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Abstract. A formulation of a perturbation technique with several small parameters

is presented. As a particular example, this method is used to study the axisymmetric

oscillations of an inviscid conducting drop in an electric field. It is shown that all

characteristic frequencies of the axisymmetric oscillations decrease as the electric

field strength increases, which is in general agreement with simplified models based

on the assumption of spheroidal deformations.

1. Introduction. Systematic methods of perturbations with respect to one small

parameter have been used as the foremost analytic techniques in approximating so-

lutions of complex nonlinear problems that preclude exact solutions, as summarized

in the book of Nayfeh and Mook [1], Many physical systems are, however, influenced

by several essentially independent factors. For instance, the shape of an oscillating

drop in an electric field is related to both the quiescent distortion due to a nonuniform

distribution of electrostatic stress at the interface and the oscillations that can exist

in the absence of an electric field. Therefore, in more general cases, it is appropriate

to make use of a method of perturbations with respect to several small parameters.

This paper outlines a method of multiple-parameter perturbations, which com-

bines the domain perturbation technique detailed by Joseph [2] for free-boundary

problems in fluid mechanics and the method of multiple time scales [1] for typical

nonlinear oscillations, and extends them to account for more than one small parame-

ter. The single-parameter version of this perturbation technique reduces to that used

by Tsamopoulos and Brown [3] in the analysis of nonlinear resonances of charged

drops. The relationship between the single- and multiple-parameter perturbation

methods is parallel to that of the Taylor expansions with respect to one variable and

several variables. In order to make it easily accessible, the mathematical method is

presented with an application to the calculation of the small-amplitude oscillations

of an inviscid conducting drop in an electric field. The results of this calculation

will be of interest in a wide variety of scientific and engineering applications such as

cloud physics [4,5], spray generation [6], and materials processing [7],
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Drop oscillations in an electric field have been studied mainly by simplified models

based on the assumption of spheroidal deformations [5,8]. This assumption restricts

the study to only the lowest oscillation mode. Relatively little theoretical work has

been done to investigate, in a general way, the modification of the modes and char-

acteristic frequencies arising from the quiescent distortion of a drop in an electric

field. The attempts of Sample et al. [9] and Morrison et al. [10] led to quantitatively

different results. In both papers Lagrange's equation was solved using approximate

expressions for the kinetic energy and potential energy without clear scaling of the

small parameters, so that terms of the same order were not systematically retained.

The method of multiple-parameter perturbations presented in this work makes

the solution procedure more transparent and consistent. Once the small parameters

are defined, the solutions to each order of approximation can be obtained in a sys-

tematic way. In some cases, one may designate a scale relation between these small

parameters so that the problem becomes a single-parameter one. Such a procedure,

however, would not practically simplify the solution procedure and, if performed at

the beginning, would reduce the generality of the method. Following the method

of multiple-parameter perturbations, the equation set and solution for each order

problem are independent of any scale relations. This fact turns out to be a major

advantage of the multiple-parameter method over the single-parameter one; the lat-

ter method would result in different perturbation formulations depending upon each

specified scale relation.

2. Governing equations. In this section, the governing equations are formulated

for the irrotational and incompressible motion of an electrically conducting drop

with volume iR^, density p , uniform interfacial tension a , and zero net electric

charge, situated in an externally applied uniform electrostatic field Eg . For simplic-

ity, only the axisymmetric case is considered and the effects of gravity and viscosity

are ignored. Also, the medium surrounding the drop is assumed to be either a vac-

uum or a tenuous insulating gas, so that its hydrodynamical and electrodynamical

effects can be neglected.

The surface of the drop is described by RF(6, t), where F{6, t) is the dimen-

sionless shape function of the drop and 6 is the meridional angle in spherical co-

ordinates measured from the axis of symmetry, chosen parallel to the direction of

the externally applied electrostatic field E* . The nondimensionalized equation set

may be obtained by defining the dimensionless radial coordinate r0 = r* jR, time

t = t* yJa/ipR^), velocity potential O = O* sJp/{oR), and normal stress terms such

as pressure and electric stress (ApQ, p, Ne) = (R/a){Ap^ , p*, N*), with the asterisk

denoting the corresponding dimensional variables.

In terms of these dimensionless variables, the governing equation for the velocity

potential <t> is written as

V20 = 0 (0 < rQ < F(0, /)). (2.1)

The condition for a finite radial velocity at the center of the drop takes the form

(r0 = 0). (2.2)
oro
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Bernoulli's equation for the pressure everywhere in the drop can be expressed as

>>+irr + L2 {'arj +(^wj =4"» os-oS*•<».<», <")

where Ap0 is a "constant" of integration which may be a function of time but is

spatially uniform, and can be determined by satisfying the constraint of volume

conservation.

The kinematic and the normal stress conditions on the drop surface are of the

form
<9<I> OF 1 d<$>dF

dF0~ ~dt + 7~~dd~de (r° '))> (2-4)

and

p + Ne = V- n (r0 = F(d,t)), (2.5)

where Ne denotes the electric normal stress induced by the externally applied electric

field and the unit normal vector of the surface can be written as

e f - eedF/dd

yj F1 + {8F/dd)2
(2.6)

In addition, the solution for the drop shape should also satisfy the constraint that

the volume of the drop be constant

/"J o
p\d, t)sin9dd = 2, (2.7)

and the constraint that the center of mass of the drop remain at the origin

LF4(6, t)cosds\n9d6 = 0. (2.8)

In restricting this study to the oscillations of an uncharged conducting drop in

an externally applied uniform electrostatic field E*, it is convenient to define the

dimensionless electric potential as

v=^y- (2")

Since the electric stress on the surface of a conductor is normal to the surface and,

when written in SI units, is of the form N* = \emE*2 according to Landau and

Lifshitz [11], the dimensionless normal stress in (2.5) can be expressed as

8V\2 ( 1 d V N 2

r0 = F(6,t)

where em is the permitivity of the medium surrounding the drop, which is assumed

to be electrically insulating.

In dimensionless form, the electric potential is governed by the Laplace equation

vV = 0 (F(6,t)<r0< oo), (2.11)
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the far-field condition is a uniform electric field

V = -rQcos8 (rQ —+ oo), (2.12)

the equation of charge conservation (no net charge on the drop in our case) is of the

form

Fsinflo'f = 0, (2.13)
/ o

and the continuity of the tangential component of the electric field across the interface

is guaranteed by

t-VV = 0 {rQ = F(8, /)), (2.14)

where the unit tangential vector to the drop surface is defined as

er0F/dd + eeF

f2 + (dF/dd)2

(2.15)

Equations (2.13) and (2.14) are based on the assumption of electrostatic equilibrium,

which means that charge is confined to the interface and equilibrates in a time much

shorter than the time scale of the fluid motion. Even for the case of distilled water, the

characteristic time for conduction is smaller than the time for typical drop oscillation

by at least several orders of magnitude when R > 0.1 cm, as shown in [3],

3. Method of multiple-parameter perturbations. The exact solution to the equation

set (2.1)—(2.15) is intractable because of the nonlinearities arising from capillarity,

inertia, the coupling of the surface kinematics to the velocity field and the coupling

of the surface deformations to the electric field, rendering the velocity and electric

potentials dependent on the shape of the mathematical domain which, in turn, is

determined by those field values. However, for a nearly spherical drop, it seems

appropriate to use a domain perturbation technique to transform the drop shape

into the unit sphere. This can be done by introducing the change of coordinates

r0 = rF(6,t), (3.1)

mapping the interface of complex configuration rQ = F(6, t) into a simple domain

r = 1 .

In the present study, two small parameters e, and e-, are considered, where

£i = emRE^1 /a is used to scale the quiescent deformation of the drop surface in

the presence of electric field Eq and e2 is used to measure the magnitude of the os-

cillations which result from physical factors independent of e, . Thus, with respect

to these small parameters, each dependent variable may be expanded in a Taylor

series. For instance, an arbitrary function /(rQ, 6, t\ e, , e2) may be written in the

form of the expansion as

OO OO
1

n \ in!"1
n=0 m=0

/(r0, 0, /; e. , e2) = Y] V -T—7e",e'"/"' "V - 0.0. (3-2)
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where

An.rn], a A \( d , OF d Y7 d OF d \m
f <',«,»=(w + rWtaFj /Co.9.<;«,.«!)

ro=r

(3.3)
Moreover, in the following derivations it is more convenient to use the notation

>n+mf{r,d,t-e{,e2)

de"de™ e.=0 (3.4)

because the terms of f["'m\r, 6, t) can be explicitly written in terms of

f{n'm)(r, 6, t) as

/'0-01(r, 6, t) = /<0'0>(r, 6 , t),

Q /-(O.O)

q/-<0,1> AO, 0)
<1.0) a/— + rF«. <>9f + iFo,wFw, 1) 8/

<9r dr Qrl

a A0.0) «/•('.0) , „2/.(0,0)

/'2'01(r, t) = f{2'0) +rF{2'0)^~ + 2rF(1'0>-^- + rV<1,0> ' ,
^ ' ' ' J dr Qr gr2

Accordingly, the expansions of the governing equations (2.1) and (2.11) in terms

of £ | and e2 yield

v20<"'m>=0 {0 < r < 1) and vV<"'",>=0 (l<r<oo), (3.5)

and the expansions of the natural boundary conditions (2.2) and (2.12) lead to

^ oo (r = 0),
d<&{n-'n)

dr

V(n-m) = -SnQdm0r cos 6 (r-»oo), (3.6)

where 8 denotes the Kronecker delta.

Hence it is expected that the zeroth-order solution for this system takes the form

1

0

_ (r ~ 7) cos^

f(°.o) -1

0{°.°>
{/(0.0>

A^°-0>

(3.7)

2

which recovers the solution for a spherical drop in a uniform electric field, and

V{n-m)(r, 0, t)
= E

/=0

//?/"■ w>(/)
F,(0) for /? j=- 0 and m ± 0, (3.8)
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where P/(d) are the Legendre polynomials. Since any physically measurable effect

of the spatially uniform term can be absorbed into Ap0, p^n'm\t) are

simply set to zero in the following analysis.

For convenience, the shape function at each order of e, and £-, is also expanded

as
CO

F<n'm)(d,t)=j2a{rm\')pi(0)- (3-9)
1=0

Hence, the solution is presumed known in the reference domain, which is the unit

sphere in this problem, as Joseph [2] has pointed out. The changes in the domain

shape are accounted for only through the corrections to the boundary conditions at

each order of e( and e,.

As will be seen, separating terms of equal order e, and e2 in the expansions of

the governing equations given in Sec. 2 leads to a sequence of linear, inhomogeneous

problems. The inhomogeneities at a given order are determined from the solutions of

the lower-order problems, with the leading-order equations being homogeneous. The

solutions of the homogeneous leading-order equations can usually be constructed by

a sum of the normal modes. Therefore, nonlinear effects can be calculated from the

higher-order problems by successive substitution.

In higher-order inhomogeneous problems, the appearance of secular terms, i.e.,

terms that have the same spatial form and frequency as one of the linear modes,

will lead to difficulties in the perturbation approach. Such secular terms give rise to

solutions with a polynomial growth in time that render the ordering assumptions of

the perturbation theory invalid after short times. In order to properly avoid secular

terms, it is usually convenient to make use of a method of multiple time scales similar

to that described in [1], Formally, the time-dependent variables are assumed to be

functions of time scales related to the actual time t and small parameters e{ and e1

as

T(n , m) = £1 e2 1' (3.10)

Hence, for example, we write aj"'m>(7",0 0), T(. m, Tl0 n, T,. n, ...) instead of'(0,0)' *(1,0)' "(0,1)' *(1,1)'

, f) f ^ "Thic rvT e*n c ill Qt nnK; Hap c ^  - 

(0,0)^
a) ' '(t). This means that not only does q) ' depend on t (= T0 0)), but also

on the combinations £,/, £-,/, e,e2/, c\t, £,/, ... .

It is seen that T{n represent different time scales because £, and £, are small

parameters, which means the terms of higher order of £, and e-, represent slower

time variations. The different time scales are introduced into the dynamic equations

(2.3) and (2.4) by expanding the partial derivative with respect to time as

OO OO rj

O \ ^ n m O

777 =dt ,
n=0 m=0 (n.m)

Odd d
OT +fi|ar JrEldT +£|£2g7' +.... (3.11)WJ(0,0) Ui(1.0) (0,1) (1.1)

4. Perturbation solutions. By the definition given in this paper, £2 = 0 means that

there is no oscillatory motion in the drop, but the externally applied electrostatic
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field would produce a quiescent deformation on the drop surface. Therefore, both

the time derivative and velocity potential ct>(" 0> disappear when e7 is zero. On the

other hand, setting e, = 0 implies there is no electric field. Thus the solutions to

each order of e2 should yield the results obtained by Tsamopoulos and Brown [12]

for nonlinear oscillations of inviscid drops when e, becomes zero. However, because

of the way in which the electric potential was nondimensionalized, in general V^°'m^

are not zero, although they would not affect the drop shape when e, is zero.

Since the solution form for the terms of each order of £, and is presumed

known (given by (3.7)-(3.9)), what need to be determined are the expansion coef-

ficients for the drop shape (aj"'m^), velocity potential , electric potential

(i'l"'m>), etc., through the corrections to the boundary conditions at each order of

e, and e2 . In the following derivations, subscripts will be employed to denote most

of the partial derivatives in order to shorten some lengthy equations.

4.1. 0(e{) problem (first-order approximation for quiescent deformation). The non-

trivial equations used in this case are

(1,0) , U,<0,0>2

2AprU| + ^i
1p(i,0) , 1 d ( . odF{l'0y
2 F + ——sinP

sin 6 06 \ 06
(r = 1), (4.1)

fJo

J 0
F{1 '0> sin 6dd = 0, (4.2)

F{] 0) cos 6 sin 6 d6 = 0, (4.3)

[\vr{l-0) + 2F{l-0)Vr{0'0) + F{l-0)V{?'0))r, sin6d6 = 0, (4.4)
Jo

d_^v(\,0) +F(i,0)v(0,0)) = 0 (r=i). (4.5)

The shape function ,F<I 0> and Apg' may be obtained directly from (4.1 )-(4.3),

since F<0 0> is known from (3.7). The nonzero coefficients are found to be

(' -°> ^ j * <i .0) 3a2 and Ap0 (4.6)

Once F^'0) is determined, the coefficients for the electric potential can be obtained

from (4.4) and (4.5), giving

tf'°> = T5' 41'0* = and ^''0>=0 for//1,3. (4.7)

The solution shows that, with respect to the equatorial plane (6 = it/2), the drop

shape is symmetric whereas the electric potential is antisymmetric. To the first order

in e, the shape function consists only of a two-lobed Legendre function. Adornato

and Brown [13] used an asymptotic method to calculate the equilibrium shapes of

electrostatically levitated drops. The result obtained here is identical to their result

in the limit of zero charge.
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4.2. 0(s2) problem (first-order oscillatory motion about the spherical shape). The

equations used for this problem are

SI Z7<°. 1}

^0,1>=rf  (r=l)' (4"8)
° (0,0)

. (0,1) 0O<o,1> (o, i> 1 d ( . dF{0'l)\

-^; = -2F "iEiede{smd-afl-J (r=1)' (4'9)

F{0'1) sinddd = 0, (4.10)

fJo

fJ 0

fJo

F{0'i}cosdsm ddd = 0, (4.11)

(Kr<0,l> + 2F(0'Vr(0'0> +F(0'1>F.J°'0>)r=1 sin Odd = 0, (4.12)

A(K(0,,>+F<0,l>Kr<0,0>) = 0 (r = 1). (4.13)

The solution takes the form

A„<0,1> <0.1> (0,1) nAPo = Qn = a\ = u

and

a]"'" = cju'"exp[i<olT.0 ] (/ = 2,3,4,...), (4.14)

where cj0' could be functions of slower time scales such as T{{ 0), T{0 , T{0 2),

...,and

o) = 1(1-l)(/ + 2). (4.15)

The velocity and electric potentials are determined through the relations

„(°.i)
,„<«•» = and if " = 3

(0,0)

/ + 1 <0,l> , / J0.1)
-Q:,. , + —j rQ:

2/+ 3 /+l 2/ — 1 (4.16)

If the dimensionless electric potential F<0 " is ignored, the solution of the 0(e2)

problem corresponds to the linear modes of oscillation analyzed by Rayleigh [14],

4.3. 0(e,e2) problem (small-amplitude oscillations of a slightly deformed drop).

Carrying out the expansion up to this order will enable us to see the phenomena

arising from the coupling between the oscillations and quiescent deformations. The

characteristic frequency shift due to the externally applied electric field will show up

by virtue of the solvability condition used to avoid the secular terms.

The equations for this problem are of the form

<D(IJ) +/r<l'°>o<0'l> = ——1 + ——I + F,(l,0>oi0,l> (r=l), (4.17)
~*-r i * -*-rr .j, i)T H 0 v ' x '

w'(0,0) u,[\.0)
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<i,i) _ 900'0 _ gQ<0,1> (i,o) d2Q<0,1> (o,o)fJ/(o,i)

^ 7(o, 0) a7-(li0) 9r9r(0i0) ' 1 '

\ i-.< i, i) , 1 8 (^adFiul)\

sinddd ^ dd J
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p (0, 1) <0,0).
rr '

\„<1.0 , 1 ^ /^„^F<1'1>N

sin0 90 ^ 90

+2Jh»..> Fo.°)+_i_^jsin9^ji (4I8)

/■./0
(2jp<1 .°>jp<°-!> + Jp<1 - '>)sin 0= 0. (4.19)

fJo
(3/r<' '°>/r<0'') + F(''1}) COS0 sin 6 dd = 0, (4.20)

/V'Jo
(1.1) +4F(1,0)^.(0, 1)^(0,0) + ?F(1,0)^(0, 1)^(0,0) +F(1,0)^(0,1)^(0,0)

2F(1,0)F(0,1) ^,(1,0)^(0.1) 2/r<0'l)j/<l'0> + ^(0,1)^(1,0)

_j_ 2jp^ 1 > 0 j/-(0 > 0) _j_ ̂p(' ' 0 1 ' 0) p/(0, 1)  jF(0,l)F<l,0)

_F<i,o>^<o,i>Fjo,o> _ i,(0,i)Fo,°)F^0,0)]^i singdg = o5 (4.21)

A[K<1,1> +7r<1>°>7r<0-i>|/<0'0) + F(i.0)F<0,i) +/r(0,1)^(1,0) + ^(l, l) F<0,0>, = Q
90 rr r r r

(r = 1). 4.22

By combining the kinematic condition (4.17) and normal stress condition (4.18),

an equation for the coefficients of the shape function is obtained. The solvability

condition for this equation leads to a determination of the first correction to the

characteristic frequencies, which is of primary interest.

The kinematic condition (4.17) leads to

/y9<1.0 _ dal ' , da

^TJo.oj ^n,0]

where

o <o.'> -I <o.i) Q (o,i)
„<l,0/,^a/-2 o<'.0 ,ndal /?<1 ' 0 (/) 1+2

-B_ 2 (/)^= B0 (/)— B+2 (/)— 
aJ(0,0) Ui(0,0) aJ(0,0)

fii'21>(/) = Id- i)/+2(/ - 2),

(4.23)

pC • 0//\ _ 9S0 (0 - g

D< 1 • 0 / /\ _ 9
(/)~X

n n,m (' ~ 1) 21
( } ^ 3 (2/- 1)

(,+3),-=('+2)-^
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with

/ (/) =  ^ ~ ^ "2l J (21 - 1)(2/ + 1) '

/ (/) = ^ + "/ ~ 1 
' (21 - 1)(2/ + 3) '

, _ (/ +!)(/ + 2)

+21 j ~ (2/+ 1)(2/ + 3) '

The equation for the normal stress balance (4.18) yields

°o o n (1 * 1) oo

-4"o''" + E It—'/ + Ei' -1 >(/ + 2)a« ■ "p,
/=i 0J,(O,O) /=0

OO , n2 (0,1)
- V 1 d a! p

/ ;i T 8 T 11=2 (0,0)t/i(l .0)

, \ ' 1 ̂  / /\ {0.1) (0.1) (0-l)-ir> /4
+ 2JC-2 (')«/_2 +^0 (')Q/ + (-"+2 ( ) /+2 i ' (4--4)

/=0

where

clV 'V) = |[2(/2 - 3/ + 6) + 8(/ - 2) + /(/ - 2)(/ - 3)]/.,(/ - 2),

C<l'1>(/) = ^[2(r + / +4)+ /(/-!)(/ +2)] W~

+2 v

r
3

+8/ W ~ 2'°w (2/+1)(2/-1).

C{+l2l)(l)= |[2(/2 + 5/+ l0) + 8/ + (/+ l)(/ + 2)(/ + 4)]/_2(/ + 2).

By eliminating from (4.23) and (4.24), an equation is obtained for the

coefficients of the shape function

q2 (1.1)
—^ + 1(1 - 1 )(/ + 2)a{l'l>

^(0.0)

n2 (0,1)
0 °l J.j<'-'),,x< 0.1)

where

~'2df 0T +A+2 (/)"/+2
a 1 (o.or (i.0)

+ 41,1>(/)a/0,1> +^-21>(/)a/-21>' for/#0, (4.25)

^i'2- 0 (/) - /Ci'j 1>(/) - /(/ - 2)(/ - 3)5i'2 1}(/),

4'-l>(/) = /C<1,1>(/)-/(/- l)(/ + 2)5<l'1>(/)!

4V '*(/) = /C^''■ (/) -(/+!)(/ + 2)(/ + 4)^' '>(/).
The solvability condition for (4.25) requires that

-2o/ttar + '4o'' 'W'0 = 0 ■ (4-26)
u (0,0)u ' (1 ,0)
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As a result,

(0,1) (1,1)
aj = c] exp W/^O.O)- , (4.27)

where Cy1'1* could be functions of T(0

Thus a more accurate expression for the characteristic frequencies is found to be

( A{xa)(1) \

"'V °2fc)2 J (/ = 2'3'4'---) (4-28)

where is the linear normal mode frequency given by (4.15).

Moreover the coefficients a^ ^ , aj1', and A/?^1'can be obtained form (4.19),

(4.20), and (4.24):

,<1-1> = _Aq<°''> a<'-» = Ap<1'1> = -—a*0'0- (4 29)*0 JO 2 ' 1 140 3 ' "o S 2 ' \*-zy)

and (4.25) yields

«<'•'> = ^'2'V)  <0,0 A-2l)C) (0.1) (4 30)

1 2(1 + 2)(3/ + 2) 1+2 2/(3/ - 4) '~2 ' 1 j

As discussed in [1], the solution to the homogeneous part of (4.25) need not be

included because it can always be absorbed in the linear modes (4.14).

The coefficients for the electric potential can be generally written as

eO.O r/O-O/IN <°.>> , <0,1> r,(U>m (0,1) rr(l.')//x (0,1)
£/ — 3 v)al-3 + "-| (')«/_! +"+1 y')al+\ + H+3 (')«/+3 >

where //i'j'V), and can be obtained from (4.21)

and (4.22) in a straightforward but tedious way.

5. Discussion. One interesting aspect of the results obtained in this paper is the

lowering of the characteristic frequencies in the presence of an externally applied

electric field, which may be regarded as the result of a net reduction in the restoring

force on the drop surface. This effect is evident as a reduction in the uniform pressure

difference across the interface as seen in (4.6), where the perturbation correction to

Ap0 is negative. Physical insight may be gained by examining the surface forces

at some special locations. A reduction in the surface restoring force occurs at the

equator where the curvature is diminished by electrostatic distortion in the relative

absence of induced charge. At the poles the curvature effect tends to increase the

restoring force, but the Coulomb repulsion due to the concentration of induced charge

effectively softens the drop surface.

For convenience, each of the characteristic frequencies in (4.28) is normalized by

the corresponding linear normal mode frequency and is ploted in Fig. 1 as a func-

tion of a normalized electric field strength EQ = ygy instead of the small parameter

£, . The quadratic decrease in the lowest characteristic frequency with E0 predicted

here is generally in good agreement with the one obtained from the spheroidal model

by Brazier-Smith et al. [5], except in the region where the drop deformation is no

longer small. When the deformation increases, the drop will become unstable so the
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1.00

ELECTRIC FIELD STRENGTH

Fig. 1. The normalized characteristic frequency l-(^o ' ''(/)/2w])Eq

of a conducting drop in an electric field as a function of the normal-

ized electric field strength, E0 = N/ej". Results of the method of

multiple-parameter perturbations (solid curves, numbered by values

of /) and that of the spheroidal model of Brazier-Smith et al. (dashed

curve) for the two-lobed mode are shown.

effects of higher-order terms in the perturbation expansion could be more significant.

The calculations here, however, are based on low-order expansions which may be

only valid for small deformations. The results obtained in this paper differ some-

what from those of Sample et al. [8] and Morrison et al. [9], because their failure

to retain all terms of the same order is avoided in using the consistent method of

multiple-parameter perturbations.
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