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Abstract. In the following, we derive upper and lower bounds for eigenvalues of

the Laplacian on a domain that is a spherical cap whose angular width 2&0 is less than

7i. While previous work of this nature seems to focus on the principle eigenvalue,

our results apply to any eigenvalue when 0 < $0 < nil. In addition, some of our

results also apply to spherical caps for which 0 < $0 < n . When our estimates for

the principle eigenvalue are compared to the results of [4, 8], we find that our upper

and lower bounds are sharper.

1. Introduction. The problem of determining the eigenvalues of the Laplacian on

a spherical cap arises naturally in a variety of applications. Some of these include the

vibrations of spherical shells [7, Ch. 13], diffusion processes on cellular membranes

[4], and the buckling of spherical shells [3]. Since the spectrum of the Laplacian

varies as a function of the angular width of the cap, it is often necessary to obtain

upper and lower bounds for eigenvalues in terms of this parameter. In many cases,

the principle eigenvalue //, is of most interest and consequently, much work seems to

center on determining upper and lower bounds for fil . For example, when studying

boundary value problems, it is well known that the optimal constant in Poincare's

inequality is (i.e., ||Vu;||2 > //,||if||2 where || • || is the L, norm (see [9, p.

112])). In [4], the authors were interested in determining the asymptotic behavior of

a certain diffusion process which led to the problem of estimating .

There are situations where the eigenvalue of most interest is not the smallest one

and estimates are needed for these eigenvalues as well. For example, when studying

the buckling of elastic spherical shells, one is interested in the critical buckling load

kc, the smallest value of the applied force (load) which corresponds to a bifurca-

tion point of the model equations. Although kc is related to the spectrum of the

Laplacian, it is not necessarily the principle eigenvalue that plays the key role (see

[3]). Problems that relate to ordering the eigenvalues of the Laplacian have been

considered in [1, 2],

In the work that is presented here, we will focus on deriving upper and lower

bounds for any eigenvalue of the Laplacian on a spherical cap for which the angular
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width 2$0 is less than n . The upper and lower bounds for //, that we derive here

are sharper than the previous estimates derived in [4, 8] for 0 < 60 < n/2 . Although

the bounds in [4, 8] are valid for 0 < !?0 < n , they apply only to the principle

eigenvalue. Some of our estimates also apply to caps for which 0 < $0 < n (see Sec.

3).
In the following, we will let S, denote a spherical cap that is parametrized by

U0

the usual spherical coordinates {&, (p). In particular, for (x, y, z) e S0 c , we

have

(x, y, z) = (cos cp sin $, sin cp sin &, cos $), 0 < $ < $0 < 7r, 0 < <p < 2 n.

We will consider the following eigenvalue problem on Sf, : Find a real number //

and a nonzero smooth function w: SA —► SH1 which satisfy
^0

Aw + uw — 0, on 5,, ,
( * )

w — 0, on dS, ,
U0

where dSA denotes the boundary of S,„ . It is well known that fi is an eigenvalue
U0 U0

of (*) if and only if n — v{v + 1) where u > 0 is a solution of

Pm(coS!}0) = 0, (1.1)

for some m = 0, 1 , ... , and P'" is a Legendre function of the first kind of degree

v and order m (see [12]). For a general discussion on the Legendre functions and

their properties the reader is referred to [5]. For fixed m, we will let v = is'" ,

j = 1,2,..., denote the positive ^-zeros of (1.1). In the following, v will be a

positive real, m, n will always denote nonnegative integers and j, k will denote

positive integers. The v"' 's depend on d0 and in [1] it is shown that u'" = ^7"'(??0)

is analytic in .

Corresponding to each , there is an eigenvalue of (*) which we will denote by

ji'" — u'"(u'" + 1) with eigenfunction(s):

u"'(&, (p) = P"l(cosi?) cos mtp , m = 0,1,..., j = 1,2,...,

(1.2)
v™(&, (p) — P't/m {cos d) sin m<p, m= 1,2,..., j = 1,2,—

From (1.2), we see that the multiplicity of //'" is at least 1 when m = 0 and at

least 2 when m / 0. Properties of the v'" 's and fi"' 's, including examples where

an eigenvalue has multiplicity greater than two, are discussed in [1, 2].

The major result of this work is Theorem 1 where we establish upper and lower

bounds for the eigenvalues of (*) for 0 < $0 < n/2.

2. Upper and lower bounds for the //"'s. We begin by noting the following in-

equalities

\ < -rV - -4 <a{%), 0 < # < $0 < n/2 , (2.1)
j sin" v u
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where a($) = sin~2$ - $2 (see [11]). If we multiply (2.1) by (1 - 4m~)/4 with

m > 1 , we find

2 2 2
1 - 4m 1 - 4m~ 1 - 4m , .
ir-'-'Wt'ir-1-' 0 < d < < n/2. (2.2)

where am = a(i?0)(4m2 - l)/4 and bm = (4m2 - 1)/12 .

Next, consider the following differential equations,

v"+\ l" + jj ~am+* 4^" lu = 0, 0 < $ < $0, (2.3a)
1\2 1 - 4m2

u" + I ( v + ^ ) +" = 0 < x) < Ti, (2.3b)
\ V 2/ 4 sin" $ J

|/"+(("+5)2"4"+ii?")F = 0' 0< "<<v (2,3c)

From [10, p. 17], we see that the solutions of (2.3a) and (2.3c) are given by

1 \2 1 - 4m2

= \\l\v+ 2 I >
P2

K = ̂ y,„ U/(- +,

respectively, while the solution of (2.3b) is easily verified to be u = \/sin x)P'"(cos &).

In [2], it was shown that P™ (cosd) has [v - m] zeros on (0, 7t)([jc] = n , when

n < x < n + 1). In the following, we let v denote the /cth zero of P™ (cos &) on

0 < & < 7i. In particular, if &0 = k , then ti™(&0) = v{v + 1). From the Sturm

Comparison Theorem [6], it follows that the /cth zero of V occurs before the /cth

zero of u, and the Ath zero of u occurs before the /cth zero of v . In particular,

we find that

Jk „ ^ h_
72

- a
<<.*<-==r=> (2-4a:

yj{u + {f - bm ' Vr+I)

where j"' is the /cth positive zero of the Bessel function Jm(z). Arguing in a similar

fashion, we find that when m — 0,

•o o
 ^ < 0° , < , Jk = ... (2.4b)

\l{v + \?-ao ^{v + l)2 -b<

We are now ready to establish the main result.
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Theorem 1. If ^™(#0) is an eigenvalue of (*) for 0 < #0 < n/2, then

< < (f) + ̂  ("Co'" i^rr) • <2 5a)

(|) ->„><">»)<(!) "3- <2-5b»

where a(#0) = sin"2 #0 - i?^2 .

Proof. The estimates in (2.5a) follow by setting v = and n"k' = + 1)

in (2.4a), squaring the resulting inequalities, replacing am and bm by their definitions

and then simplifying. The estimates in (2.5b) follow in a similar fashion from (2.4b).

3. Concluding remarks. The notation in [4, 8] is slightly different than that used

here (^° = 2/1, where A] is the first eigenvalue of the Laplacian as defined in [8];

in [4], we also need to set u = n - $0 and R = D = 1 ). Taking the best estimates

from [4, 8], we find that Amin < /*J(D0) < Amax where Amax = O'°/i90)2 (see [8]) and

Amin = (rc/$0)2 - j (see [4]). However, the upper bound in (2.5b) is less than Amax

by the additive constant -i . The lower bound in (2.5b) is greater than X • , since

Moreover, both bounds in (2.5) are asymptotically sharp as $0 —> 0, because (see

[11])

iimo0 („;(«„)+ i)=y;.

Although Theorem 1 applies to any eigenvalue of (*) when 0 < $0 < n/2, since

the lower bound in (2.1) is independent of #0 for 0 < #0 < n , it follows that the

lower bound for n™(i30) with m > 1 and the upper bound for nk{$0) hold for all

0 < $0 < 71 .
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