 + 'C^llVwH2 + yfy/lK[ Vu • Vw].



622 K. A. PERICAK-SPECTOR

Thus, using (6.2)-(6.7) we see that

S^Mi" + w»2
— I ^25)^ + (C19 + C26 + C27 + C28)^

J 38

+ (c20 + ^ + c29)||u|| + (3 + c21 + c30 + l/eg)||w|| ] (6.8)

+ f [(# 1 - 2y,</>1?c1)||Vu||2 + (S2 - 2yfy/l(nl + k,))||Vw||2]

+ 2/ +KJ- y^xJVu- Vw,
J &

where (5, = (2c22e8 + 9(e9+e11)+e13+e17+e18) and <S2 = (9(e10+e12)+e14 + e15 + e16).
Adding Eqs. (3.7), (3.8), (3.18), and (3.19) and applying (3.6) to the appropriate
integral we arrive at

llwll2)
J p

d~tJ W2 + vy +MM2+ yfVi\\i

< / [(ci + 2c4 + 2c6 + c10 + c16 + c31)<f>
J3S

+ (c2 + c3 + 2c5 + 1c-j + Cg + Cp + c32)y/~

+ (8 + 2ys4>l\Amu\ + Cn)||u||2 + (8 + 2yft//l |AmJ + c9)||w||2]

+ [ [(9e, + 9eig + 9e20)||Vu||
Jsb

+ (9e2 + £3 + fi4 + e5 + 9fi6 + 9e7 — 2(3^ + fil + k1))||Vw|| ]

+ [ 2{&x - Kj)Vu • Vw,
Jas

where c31 = {{ps)^2 + (Ps 1 ~Pfi))2/ei9> c32 = ((/>*)le20 > and we have used
(5.4). Adding this to (6.8) we have

S.^y^x "u"2+yf¥x "w"2+^7s^iu+yf>// 'w"2++^1 ^2]

/ [*9^illull2 + ̂ io^/^illwll2 + IMiu + y/^iwll2

+ Kn4)l(f) -v Kx2\jJx\j/ ]

f [<5, — 2y 0,1c,)||Vu||2
J 38

+ 2(-3^,(0, + «,)-+ J? - Kj)Vu • Vw

+ {S2 - 2yfyl(/il +Ki)~ 2(5^ + /*, + k,))||Vw||2],

<

+
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where <5, = (dl + 9e, + 9e19 + 9e20), S2 = (S2 + 9s2 + e3 + e4 + e5 + 9e6 + 9e7), and

K9 = sup{(ll + 2y,01|AwJ +cn +c20 + c29)/ys(f>l},

Kw= sup{(ll + 2y/^I|A I + c9 + c21 + c30 + l/ss)/yfy/x},

Kn = sup{(Cj + 2 c4 + 2 c6 + c10 + c16 + clg + c25 + c3x)/<j)x},

Kn = sup{(c2 + c-j + 2 Cj + 2c1 + Cg + Cjy + + c2g + c2 y + c2g + ^*32) / ^1} •
x6

Remark 6.1. Notice that dl and S2 depend upon ei, i = 1, ... , 20, and that
each ej > 0 can be made arbitrarily small. Since we are also dividing by these
quantities in the various (f)2, if/ , ||u||2, and ||w|| terms, we require that each e( be
nonzero.

Consider now the last integral in (6.9). If it is nonpositive then we are done. Let

E,(t) = j [y s<t>l ||u||2 + yfy/x ||w||2 + Hy^jU + yfy/x w||2 + <f>l</>2 + y/x ̂2]

and Af3 = supr£[0 r]{l, K9, Kl0, Ku , Kn) . Then dE^/dt < M3E3 and E3(t) <
E3(0) exp(M3t) = 0. Thus <j>(x, t) = y/(x, t) = 0, u(x, t) = w(x, t) = 0, and whence
<f>x{x,t) = <j>2(x,t), y/x(x,t) = i//2(x,t), u,(x, t) = u2(x, t), and wt(x, t) =
w2(x, t).

Thus all that is left to show is that for some choice of 2?, n, and k , the following
integral (which is the second integral in (6.9)) is negative:

L[(<?i - 2yi</>1K1)||Vu||2 + 2(S?j - kx - yfy/xKx - ys<p(fix + k))Vu • Vw

+(<52 - 2yf>i/l(nl + kJ - 2(J? + /ux + KjJJHVwII2].
(6.10)

Let a = 2ys<f)lKl , b = (-J? + k] + ys<t>x{^x + kx) + yfVxKx), and

c = 2(S? + /xx+kx + yfy/l(iil + kx)).
Then (6.10) becomes

f [-a||Vu||2 - 2&Vu • Vw - c||Vw||2] + [ [3. ||Vu||2 + <52||Vw||2]. (6.11)

If it can be shown that the first integral is strictly negative then we are done. Simply
choose Sx and S2 such that (6.11) is nonpositive, i.e., if Z)Vu • Vw > 0 then choose
<5j and $2 such that -a + Sx < 0 and -c + S2 < 0.

Showing the first integral is strictly negative is equivalent to showing

/JS8
a|| Vu||2 + 26Vu • Vw -(- c||Vw||2

2is strictly positive. If a, c > 0 and b < ac, then the above integral is positive. The
first two conditions are obviously true. We need to determine conditions on n, k ,
and & to ensure that ac - b > 0, i.e.,

- + 2(k, + ys<t>liul + 3ys<f>lKl + yfii/xKx)&x -k\- 2K.\yfy/x

+ kx) - yfif/xKx)2 + 2ys4>xkx +kx) >0,
which is condition (CI).
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Thus for any /c, > 0 and any px >0 we need to choose ^ > 0 such that the
above inequality holds. To show that there exists "§x such that the above inequality
holds we need to show that the quadratic equation (in &x) has two real roots with at
least one positive root. This will be true if the discriminant is positive, i.e.,

4('ci + + 3^iki + y/v iKi)2

+ 4(2ys(j>lKl{nl + kx) - k\ - 2yfy/xK] - {ys<j)x(nx + kx) - y^K,)2) >0.

This in fact does hold. Furthermore, the maximum of this quadratic function occurs
at

%\m = K1 + 1^1 + 3^1K1 + '

which is positive. Thus, if &x and &x denote the larger and smaller root of this
equation, we see that ^+>0. (In order for "§x to be positive we would need the
constant term to be negative, i.e., the discriminant squared needs to be less than the
coefficient of "§x . This may or may not be true.) Let *§x = max{0, &,~}. Then
choose & e {&x , &x) and the desired result holds. Thus, there is at most one
solution to the initial-boundary value problem.

Remark 6.2. Given any p and k we now have a range of values for Z? to take
in order to ensure uniqueness, i.e., if & E (&x , &x) then uniqueness holds.

Remark 6.3. Note that k must be positive for this method to work. Otherwise,
if k = 0 and 3* and pi are nonzero then (6.11) is positive. (Here (CI) becomes
-(5?i - y <j)xnx) > 0, which cannot happen.) If k and 3? are both zero then the
methods of Sec. 5 hold.

Remark 6.4. Another way to look at this problem is: given any & e (a, 0),
where a, p > 0, we need to choose n > 0 and k > 0 such that (CI) holds, i.e.,
given & it is necessary to limit the values that n and k can take on.

7. Conclusions. There are still many open questions left on this problem. In
particular, it would be interesting to determine what would happen if k = 0, and
"§ / 0 or the case when & does not depend on the values of /u and k .

In this paper it was shown that if &, n, and k satisfy a certain relationship (see
Sec. 6) then uniqueness holds. What physical significance (if any) does this condition
have?

In the original paper by McTigue, Givler, and Nunziato [1] they considered the
velocity of the mixture to be

pv = ys<pu + yfy/w ,

where p - <j>ys + y/yf. The above analysis still holds by letting ju = p + yfip/(ys(t> +
yfy/), k = ys(p/{ys(p + yfy), and recalling that $ + y/ = 1 . They also considered

SF = a, 1 + a2Vw, J = ^ 1 + ,

where af., /?( are functions of 4> and Here a, is associated with the Stokes
drag force and a2 with the lift due to interaction of the slip velocity with the mean
shearing analyzed by Saffman. The coefficient /?j is associated with the Faxen force.
Here the problem is more difficult and still needs to be analyzed.
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Finally we have assumed a special form of the pressure, i.e., ps = ps{4>, w) and
Pf = P/(0> V) • McTigue, Givler, and Nunziato consider a more general constitutive
equation of the form

2 ^
ps -pf + t + w||u - w|| +Ctr(Vw),

where the Brownian pressure t is a function of the particle concentration, and 0)
and C are taken to be constants. The coefficient C may be viewed as a bulk viscosity.

In the last two cases it would be interesting to determine if the solution is unique.
Notice that an even more interesting question that still needs to be answered is to
determine if the problem is well-posed and has a solution.
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