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and p = Tk /pg , then wave groups are possible for

NONLINEAR GROUPS OF GRAVITY-CAPILLARY WAVES

By
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Abstract. Nonlinear groups of gravity-capillary waves in deep water are investi-

gated by a systematic direct approach that can be applied to nonlinear groups of

other dispersive waves. Two formulas in closed form expressing the variations of the

phase velocity c of the basic waves and of their group velocity cg with the amplitude

of the waves are obtained. These are in terms of the wavenumber e of the envelope
2 2

and e can be determined by the present approach as a power series in a', if 2a

represents the amplitude of the waves. To the order of approximation achieved here,
2 2

e is determined as a multiple of a'. If k is the wavenumber of the basic waves, g

is the gravitational acceleration, p is the density of the fluid, T is surface tension,

0< p < 0.1547 or /? > ^ ,

although the analysis is valid only when /? is not near The phase velocity increases

with the amplitude in the former interval for and decreases with the amplitude in

the latter interval. The group velocity cg decreases with the amplitude in the former

interval for /?, or for \<P< 1 , but increases with the amplitude if ft > 1 . When

the results of this paper are compared with the results of previous authors, wherever

comparison is possible, complete agreement is found. (Previous authors did not give

the variation of c with the amplitude.)

1. Introduction. In a previous paper [1] I have given a direct calculation of non-

linear gravity-wave groups that can be carried out to any order of approximation.

The results of that analysis were compared with previous results obtained by other

authors by a different approach, and wherever comparison could be made agreement

was found. However, since my calculation was carried to the order 0(aie), where

2a is the amplitude of the velocity potential and e the wavenumber, so to speak, of

the envelope, I was able to give the variation of the group velocity with amplitude.

Furthermore, the cubic Schrodinger equation that previous investigators derived and

used to obtain the group envelope is invariably based on one particular wavenumber

of the basic waves, and for that reason cannot be used to investigate the interaction
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of two wave groups of different wavenumbers for the basic waves, although it can

be used to study the interaction of two wave groups of the same basic wavenumber

but different amplitudes. My approach allows the investigation of two interacting

wave groups of different wavenumbers for the basic waves. Moreover, my approach,

while rather cumbersome, as nonlinear calculations often are, is systematic and can

be carried to any order of approximation.

For these reasons I have judged it desirable and worthwhile to use my approach

to study nonlinear groups of gravity-capillary waves in deep water. Here, however,

the procedure in [1] must be considerably modified, because the Bernoulli equation,

applied to the free surface, now contains terms involving the surface tension and

derivatives of the surface displacement. This makes it impossible to eliminate t] (the

surface displacement) between the dynamic condition and the kinematic condition

for the free surface by a simple substitution of t) obtained from the former into the

latter, as was possible in [1], A new systematic approach is herein devised, which

will have a wide application to other nonlinear groups of dispersive waves.

The calculation is carried out to 0(a3£), where, as in [ 1 ], 2a is the basic amplitude

(that is, of the linear part) of the velocity potential and e is the wavenumber of the

envelope. The main results are the determination of e2 as a multiple of a2 and

two formulas, in closed form, for the phase velocity c of the basic waves and for

their group velocity cg as functions of the amplitude of the waves. These formulas

are in terms of e2, which can be determined as a power series of a' by higher

approximations. Interaction of wave groups is briefly discussed.

When the results of this paper are compared with the results of Ablowitz and Se-

gur [2] and of Djordjevic and Redekopp [3], complete agreement is found wherever

comparison is possible. (These authors did not give the variation of the group ve-

locity with amplitude.) In view of the vast difference in approach between this work

and the work of these authors, and in view of the tremendous amount of calcula-

tions necessary in this work and in theirs, the complete agreement is remarkable and

gratifying.

2. Formulation of the differential system. Consider a train of gravity-capillary

waves with the amplitude vanishing at infinity. The fluid motion is assumed two-

dimensional and irrotational, and the depth of the fluid is assumed infinite. The free

surface at x = ±oo is at y = 0, which is the x-axis, and the individual waves and

their envelope are supposed to propagate in the direction of increasing x .

Since the flow is assumed irrotational, there exists a velocity potential (f), the

gradient of which is the velocity. The equation of continuity then gives the Laplace

equation

*« + *„ = 0, (1)

where subscripts indicate partial differentiation. At the free surface,

y = l(x,t), (2)

where rj is the displacement of that surface from its undisturbed position. The

kinematic condition at the free surface, requiring the equality of two expressions of
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the vertical velocity, is

rlt + (l>xrlx = (l>y (3)

The Bernoulli equation is, at the free surface,

<fil + gr1 + ^^ + ^ = 0, (4)

where g is the gravitational acceleration, t is the time, p is the density of the

fluid, and p is the pressure just below the free surface. Equation (4) implies that the

pressure at the free surface for x = ±00 is taken to be zero for convenience. The

pressure just above the free surface is then everywhere zero, with any variation of it

due to air motion neglected. Then the p in (4) is given by

p = -fr,xx(l + r,2x)-312, (5)

in which T denotes surface tension.

The calculation will be carried to the fourth order of the amplitude at most. In-
3 3

deed, it will be carried out to the orders 0(a ) and 0(a e), where 2a is the ampli-

tude of the velocity potential, and e is the wavenumber of the envelope of the wave

train, which is assumed small and will be shown to be of the order 0{a). Thus one

can combine (4) and (5) into

grj = -L(f) + ar]xx (1 -J , (6)
2

where

= + + o = ~. (7)
L fJ

Equation (6) is to be used in conjunction with (3), which will be rewritten in the

form

11 = <t>y~ <t>x1x- (8)

The final boundary condition is

<f> —> 0 as y —y -00. (9)

Note that (4) ignores viscous effects, which require a boundary layer at the free

surface, called the stress layer. The p in (4) then is the pressure just at the lower

edge of that layer. Since the stress layer is thin (because both the phase velocity of the

waves and their group velocity are large enough to make the Reynolds number large

if the fluid is water), its effects are negligible, and one can proceed on the assumption

of irrotational motion for the entire fluid.

The differential system governing the dynamics of the wave train then consists of

(1), (6), (8), and (9), with L(j> and a defined by (7).

3. The solution of the differential system. Since <j> satisfies (1), one can assume it

to be the real part of an analytic function of the complex variable

z = x + iy,
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and, as in [1], it is convenient to use the symbols X and Y defined by

X = e(z-cgt), Y = k(z - ct), (10)

in which k is the wavenumber of the basic waves and e that of their envelope, c is

the phase velocity of the waves and c their group velocity. The value of c and cg

given by the linear theory are

c0 = {gk~l +ok)1'2, (cg)0 = (| + lok) . (11)

Given k , the main task is to determine c, c , and e as functions of a, which is

half the amplitude of <j). The expansions used are, as in [1],

2 3
(f) = U(j)j -f- CI (f)2 + CI (fry ' ' * >

2 2, , 2 , 4 N
6 — CI (Ckj -f- ■'') ? (13)

c =C0(1 + + P2e (14)

2ccg — 2c0cg0( 1 +yle2 + y2e4 ■■■). (15)

As it will be shown later, the amplitude of <f>l is 2. Since a , when made dimension-

less (i.e., expressed in units of c0k~l), is supposed to be small, 2a is the principal

part of the amplitude of </>, and is considered its nominal amplitude.

If a is assumed zero, (6) gives an expression of i] in terms of <f>, which, when

substituted into (8), provides a single free-surface condition in terms of <fr. Upon

expanding 0 in a McLaurin series in powers of tj and repeatedly using (6), with

T = 0, one obtains a single free-surface condition in terms <f> and its derivatives, all

evaluated at v = 0. This was done in [1], but the simplicity of this procedure is lost

when surface tension is taken into account. One now needs an additional expansion

r] = arj, + a2t]2 + ■■■ , (16)

and proceeds systematically from the lowest-order terms in a to higher and higher

orders.

From (6) and (8), the free-surface condition will now be developed in a form that

can be used for calculation to any order of approximation. Using (6), one obtains

g4>y - 4>x(g*7V) = g<Py + 4>X(L<f>)X - a(t>X | 1X.V ( 1 - \ '/.v) } " ( 1 7)

On the other hand, (6) gives

gtl, = -(L<t>), + <t|Vv^1 _?''.v)} ' (18)

The left-hand side of (17) and (18) are equal on account of (8). Hence

g'Py + (L<f>)t + <j>x{L(p)x — aQ = 0, (19)

where

Q = ''u.v " |v), + <2°)
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A term

(2D

has been omitted from Q because it is of 0(a4), and because it will not affect the

results to the desired order of approximation.

In four sub-sections that follow one will develop the four terms on the left-hand

side of (19), which will be the main equation one works with.

3.1. The term g4>v. A power-series expansion gives

<f>y = <t>y( 0) + 4>yy(0 )n + \j>yyy(0)ri2 + ■■■ , (22)

in which <j>y(0) means (f>v evaluated at y — 0 for any x and t. On account of (1),

(12), and (16) this can be written as

2,
<t>y = a<t>ly + a {4>2y-4>xxxnx)i y

+ a |^3 y + Wlyyl 1 + ^ 1 yyV2) ~ \<t>lyxxrl\ | ' (23)

in which all the derivatives of 0 on the right-hand side are now evaluated at y = 0 .

3.2. The terms in (L<j>)t. Before one differentiates L<f> with respect to t, one

expands the terms in it, in order to evaluate L<j> at y = >/. Thus,

= a<t>u + "Wk + tuyh) + a (tvyh + tuyVi- ' (24)

in which

-<t>txx = $tyy '

on account of (1). All the derivatives of 0 on the right-hand side of (24) are evaluated

at v = 0. Furthermore,

\(<t>2x + <l>2y) = \{a2(<t,]x+<t>]y) + 2ai(<i>lx<l>lxyrii-<l>ly<t>lxx,1l+<t>ix<t>2x+(t>ly(t,2y)}> (25)

in which again the derivatives of 4> on the right-hand side are evaluated at y = 0,

and (1) has again been applied. The reason for preferring -<f>xx to <pvv is that

derivatives with respect to x can be performed after y has been put to zero—a

great convenience, as subsequent calculations will show.

Combining (24) and (25), one has

(L<f>)t = a<pUl + a2 |02, + 4>Uyri, +

+ a (^2lytll + <i>Uytj2 - \<t>Uxxri] + KKytli

~ Ktixxh + tixK + KK),- (26)

3.3. The terms in <j>x{L^>)x. Using (24) and (25) again, and

4>x = a(t>\x + 01 (02x + Kvh) + " ' '
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one obtains

<!>X(14)X = a24>[x4>[xt + a [<j>2xcplxl + 4>lx,<l>lxyt7,

= a2<t>iJixl + a3

+<t>lx 1^2/ + tuyh + 2^1-V + ^ly)}

WiMi + WixKxlth
t *>

(27)
1 2 2

+<>lx<l>UVrt\x + 7^1.v(^lx + ^\y)X2

Again, all terms on the right-hand side of (27) are evaluated at y = 0 .

3.4. The terms in Q . The first term on the right-hand side of (20) is, by virtue of

(8),

>hxx - Wy ~ (t>xtlx)xx = <t>yxx ~ ('txlJxx ' (28)

where all the derivatives of (p are still evaluated at y = rj. Expansion of if> gives

tyxx = a(t>\yxx + fl2^2y "

+ a |<t>iy - <t>Uxr]2 - <P2xxrll - \<$>Xyxxr\\, (29)

in which (1) is applied whenever applicable, and all the derivatives of </> on the

right-hand side are evaluated at y = 0. As to the last term in (28), one has

- "Wlxllx + tlxhx + tlxyhhxhx- (3°)

Combining (29) with (30), one obtains the expression for r]txx. But one need not

write this out, since later the terms in Q as given by (20) will be combined.

The next term in Q is simply, to 0(tf3),

-hfaxx), = (31)
and the last term is

txlxxx = a2(t>ixhxxx + ^2xhxxx + ^1 xllxxx + tuyh ^\xjk (32)

Combining (28) with (31) and (32), one obtains, with the help of (29) and (30),

>, + a Q2 + a Q}Q = aQ,+a2Q7 + aiQi, (33)

where

C| (34)

Ql = -{(^ixx'hhx + Kxxhx + 2Kx1lxx} + Kxx

= ~M\xxtl\\xx + ^lxxri\x)x + ^\xx^\xx) + Qlyxx* (35^

= ~ I (^1-^2 + ^lxT{1 + 2^ll,-v'?') + 2^x>)xl

- MlxVlxxx + tlxhxxx + tlxyh 11xxx) } + Kxx' (36)
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4. Calculation for terms containing a as a factor. The first calculation is for terms

that contain a as a factor. The terms may be of orders O(a), O(ae), 0(as2), or

0(ae3). The working equation for all the calculations for all orders is always (19),

with its four groups of terms given by (23), (26), (27), and (33), supplemented by

(34), (35), and (36). For the starting calculation, one collects terms containing a as

a factor in (23), (26), and (33), and obtains

L0^1 =SK + (/>Ul-<7Kxx- (37)

In addition to (10), one now defines

X = e{x-cgt), Y — k(x - ct), (38)

and

S = sech*, f = tanh X, 5 = sech.Y, T = tanhX. (39)

Note that it is immediately clear that S and T have singularities at the points

X = ±i(2n + 1)7t/2 . Those corresponding to the + sign are outside the liquid, and

cause no difficulty. The remaining singularities can be removed, as shown in Yih

[4], This removal has very little effect on the free-surface conditions if k/e is large

compared with 1, as is the case for the phenomenon under investigation here. Higher

singularities created at higher approximations can be similarly removed [4], Now let

vi

so that, at y = 0,

<t>. = 25 cosy,

o —iY o* iY /Arw= Se + S e , (40)

Then

4>u, — 2kS cos Y — 2eST sin Y ,

0lv= - 2kS sin Y — 2eSTcos Y,

4>ut = {-2k1 c' + 2e2c2g)S cos Y + 4keccgST sin Y (41)

- 4(ec^)25'3 cos Y,

), = (— 2/c3 + 6ke2)S cos Y + (6k2 - 2e2)eSTsmY

- 12ke2Si cos Y + 12e3S3 sin Y.

Ln<j). = 2AScos Y - 2eBSTsin Y + e'(\2ak - 4c")53 cos Y

- \2aeiSiTsinY, (42)

where

A = gk + ak3 - k'c2 + e2{c2g - 3ok), (43)

B = g + 3ok2 - 2kcc^ - oe~. (44)

In (41) and (42), some higher-order terms which are unnecessary for the main purpose

of this paper are exhibited, to give an indication of why they are unnecessary. For
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2 2 2
instance, it will become clear that the 2s cg term in 4>Ul and the term 6ke~ in 4>Xyxx

2 2
in (41) merely lead to higher-order determination of e in terms of a . Subsequent

development will show that A = 0 = B .

To obtain ??, , one uses

rlu = (t)iy

and integrates by parts repeatedly to obtain

rj, = 2(£,Ssin Y + eE2STcos Y + e2EiS3 sin 7) + 0(e3), (45)

in which

£,=-}-p-(l-r), E2 = ±(l-r), £,= -|-(l-r),
c k cr Kc k cr

where

r = cg/c. (46)

Again some unnecessary terms are included in rjl . In subsequent calculations, one

needs only to take

r}{ = - {-Ssin7 + £(1 -r)Srcosr}. (47)

5. Calculation for cp2 and r]2. Taking terms containing a2 as a factor in (21),

(26), (27), and (33), and applying (19), one has, with all terms on the right-hand side

evaluated at y = 0,

^0^2 = ^21 + ^22 ^23 + ^24 ^25 ^26 ^27 '

where

9 5 5
+ —2 ~ a 2' 49

0 dy dt2 dydx2

^21 = S(t>\xxrl\ > T22 = ~{(t)\tyY}\ ), >

^23 = + ' ^24 = ~(t)\x(t)\xt '

r25 = ~a(cf'\xxt1\\xx ' ^26 = ~a^lxxrl\x)x'

T21 = ~<J(t)\xxrl\xx-

From (41) and (46),

S2sin27 - Js2T{1 +r-(3-r)cos27}]
T - 2g/c2

21 " C

r22 = -4A:3<: sin 27 + ^S2T{-r + (2 + r)cos2Y

r23 = ~4 k2£crS2T,

Tu = 2 k3c

_ 8k4a

'25 ~~ r

4/cV
^26 =

_ 2kAa

21 ~ r

s2 sir\2Y - ^S2T{r - {2 + r)co$2Y}

S2 sin 2Y - U5 - r)S2Tcos 2Y
K

52sin2r + ^S2T{\ + (5-r)cos2Y}
K

S2 sin 27 - ^S2T{-1 + r + (-5 + r)cos27}
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Upon collection of terms, (48) becomes

L0(t>2 = C2lS2 sin 2Y + C22S2T + C23S2Tcos2Y, (50)

where

2 k2 ■> ■>
c21 = —jr(~kc + g + lak ),

C22 = - r)a^ ~ + r) ~ kc2r},

C23 = ^^{7(5 - r)ok2 - (Ike2 + kc'r - 3g + gr)}.

Before using (50) for (f>2, it is advantageous to simplify the C's. This is done by

anticipating the results

A — 0 — B, (51)

where A and B are given by (43) and (44). For the purpose at hand it is permissible

and desirable to ignore the terms of 0(e) in (43) and (44), which will give terms of
3 2 2 2

0(a e ) when the final step in determining e in terms of a~ is taken. Then, using

(51), one obtains, after some substitutions,

c„-^. («,
c

4 ekg

c

\2eok\ 6ekg P{9+ 7/3)

C22 = -^, (53)

^23 = —(5 -0 = —. (54)
1 + /?

where

ok2
. (55)

One now proceeds to calculate (f>7. For this purpose define

= -i(S2 -c.c.) (56)

—i{S2 exp(-/2F) - c.c.} , (57)

{S2f exp(-/2?) + c.c.} , (58)

^20

<t>2\

022

where c.c. denotes the complex conjugate of the preceding quantity.

Direct calculations show that, at y = 0 and with terms of 0(e2) neglected,

L04>20 =-4egS2T, (59)

Lo021 = 4kg(\ - 2P)S2 sin 2Y + 4eg(\ - 6p)S2TcoslY, (60)

Lo022 = —4kg(l - 2p)S2Tcos2Y + O(e). (61)

With these results,

^2~~^ (^20 + Q21^21 ~fc0l22(t)22) ' (^2)
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where

3/? (63)

21 1-2/?'

3/?(7- H-lp1)
a77 = j. 64

2(1 + /?)(1 - 2/?)

Note that the last term in (60) adds to the burden of the last term in (50), when the

first term on the right-hand side of (50) is taken care of. That is why (64) is what

it is, to account for that additional burden and to take care of the last term in (50).

The factor e in the last term of (62) shows why it is permissible to drop the term of

O(e) in (61).

With 02 defined by (62), one is now in a position to calculate r]1. For that

purpose, and for the purpose of later calculations, one lists some useful results below,

evaluated at y = 0 :

and all its derivatives with respect to x or t are zero,

V = -4 eS2T,

I )yxx = °(£3)'

= ~2S2 sin 2K ,

)y = -4kS2 sin 2Y - 4ekS2Tcos2Y,

)x = -4kS2 cos 2 Y + 4eS2 T sin 2 Y ,

)xx = 8k2S2 sin 27 + \6ekS2Tcos2Y ,

)xt = -%k2cS2 sin27 - 8e^:c(l +r)52Tcos2r,

= 2S2Tcos2Y,

)y = 4kS2Tcos 2Y ,

)x = -4kS2Tsin 2Y ,

) = -8kS2Tcos 27 ,

Again, terms of O(e) in and its derivatives are omitted, because they ulti-
3 2 2 2

mately produce terms of 0(a £ ) in the crucial calculation for e in terms of a".

Note the coefficient of 4>21 in (62).

One now calculates ^ from

12, = 4>iy + <Plyyri\x - <i>ixri\x = <t>2y - (<t>lx>U )x (65)

which comes from (8). With the results for (f>20 , (/>•,, , and 0,-, given in the foregoing,

(65) becomes

4k2 -i ~>kp t
t]2r = -(a2\ + 1)5 sin 2F + 6S-Tcos2Y , (66)
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where

6 = 2a2, — 2a2l — 6 + 2 r, (67)

The solution of (66) is, by successive approximation,

rj = _(a + 1)5 cos27 - —{0 + 2(a,. + l)r}5' TsmlY. (68)
c c

For brevity, one will write this as

r]2 = ^ (£2152cos2y + ~E22S2Tsin27^ , (69)

where

E2l =-(Q2, + 1)' £22 = ~(f + >*K + 1))- (7°)

6. Calculation of terms containing a3 as a factor. Consider now the terms that

contain a3 or a3e as a factor in (19). Again, for clarity, it is desirable to consider

these terms in each of the terms on the left-hand side of (19). The calculation will be

more detailed for the first term of (19), to show how the detailed calculation is done.

Once the way of calculation is illustrated, the presentation will be much briefer.

6.1. Terms from g(j) . Leaving the term 0, aside for the moment, the first term

containing a3 as a factor is

<t)2yy1\ = ~&2xxrh '

since (p2 does satisfy the Laplace equation. As can be readily verified, on y = 0,

38 k
,J2xx

= — {a21S2sin2y + £(2a21 - a22)S2Tcos 2Y } ,

so that

8 A-3 i
-4>2xxrl\ = (COST-cos37)

+ ^S3T{a2l( 1 - r)(sin 3Y + sin Y)

+ (2a2l - a22)(sin 3K - sin 7)}].

Of this, the terms involving sin Y or cos Y are

[[-</W/i]] = ^[a2|53 cos y + |{«22 - a21(l + r)}53rSin Y], (71)

in which the double brackets on the left-hand side mean "terms containing sin Y or

cos Y in the quantity indicated in the brackets." Equation (71) is tabulated in Table

1, for convenience. The other terms in (23), except <piy, are also entered in Table 1

after multiplication by g .

6.2. Terms from {L(f>)t. One now considers the terms in the last parenthesis in

(26). The method of calculation being illustrated in Sec. 6.1, one now merely records

the results. In Table 2, the results for L(f> are recorded.

In forming the sum in Table 2, the definition of 6 by (67) has been used, so that

Q
f*2i (2^ + 1) ~f~ "2 = ^£*21 ^22 ~
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Table 1. Terms associated with a3 in

S3 cos Y S*T sin Y
ik*g _ 8k2-
*?a2l ^{a22-Q2,(l+r)}

?[[ ^("2,+ •) + (l+r)o2|-l+2r}

^ ; -^(7 + 2r)

Sum ^(6a,.-l) ^{7a„ - 10(1 + r)a2. - 5 - 6r}

Table 2. Terms associated with a3 in L(f>.

S3 sin Y 53T cos Y

Mltyrix]) ^«21 ^(4a2,r-2a22)>/'3
<

'-3,

kQ

1,3

2f(«2. + 1) -^{(a21-+l)(2r+l) + f}

[[0, x<t>2x +

^ ^(2-5)
3[[(^L + <v)//,]] 3 -T1 , -^£(l-r)

Sum ^(2a2]-3) ^ (6m2i _ a22 + 2r ~ 4)

One now has

[[(^),]] =
/c3
^ (2q21 - 3)53 sin Y

2k2 e („ 1 ,3,
H ( 6m21 - a22 + -r - 4 ) S Tcos Y

= - k\la2. - 3)S3 cos Y21

+ fc3e(18ra21 - 2a22 - 8r - 8)S3Tsin Y

k4 [(3-2a2,)53cosr

+ |(18m2I -2a22-8r-8)S3rsinY . (72)

6.3. Terms from 0V(L0)V. Results for these terms, shown in (27), are summarized

in Table 3.

6.4. Terms in Q. The terms in Q defined by (20) which have a3 as a factor

are in Q3 defined in (36). Again neglecting </>3 for the moment, one computes the

terms in the braces in (36). First, the terms within the first parenthesis in (36) are

summarized in Table 4.

Let

/ = tlxh + tlxh + itlyxl*



Then
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Table 3. Terms associated with a3 in <j> (L4>) .

53 cos Y S^TsinY

0 8/c3£

[MixKyMl 4k4 ~Skie(2r + 1)

[[(^ljc)r]] a21 —4/c £(3/"a2j — **22)

8k3e(r - 1)

Sum k4(6 + 4a2\) -4k3e(2r + 2 + 3ra21 - a22)

Table 4. Terms in the first parenthesis of (36).

53 sin Y S3T cos Y

[WuM -tH« 21+ D ^{(a21 + l)(l+r) + f}
-7^2. ^("22-"2.'-)

2^,-*f(4-2r)

Sum -^(6a2]+5) ^§{4r - 2 + 2(1 - r)a2, + 4a22 + 0}
C

, --*!
JC.X.V 2

(6a21 +5)5 cosy

+ |{3(6q21 + 5)(-352T)(- sin y)}

+ |{2(r - 1 )a21 - 4q22 + 2 - 4r - 0}53Tsin y

k^

c
(6a,. + 5)53 cos y

£(/f1 , o3

k
Upon use of (67), this becomes, finally,

- t;{(52 + 2r)a2x - 4a 22 + 47 + 4r - 6>}5 Tsin 7

/ = [(6a + 5)53 cos y - f {(54 + 2r)a,. - 6a,, + 53 - 6r}53 Tsin Y
^2 [V 21 ' ^ k ' 21 22

and this is recorded in Table 5, where the other terms in [[-@3]] are also recorded.

Summarizing the results in the last lines of Tables 1, 3, and 5, and in (72), one

has the final Table 6.
2 2

In Table 6 c can be identified with the c0 defined in (11), which is

-1-!'

where P is defined by (55). Then, with the help of (63) and (64), a straightforward

calculation gives

s''a + m-mii + l> + lh- (73)
There is no need to carry out S2 in more detail for the purpose at hand.

c0 = f(l+/?).
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Table 5. Terms in -Q
3 •

S3 cos Y S^TsinY

Ixxx ^(6a2, + 5) <{(54 + lr)a2x - 6a22 + 53 - 6r}

1 rr/v.3 1 11 3/t5 iekWJ -7T ^(5 + 2 r)

[[~Kr,2xxx]) -^(a21 + 1) ^{(6 - 2r)a21 - 2a22 + 10 - 4r}

TTa21 ^X" (-Q21 + Q22 + 4 - r)
'2x'llxxxl> c2 21 f2 ^ "21^^22

WU -<(6-4r)
C

Sum = [[-03]] ^(6q21 + 16) -^{(10+ 18r)a21 + 6a 22 - 52 + 20r}

Table 6. Summary of results associated with a3.

S3 cos Y S3T sin Y

[[gcpy]] £f(6«21-1) <^{-10(1+r)Q21+7a22-5-6r}

[[(L0)J] ^'4(-2a21 + 3) e/c3{18m21 - 2q22 - 8 - 8r}

[[0v(L0) v]] A'4(4a2, + 6) -Aeki{3ra2l - 4a22 + 2 + 2/■}

[[-crQ]] -^(6q21 + 16) -£2*1{(10 + 18r)a21 + 6a22 - 52 + 20r}

Sum 5, S2

2 2
7. Determination of e as a function of a". The third-order terms of the left-

hand side of (19) that contains the factors 5"3cos Y and S^T sin Y have now been

determined to be

aiSlSicosY+ aS2S}TsinY, (74)

• • 2 2
and one is in a position to determine e in terms of a'. For this purpose one returns

to (42), which, after multiplication by a , gives the terms in (19) containing a as a

factor, as can be seen from (37). It is then clear that (74) should be combined with

the last two terms in (42), after (42) is multiplied by a . (See (12).) Collecting the

terms containing the factor .S'3 cos Y in (74) and (42), after the factor a is added to

it, one has

nc2/1 ->tl- _ a. TU Ulae'( 12ok - Ac') + a3S. = 0. (75)

In this one can set c2g equal to (c )q , committing discrepancies of higher orders to

be taken care of in later approximations if necessary. Then, using (11), one obtains

,r = ^ . (76)
g (1 -6p-3p2){l-2/?)

and

2, 2 , aV 8 t // - 2/T
c{Ct-M) = — , (77,

which can be used in (43) to calculate the variation of c2 with a', to the present

order of approximation. Since e" must be positive, it is evident that the solution
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for wave groups considered here is restricted to those values of /? that make it so in

(76).
Collecting the terms containing the factor S^Tsin Y in (42), after it has been

multiplied by a , and in (74), one has

(- 12a£3<7 + aiS2)SiTsin Y. (78)

The question immediately arises: Why is (78) not set equal to zero to determine e2 ?

This question does not arise for pure gravity waves, since <7 = 0 for that case. But

it does now. And the two determinations of e , from (77) and from (78), would

not give the same results. The answer to this question is that the term (78) can

be annihilated by the same procedure as in [1], whereas if an attempt is made to

annihilate a term with the factor S3 cos Y and the coefficient equal to the left-hand

side of (75), one is obliged to add a term to 4> that has the factor Scos Y. In other

words <f>l would change its amplitude, and that amplitude is not to be tampered

with. Therefore (75) is used to determine e , and (78) is to be annihilated.

At this juncture it is prudent to check (77) and (78) against the corresponding

results for pure gravity waves, by putting a or /? equal to zero in 5", and S2 in (74),

and compare it with (60) of [1], which will be denoted by [1, (60)] for convenience.
2 2

Doing so, one finds, upon putting c equal to c0 ,

5, = 8k4, S2 = -32e/c3. (79)

The result for 51, agrees with [1, (60)], but the number corresponding to 32 in (79)

is 56 in [1, (60)]. Close examination of [1, (59)] shows that a factor of \ in [1,

(58)] had been overlooked, and the number 48 in [1, (59)] should be 24. Correction

of that error changes the number 56 in [1, (60)] to 32, in agreement with (79). The

oversight has no effect whatever on the main results and all the conclusions of [1], but

I take this opportunity to present the corrigenda for the errors that arose from that

oversight. Apart from the corrections mentioned above, all the numbers divisible by

7 in [1, (64)] down to [1, (68)], as well as in [1, (77)] and the equation in [1] following

[1, (77)], should be multiplied by | . In [1, (78)], 17 should be 11. Corrections for

some unrelated misprints in [1] are: (a) In the last term of the line 6 from the bottom
2 2

of p. 170 of [1], a plus sign should be added between 4>'x and <j>v. (b) In the last

term of [1, (25)], g2 should be c2 . (c) In [1, (37)], the factor a should be added
3 3 2 3

after the first two equality signs, and e a should be e'a . (d) In [1, (63)]. e should

be s2.

The annihilation of the term (78) is similar to the same process in [1], It involves

adding a term like Z in [1] to <j), and results in (51). Consequently (75) or (76) is

not affected by this annihilation. The main results are then (76) and

k2c2 = gk + ak* + e2(c* - 3ok), (80)

2kccg — g + 3ak2 - at~. (81)

Equation (76) determines e" to the order of approximation achieved in this paper.
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"> 2

Higher-order approximations will determine e~ as a power series in a' . But (80)

and (81) in terms of e will remain valid to any order of approximation.

As in [1], the terms of 0(a3) in (19) containing Sicos3Y or S3Tsin3Y, as

appear in the equation before (71) and in the calculation for Sees. 6.2, 6.3, and 6.4

though not recorded in those sections, can be annihilated without affecting (80) and

(81). Indeed, higher approximations will leave (80) and (81) intact, although they
2 2

will improve (76) and determine e as a power series of a". This is the reason why

it is not necessary to determine <^3 for the purposes of this paper.

8. Comparison with existing results. The results obtained in this paper can be

compared with the results obtained by Ablowitz and Segur [2], which was referred to

as AS in [1], and the results of Djordjevic and Redekopp [3], referred to as DR in

[1], The abbreviations will continue to be used in this paper.

First, AS (p. 697, last two lines) noted that their results were equivalent to those of

DR, except for the correction of a misprint. Examination of (AS 2.24d) also reveals
2 2

a misprint: The factor (2 - a ) in that equation should be (3 - o ). However, that

misprint was truly a mere misprint; the results on p. 698 of AS are correct. One

then needs only compare the results of this paper with those of AS. For this purpose

focus on (AS 3.4), in which, as AS said, b can be taken to be zero.

When co0/co in the definition of X in AS (equation for on p. 698 of AS) is
1 /2

equated to my (1 + /?) ' ,

*-l(82)
8 (l+£)3/~

where my /? has replaced T in AS. Furthermore (AS 3.4) also shows

\2X/v\{/2a = A , (83)

in which v is the AT on p. 698 of AS, and
OO ^ '

2X _ (1 — 6jg — 3l2)(l - 2/?)
" 8 + P + 2(]2 (84)

The solution (AS 3.4) is valid only if 2X/v is negative. This agrees with the re-

quirement that the e2 in (76) be positive, and limits the possibility of having a

gravity-capillary wave train to the ^-values satisfying

0</?< ~3+3v/^ - 0.1 547 or fJ > l~. (85)

When either of these inequalities is satisfied, my </>l has the same envelope as the

AS solution (AS 3.4). This can be seen by noting the definition of £ in (AS 2.22),

and that the ae in AS corresponds to my e . The former is, in AS notation entirely,

as = AmaxEin (86)

\2X/u\1'2

and my e is given by (76). Taking into account that the velocity scale used in AS

is (g/k)l/~ and the length scale is A:-1 , and that their A e is dimensionless and
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corresponds with my dimensional a , one has (the right-hand in my notation)

akyi
4n„* = —• (87)

Then, in view of (84), with 2k/v negative, one sees that, apart from being dimen-

sional, the ae in AS is exactly my e given by (76), showing agreement of the form

of the envelope of 4>{ with the envelope of A in (AS 3.4).

Now one looks at the variation of the phase velocity c with the amplitude. In the

AS solution (AS 3.4), the last factor can be combined with the factor

exp(id) = exp[i(kx - cot)] (88)

in (AS 2.15a) to obtain, in view of the definition of r in (AS 2.22),

(89)

In (89), c is in my notation and the rest in AS notation, except one has equated k

with k in AS, because only two-dimensional waves are considered. Recalling (85),

and hence that X is negative, as is 21/v , and using (84), (86), and (/? and c0 in

my notation)

« (gk)112 =(1 ,ri/2
k 0' a ( P>

one can write (89) as

c = c0[ l + y 8 + y2"2 I. (90)
1 8 (1 + P)2( 1 -20)

or, in view of (87),

8? (i + /o!(i-in,
now entirely in my notation.

On the other hand c is given by (80) in my analysis, and is

( e2{c2 - 3ak) \
c = + (92)

When (O0 is used for c , committing an error of 0(e4), this is, upon use of (11)

and (77),

8 + ^ + 2/T X
o , , (93)
8^ (1 + /?)2(1 - 2fi)J

which agrees with (91) exactly. This agreement is remarkable in view of the vast

difference between the approach of AS and mine, and in view of the tremendous

amount of detailed calculation in their work and in mine. From (95), it can be seen

that c increases or decreases with the amplitude accordingly as p < \ or B > j .

The analysis is not valid in the neighborhood of P = \ .
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As to the group velocity, one first uses (11) to reduce (92) to the form

e2 1 — 6/? — 3

k2 8(1 + fi)
+ (94)

and then uses (94) in (81) to obtain

2 7 1 - 6/? - 3fi2 +

8(1 + /?)2 1 + 3A
(95)

One emphasizes that (81) is good to any order of approximation. To 0{e2), one has

(95). When the first inequality in (85) holds, cg always decreases with the amplitude.

Since the parenthesis containing ft is equal to

(1 -/?)(/?' +6/?+1)

8(3/?3 + 7/?2 + 5/1 + 1)'

2
it is clear that cg decreases with e for

\<P< 1,

but increases with /? when ft > 1 .

Since AS and DR did not go beyond the third order in the amplitude in their

calculation, their approach has not produced any information on the variation of the

group velocity with amplitude.

9. Interaction of gravity-capillary wave trains. Consider normal (that is, not

oblique) interaction between two trains of gravity-capillary waves. The cases of in-

teraction are: overtaking of one wave train by another, head-on collision of one wave

train with another, and reflection of a wave train from a vertical wall normal to its

path. The last case is a special case of head-on collision. By using the arguments in

[1], one concludes that in all cases of normal interaction each of the two wave trains

involved will regain its integrity after interaction, without even a shift of phase either

in basic waves or in their envelope.

10. Conclusions. From the foregoing the following conclusions may be drawn:

a. A systematic approach has been devised to construct gravity-capillary wave

trains to any degree of approximation.

b. Whenever comparison is possible, the results of this paper have been compared

with the results of previous workers (AS and DR) who treated the same subject, and

complete agreement has been found. The areas of comparison include the criterion

of existence of gravity-capillary wave trains (when 0 < /? < 0.1547 or >i) , the

shape of the envelope, and the variation of the phase velocity of the basic waves

with amplitude. The agreement is remarkable in view of the vast difference of my

approach from theirs, and in view of the great amount of detailed calculation in my

work and in theirs.

c. Two closed formulas, (80) and (81), give the variation of the phase velocity

c of the basic waves and the group velocity c with the wavenumber s of the
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2
envelope. The quantity e can be expressed as a power series in a' and determined

by successive approximations.

d. Gravity-capillary wave trains exist for ^-values satisfying

0<P< 0.1547 or /? >

e. The phase velocity c of the basic waves increases with amplitude when /? <

0.1547 , but decreases with amplitude when p > j .

f. The group velocity cg decreases with amplitude when

/?< 0.1547 or ^ < /? < 1,

but increases with amplitude when /? > 1 .

g. Previous investigators of gravity-capillary wave trains have carried their cal-

culations to the third order of the amplitude, and therefore have not been able to

produce any results on the variation of the group velocity with amplitude.
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